首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Proline residues affect protein folding and stability via cis/trans isomerization of peptide bonds and by the Cγ-exo or -endo puckering of their pyrrolidine rings. Peptide bond conformation as well as puckering propensity can be manipulated by proper choice of ring substituents, e.g. Cγ-fluorination. Synthetic chemistry has routinely exploited ring-substituted proline analogs in order to change, modulate or control folding and stability of peptides.

Methodology/Principal Findings

In order to transmit this synthetic strategy to complex proteins, the ten proline residues of enhanced green fluorescent protein (EGFP) were globally replaced by (4R)- and (4S)-fluoroprolines (FPro). By this approach, we expected to affect the cis/trans peptidyl-proline bond isomerization and pyrrolidine ring puckering, which are responsible for the slow folding of this protein. Expression of both protein variants occurred at levels comparable to the parent protein, but the (4R)-FPro-EGFP resulted in irreversibly unfolded inclusion bodies, whereas the (4S)-FPro-EGFP led to a soluble fluorescent protein. Upon thermal denaturation, refolding of this variant occurs at significantly higher rates than the parent EGFP. Comparative inspection of the X-ray structures of EGFP and (4S)-FPro-EGFP allowed to correlate the significantly improved refolding with the Cγ-endo puckering of the pyrrolidine rings, which is favored by 4S-fluorination, and to lesser extents with the cis/trans isomerization of the prolines.

Conclusions/Significance

We discovered that the folding rates and stability of GFP are affected to a lesser extent by cis/trans isomerization of the proline bonds than by the puckering of pyrrolidine rings. In the Cγ-endo conformation the fluorine atoms are positioned in the structural context of the GFP such that a network of favorable local interactions is established. From these results the combined use of synthetic amino acids along with detailed structural knowledge and existing protein engineering methods can be envisioned as a promising strategy for the design of complex tailor-made proteins and even cellular structures of superior properties compared to the native forms.  相似文献   

2.
One of the long-term goals in synthetic biology is the construction of large-scale gene networks to control and manipulate cells. Such networks often tweak natural regulatory mechanisms, or 'switches', in order to achieve the desired function. Regulatory mechanisms that involve RNA building blocks such as messenger RNA, microRNA and riboswitches have become increasingly prominent in this regard. Recent achievements include prototype mRNA sensors, logic circuits that respond to small molecule cues to affect cell fate, and cell-state classifier networks that identify physiological states using multiple microRNA inputs. This Review describes these and other results in RNA-based synthetic biology.  相似文献   

3.
Structural motifs in naturally occurring RNAs and RNPs can be employed as new molecular parts for synthetic biology to facilitate the development of novel devices and systems that modulate cellular functions. In this review, we focus on the following: (i) experimental evolution techniques of RNA molecules in vitro and (ii) their applications for regulating gene expression systems in vivo. For experimental evolution, new artificial RNA aptamers and RNA enzymes (ribozymes) have been selected in vitro. These functional RNA molecules are likely to be applicable in the reprogramming of existing gene regulatory systems. Furthermore, they may be used for designing hypothetical RNA-based living systems in the so-called RNA world. For the regulation of gene expressions in living cells, the development of new riboswitches allows us to modulate the target gene expression in a tailor-made manner. Moreover, recently RNA-based synthetic genetic circuits have been reported by employing functional RNA molecules, expanding the repertory of synthetic biology with RNA motifs.  相似文献   

4.
Synthetic biology: challenges ahead   总被引:3,自引:0,他引:3  
This expanding scientific discipline is proving extremely popularand is attracting engineering and system design experts to thefield of Biology. As Bioinformatics and Computational Biology will be essentialcomponents of new technical and scientific developments, itis vital to follow the discussion generated by the recent ESFExploratory Workshop (October 13–16, 2005, Constructingand de-constructing Life, Magalia, Spain) and the 2005 reportof the NEST High-Level Expert Group on Synthetic Biology: ApplyingEngineering to Biology http://www.eurosfaire.prd.fr/nest/documents/pdf/NEST_syntheticbiology_b5_eur21796_en.pdf) Synthetic Biology stands at the meeting-point of two cultures.The first, represented by those interested in ‘deconstructing  相似文献   

5.
6.
7.
《Biotechnology journal》2009,4(10):1371-1379
Special focus: Synthetic biology What is synthetic biology? SynBERC – The Synthetic Biology Engineering Research Center Ars Synthetica iGEM – The International Genetically Engineered Machine competition Some synthetic biology companies Paper watch: Synthetic biology Building blocks for novel functions Knowledge-making distinctions in synthetic biology Scaffold design and manufacturing: From concept to clinic Peptidomimetics – a versatile route to biologically active compounds Metabolic engineering of E. coli E. coli needs safety valves Systems-level metabolic engineering Mammalian synthetic biology Chemical aspects of synthetic biology Synthesis of DNA fragments in yeast Synthetic biology and patentable subject matter Patenting artificial life? Metabolic effects of synthetic rewiring Engineering for biofuels Regulatory elements for synthetic biology Book highlight Systems Biology and Synthetic Biology  相似文献   

8.
The field of synthetic biology has made rapid progress in a number of areas including method development, novel applications and community building. In seeking to make biology "engineerable," synthetic biology is increasing the accessibility of biological research to researchers of all experience levels and backgrounds. One of the underlying strengths of synthetic biology is that it may establish the framework for a rigorous bottom-up approach to studying biology starting at the DNA level. Building upon the existing framework established largely by the Registry of Standard Biological Parts, careful consideration of future goals may lead to integrated multi- scale approaches to biology. Here we describe some of the current challenges that need to be addressed or considered in detail to continue the development of synthetic biology. Specifically, discussion on the areas of elucidating biological principles, computational methods and experimental construction methodologies are presented.  相似文献   

9.
We propose the term "synthetic tissue biology" to describe the use of engineered tissues to form biological systems with metazoan-like complexity. The increasing maturity of tissue engineering is beginning to render this goal attainable. As in other synthetic biology approaches, the perspective is bottom-up; here, the premise is that complex functional phenotypes (on par with those in whole metazoan organisms) can be effected by engineering biology at the tissue level. To be successful, current efforts to understand and engineer multicellular systems must continue, and new efforts to integrate different tissues into a coherent structure will need to emerge. The fruits of this research may include improved understanding of how tissue systems can be integrated, as well as useful biomedical technologies not traditionally considered in tissue engineering, such as autonomous devices, sensors, and manufacturing.  相似文献   

10.
Adenosine is a well known neuromodulator in the central nervous system. As a consequence, adenosine can be beneficial in certain disorders and adenosine receptors will be potential targets for therapy in a variety of diseases. Adenosine receptors are G protein-coupled receptors, and are also expressed in a large variety of cells and tissues. Using these receptors as a paradigm of G protein-coupled receptors, the present review focus on how protein-protein interactions might contribute to neurotransmitter/neuromodulator regulation, based on the fact that accessory proteins impinge on the receptor/G protein interaction and therefore modulate receptor functioning. Besides affecting receptor signaling, these accessory components also play a key role in receptor trafficking, internalization and desensitization, as it will be reviewed here. In conclusion, the finding of an increasing number of adenosine receptors interacting proteins, and specially the molecular and functional integration of these accessory proteins into receptorsomes, will open new perspectives in the understanding of particular disorders where these receptors have been proved to be involved.  相似文献   

11.
12.
Oldham P  Hall S  Burton G 《PloS one》2012,7(4):e34368
This article uses data from Thomson Reuters Web of Science to map and analyse the scientific landscape for synthetic biology. The article draws on recent advances in data visualisation and analytics with the aim of informing upcoming international policy debates on the governance of synthetic biology by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) of the United Nations Convention on Biological Diversity. We use mapping techniques to identify how synthetic biology can best be understood and the range of institutions, researchers and funding agencies involved. Debates under the Convention are likely to focus on a possible moratorium on the field release of synthetic organisms, cells or genomes. Based on the empirical evidence we propose that guidance could be provided to funding agencies to respect the letter and spirit of the Convention on Biological Diversity in making research investments. Building on the recommendations of the United States Presidential Commission for the Study of Bioethical Issues we demonstrate that it is possible to promote independent and transparent monitoring of developments in synthetic biology using modern information tools. In particular, public and policy understanding and engagement with synthetic biology can be enhanced through the use of online interactive tools. As a step forward in this process we make existing data on the scientific literature on synthetic biology available in an online interactive workbook so that researchers, policy makers and civil society can explore the data and draw conclusions for themselves.  相似文献   

13.
14.
15.
16.
Complex reduced polyketides represent the largest class of natural products that have applications in medicine, agriculture, and animal health. This structurally diverse class of compounds shares a common methodology of biosynthesis employing modular enzyme systems called polyketide synthases (PKSs). The modules are composed of enzymatic domains that share sequence and functional similarity across all known PKSs. We have used the nomenclature of synthetic biology to classify the enzymatic domains and modules as parts and devices, respectively, and have generated detailed lists of both. In addition, we describe the chassis (hosts) that are used to assemble, express, and engineer the parts and devices to produce polyketides. We describe a recently developed software tool to design PKS system and provide an example of its use. Finally, we provide perspectives of what needs to be accomplished to fully realize the potential that synthetic biology approaches bring to this class of molecules.  相似文献   

17.
Endolysins and their derivatives have emerged in recent years as a novel class of antibacterials, which have now entered the clinical phases. Their rapid mode-of-action and proteinaceous nature differentiates them from any other class of antibiotics. A key feature of endolysins is their modularity and the opportunities that emerge thereof to customize properties such as specificity, activity, stability and solubility. Extensive protein engineering efforts have expanded the activity spectrum to (pan)drug-resistant Gram-negative bacteria or have improved the activity against Gram-positive pathogens. In addition, specific cell wall binding domains derived from endolysins are exploited for the development of diagnostics.  相似文献   

18.
The advancement of synthetic biology is thanks, in large part, to continuing improvements in DNA synthesis. The expansion of synthetic biology into the realm of metabolic engineering has shifted the focus from simply making novel synthetic biological parts to answering the question of how we employ these biological parts to construct genomes that ultimately give rise to useful phenotypes. Much like protein engineering, the answer to this will be arrived at following the combination of rational design and evolutionary approaches. This review will highlight some of the new DNA synthesis-enabled search methods and discuss the application of such methods to the creation of synthetic gene networks and genomes.  相似文献   

19.
20.
The following essay was written by a freshman undergraduate student majoring in Bioengineering at the University of Maryland, Mr. Zachary Russ. Mr. Russ was one of 94 students who submitted a 1000 to 1200 word essay to the 3rd Annual Bioethics Essay Contest sponsored by the Institute of Biological Engineering (IBE). A group of professionals in Biological Engineering assessed and ranked the essays in a blinded process. Five semi-finalists were invited to present their essays at a session at the annual meeting of IBE in Chapel Hill, NC on March 8, 2008. Five judges scored the presentations at the annual meeting and selected Mr. Russ's contribution as the overall winner (1st Place). Below is his essay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号