首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent advances in applied physics and chemistry have led to the development of novel microfluidic systems. Microfluidic systems allow minute amounts of reagents to be processed using μm-scale channels and offer several advantages over conventional analytical devices for use in biological sciences: faster, more accurate and more reproducible analytical performance, reduced cell and reagent consumption, portability, and integration of functional components in a single chip. In this review, we introduce how microfluidics has been applied to biological sciences. We first present an overview of the fabrication of microfluidic systems and describe the distinct technologies available for biological research. We then present examples of microsystems used in biological sciences, focusing on applications in molecular and cellular biology.  相似文献   

2.
随着新型冠状病毒(SARS-CoV-2)引发的全球疫情不断加剧,新型冠状病毒体外诊断技术与产品的研发成为全球生物医药领域关注的重点,体外诊断技术与产品的研发创新对于提升新发突发传染病的防控能力有着重要的意义.对2019年12月至2020年12月期间国内外新型冠状病毒体外诊断技术与产品的研发现状与发展趋势进行了综述,即包...  相似文献   

3.
In an era of severe biodiversity loss, biological monitoring is becoming increasingly essential. The analysis of environmental DNA (eDNA) has emerged as a new approach that could revolutionize the biological monitoring of aquatic ecosystems. Over the past decade, macro-organismal eDNA analysis has undergone significant developments and is rapidly becoming established as the golden standard for non-destructive and non-invasive biological monitoring. In this review, I summarize the development of macro-organismal eDNA analysis to date and the techniques used in this field. I also discuss the future perspective of these analytical methods in combination with sophisticated analytical techniques for DNA research developed in the fields of molecular biology and molecular genetics, including genomics, epigenomics, and single-cell technologies. eDNA analysis, which to date has been used primarily for determining the distribution of organisms, is expected to develop into a tool for elucidating the physiological state and behaviour of organisms. The fusion of microbiology and macrobiology through an amalgamation of these technologies is anticipated to lead to the future development of an integrated biology.  相似文献   

4.
Prominent tuberculosis (TB) actors are invoking solidarity to motivate and justify collective action to address TB, including through intensified development and implementation (D&I) of technologies such as drugs and diagnostics. We characterize the ethical challenges associated with D&I of new TB technologies by drawing on stakeholder perspectives from 23 key informant interviews and we articulate the ethical implications of solidarity for TB technology D&I. The fundamental ethical issue facing TB technological D&I is a failure within and beyond the TB community to stand in solidarity with persons with TB in addressing the complex sociopolitical contexts of technological D&I. The failure in solidarity relates to two further ethical challenges raised by respondents: skewed power dynamics that hinder D&I and uncertainties around weighing risks and benefits associated with new technologies. Respondents identified advocacy and participatory research practices as necessary to address such challenges and to motivate sustained collective action to accelerate toward TB elimination. We present the first empirical examination of bioethical accounts of solidarity in public and global health. Our study suggests that solidarity allows us better to understand and address the ethical challenges that arrest the D&I of new TB technologies. Solidarity lends credence to policies and practices that address the relational nature of illness and health through collective action.  相似文献   

5.
The development and successful application of high-throughput technologies are transforming biological research. The large quantities of data being generated by these technologies have led to the emergence of systems biology, which emphasizes large-scale, parallel characterization of biological systems and integration of fragmentary information into a coherent whole. Complementing the reductionist approach that has dominated biology for the last century, mathematical modeling is becoming a powerful tool to achieve an integrated understanding of complex biological systems and to guide experimental efforts of engineering biological systems for practical applications. Here I give an overview of current mainstream approaches in modeling biological systems, highlight specific applications of modeling in various settings, and point out future research opportunities and challenges.  相似文献   

6.

Background

Realizing constructive applications of synthetic biology requires continued development of enabling technologies as well as policies and practices to ensure these technologies remain accessible for research. Broadly defined, enabling technologies for synthetic biology include any reagent or method that, alone or in combination with associated technologies, provides the means to generate any new research tool or application. Because applications of synthetic biology likely will embody multiple patented inventions, it will be important to create structures for managing intellectual property rights that best promote continued innovation. Monitoring the enabling technologies of synthetic biology will facilitate the systematic investigation of property rights coupled to these technologies and help shape policies and practices that impact the use, regulation, patenting, and licensing of these technologies.

Results

We conducted a survey among a self-identifying community of practitioners engaged in synthetic biology research to obtain their opinions and experiences with technologies that support the engineering of biological systems. Technologies widely used and considered enabling by survey participants included public and private registries of biological parts, standard methods for physical assembly of DNA constructs, genomic databases, software tools for search, alignment, analysis, and editing of DNA sequences, and commercial services for DNA synthesis and sequencing. Standards and methods supporting measurement, functional composition, and data exchange were less widely used though still considered enabling by a subset of survey participants.

Conclusions

The set of enabling technologies compiled from this survey provide insight into the many and varied technologies that support innovation in synthetic biology. Many of these technologies are widely accessible for use, either by virtue of being in the public domain or through legal tools such as non-exclusive licensing. Access to some patent protected technologies is less clear and use of these technologies may be subject to restrictions imposed by material transfer agreements or other contract terms. We expect the technologies considered enabling for synthetic biology to change as the field advances. By monitoring the enabling technologies of synthetic biology and addressing the policies and practices that impact their development and use, our hope is that the field will be better able to realize its full potential.
  相似文献   

7.
Radioactive alkylating 5'-[32P]-[4-(N-2-chlorethyl)N-methylaminobenzyl]-5'-phospham ide decadeoxyribothymidilate derivatives containing either free hydroxyl group (reagent I), hydrophobic cholesterol residue (reagent II) or polyaromatic phenazinium residue (reagent III) at 3'-termini were synthesized. The products were purified by HPLC and used for oligonucleotide-directed alkylating of DNA in isolated rat liver nuclei, Krebs-2 ascite carcinoma cells and L-929 murine fibroblasts. The uptake of reagent II by the cells was two orders of magnitude higher than that of reagent I and III. Intracellular alkylation of DNA by reagent II both in isolated nuclei and in living cells was about one order of magnitude higher than in the case of reagent I. The presence of phenazinium at 3'-termini of the reagent III leads to a sufficient increase of the alkylation extent compared to reagent I despite a quite low extent of its uptake by the cells.  相似文献   

8.
A new heterobifunctional reagent, N-(3-(p-azido-m-iodophenyl)propionyl)-succinimide (AIPPS), was synthesized and chemically characterized. The radiochemical form of the reagent, [125I]AIPPS, should be of general use as a photoactive reagent for the derivatization of free amino groups on a large variety of biologically active compounds, including many hormones. Amino-containing ligands can be derivatized with [125I]AIPPS in a method which is similar to that used for the 125I-labeled Bolton-Hunter reagent (N-(3-(p-hydroxyphenyl)propionyl)-succinimide). The added advantage with [125I]AIPPS, however, is that the ligand derivative is made both photoactive and radioactive in a single step. As an example of how this reagent can be used, we have prepared carrier-free [125I]AIPPS and reacted it with the amino-containing cardiac glycoside, 4-amino-4,6-dideoxyglucosyl digitoxigenin (GluD). The radioiodinated cardiac glycoside, [125I]AIPP-GluD, was purified by thin-layer chromatography and was carrier-free with a specific radioactivity of 2175 Ci/mmol. [125I]AIPP-GluD was an effective photoaffinity label for Na,K-ATPase as shown by specific photoaffinity labeling of purified canine kidney enzyme and human erythrocyte enzyme.  相似文献   

9.
Many of the synthetic biological devices, pathways and systems that can be engineered are multi-use, in the sense that they could be used both for commercially-important applications and to help meet global health needs. The on-going development of models and simulation tools for assembling component parts into functionally-complex devices and systems will enable successful engineering with much less trial-and-error experimentation and laboratory infrastructure. As illustrations, I draw upon recent examples from my own work and the broader Keasling research group at the University of California Berkeley and the Joint BioEnergy Institute, of which I was formerly a part. By combining multi-use synthetic biology research agendas with advanced computer-aided design tool creation, it may be possible to more rapidly engineer safe and effective synthetic biology technologies that help address a wide range of global health problems.  相似文献   

10.
Each year, billions of dollars are invested in efforts to improve crops through genetic engineering (GE). These activities have resulted in a surge of publications and patents on technologies and genes: a momentum in basic research that, unfortunately, is not sustained throughout the subsequent phases of product development. After more than two decades of intensive research, the market for transgenic crops is still dominated by applications of just a handful of methods and genes. This discrepancy between research and development reflects difficulties in understanding and overcoming seven main barriers‐to‐entry: (1) trait efficacy in the field, (2) critical product concepts, (3) freedom‐to‐operate, (4) industry support, (5) identity preservation and stewardship, (6) regulatory approval and (7) retail and consumer acceptance. In this review, I describe the various roadblocks to market for transgenic crops and also discuss methods and approaches on how to overcome these, especially in the United States.  相似文献   

11.
Correlative microscopy is a powerful imaging approach that refers to observing the same exact structures within a specimen by two or more imaging modalities. In biological samples, this typically means examining the same sub-cellular feature with different imaging methods. Correlative microscopy is not restricted to the domains of fluorescence microscopy and electron microscopy; however, currently, most correlative microscopy studies combine these two methods, and in this review, we will focus on the use of fluorescence and electron microscopy. Successful correlative fluorescence and electron microscopy requires probes, or reporter systems, from which useful information can be obtained with each of the imaging modalities employed. The bi-functional immunolabeling reagent, FluoroNanogold, is one such probe that provides robust signals in both fluorescence and electron microscopy. It consists of a gold cluster compound that is visualized by electron microscopy and a covalently attached fluorophore that is visualized by fluorescence microscopy. FluoroNanogold has been an extremely useful labeling reagent in correlative microscopy studies. In this report, we present an overview of research using this unique probe.  相似文献   

12.
Next-generation sequencing technologies for environmental DNA research   总被引:7,自引:0,他引:7  
Since 2005, advances in next-generation sequencing technologies have revolutionized biological science. The analysis of environmental DNA through the use of specific gene markers such as species-specific DNA barcodes has been a key application of next-generation sequencing technologies in ecological and environmental research. Access to parallel, massive amounts of sequencing data, as well as subsequent improvements in read length and throughput of different sequencing platforms, is leading to a better representation of sample diversity at a reasonable cost. New technologies are being developed rapidly and have the potential to dramatically accelerate ecological and environmental research. The fast pace of development and improvements in next-generation sequencing technologies can reflect on broader and more robust applications in environmental DNA research. Here, we review the advantages and limitations of current next-generation sequencing technologies in regard to their application for environmental DNA analysis.  相似文献   

13.
Immunology research has been transformed in the post-genomics era, with high throughput molecular biology and information technologies taking an increasingly central role. This has led to the development of a new area of science termed "Immunomics", that encompasses genomic, high throughput and bioinformatic approaches to immunology. In recognition of the increasing importance of this field, Immunome Research is a new Open Access, online journal, that will publish cutting edge research across the field of Immunomics. Immunome Research will publish a wide range of article types including specialty immunology databases, immunology database tools, immunome epitope research, epitope analysis tools, high-throughput technologies (gene sequencing, microarrays, proteomics), white papers, mathematical and theoretical models, and prediction tools. Immunome Research is the official journal of the International Immunomics Society (IIMMS).  相似文献   

14.
INTRODUCTION: Bacopa monnieri contains pseudojujubogenin glycosides as pharmacologically active compounds. In order to screen large numbers of plant samples for the presence of pseudojujubogenin glycosides, a rapid and simple assay system is required for application to small quantities of test materials. Immunoassays using monoclonal antibodies could be useful for the determination of small quantities of pseudojujubogenin glycosides in plant extracts. OBJECTIVE: The objective of this work was to develop a simple method for the detection of pseudojujubogenin glycosides by the immunochromatographic strip test using anti-bacopaside I monoclonal antibody. METHODOLOGY: The qualitative assay was based on a competitive immunoassay in which the detector reagent consisted of a colloidal gold particle coated with the respective anti-bacopaside I MAb. The capture reagent was a bacopaside I-human serum albumin conjugate immobilised onto a test strip membrane. RESULTS: The sample containing pseudojujubogenin glycosides and the detection reagent were incubated with the immobilised capture reagent. The glycosides in the sample competed in binding to the limited amount of antibodies in the detection reagent with the immobilised bacopaside I-HSA conjugates and, hence, positive samples showed no colour in the capture spot zone. The detection limit for the strip test was 125 ng/mL. CONCLUSION: The assay system was found to be useful as a rapid and simple screening method for the detection of pseudojujubogenin glycosides in plants.  相似文献   

15.
Research on Parkinson’s disease (PD) has made remarkable progress in recent decades, due largely to new genomic technologies, such as high throughput sequencing and microarray analyses. Since the discovery of a linkage of a missense mutation of the α-synuclein (αS) gene to a rare familial dominant form of PD in 1996, positional cloning and characterization of a number of familial PD risk factors have established a hypothesis that aggregation of αS may play a major role in the pathogenesis of PD. Furthermore, dozens of sensitizing alleles related to the disease have been identified by genome wide association studies (GWAS) and meta-GWAS, contributing to a better understanding of the pathological mechanisms of sporadic PD. Thus, the knowledge obtained from the association studies will be valuable for “the personal genome” of PD. Besides summarizing such progress, this paper focuses on the role of microRNAs in the field of PD research, since microRNAs might be promising as a biomarker and as a therapeutic reagent for PD. We further refer to a recent view that neurodegenerative diseases, including PD, coexist with metabolic disorders and are stimulated by type II diabetes, the most common disease among elderly populations. The development of genomic approaches may potentially contribute to therapeutic intervention for PD.  相似文献   

16.
突变文库的构建是定向进化研究过程中一个关键步骤,主要利用天然存在的系统或者人工合成的分子技术来产生多样性核酸分子文库,为制备和筛选具有一定特性的蛋白酶、多肽、人工抗体等提供庞大的遗传基因库,也可用于合成生物学中相关基因元件的研究与筛选,为目标生物制品的高效工业化生产提供动力。随着对突变文库构建技术研究的日益深入,各种文库构建策略相继被开发出来,并在生物能源、生物化工、生物医药、生物试剂和食品工业等方面得到了广泛的应用。然而,定向进化中的文库构建策略多有不同,各种突变文库构建技术的核心方法也在不断创新。主要介绍近年来实验室中人工合成多样性文库的前沿技术,并对文库构建技术在自动化和智能化方向的发展进行了展望。  相似文献   

17.
The enzyme cellobiohydrolase I (CBH I) from Trichoderma reesei was treated with 5 mM dithiothreitol at different pH values in order to reduce some or all of its 12 disulfide bridges. A discrepancy was found in the number of free sulfhydryl (SH) groups generated upon the reduction of CBH I when they were measured using N-(1-pyrenyl)maleimide (PM) or Ellman's reagent, 5,5′-dithiobis(2-nitrobenzoic acid). For example, the number of SH mol generated/mol CHB I at pH 8.5 was determined to be 16 and < 1 when measured using PM or Ellman's reagent, respectively. The low value obtained with Ellman's reagent may be due to the electrostatic repulsion between the carboxylic acid groups in CBH I and those in Ellman's reagent. The fluorimetric assay used for determining SH molecules in reduced CBH I, based on their reaction with PM, is described.  相似文献   

18.
We will provide a translational view of using the recent technological advances in dental research for predicting, monitoring, and preventing the development of oral diseases by investigating the diagnostic and therapeutic role of salivary proteins. New analytical state-of-the-art technologies such as mass spectrometry and atomic force microscopy have revolutionized the field of oral biology. These novel technologies open avenues for a comprehensive characterization of the salivary proteins followed by the evaluation of the physiological functions which could make possible in a near future the development of a new series of synthetic protein for therapeutic propose able to prevent global oral diseases such as periodontal disease and dental caries, the two most prevalent oral diseases in the World.  相似文献   

19.
The knowledge gleaned from genome sequencing and post-genome analyses is having a very significant impact on a whole range of life sciences and their applications. 'Genome-wide analysis' is a good keyword to represent this tendency. Thanks to innovations in high-throughput measurement technologies and information technologies, genome-wide analysis is becoming available in a broad range of research fields from DNA sequences, gene and protein expressions, protein structures and interactions, to pathways or networks analysis. In fact, the number of research targets has increased by more than two orders in recent years and we should change drastically the attitude to research activities. The scope and speed of research activities are expanding and the field of bioinformatics is playing an important role. In parallel with the data-driven research approach that focuses on speedy handling and analyzing of the huge amount of data, a new approach is gradually gaining power. This is a 'model-driven research' approach, that incorporates biological modeling in its research framework. Computational simulations of biological processes play a pivotal role. By modeling and simulating, this approach aims at predicting and even designing the dynamic behaviors of complex biological systems, which is expected to make rapid progress in life science researches and lead to meaningful applications to various fields such as health care, food supply and improvement of environment. Genomic sciences are now advancing as great frontiers of research and applications in the 21st century.This article starts with surveying the general progress of bioinformatics (Section 1), and describes Japanese activities in bioinformatics (Section 2). In Section 3, I will introduce recent developments in Systems Biology which I think will become more important in the future.  相似文献   

20.
Diagnostic tools appropriate for undertaking interventions to control helminth infections are key to their success. Many diagnostic tests for helminth infection have unsatisfactory performance characteristics and are not well suited for use in the parasite control programmes that are being increasingly implemented. Although the application of modern laboratory research techniques to improve diagnostics for helminth infection has resulted in some technical advances, uptake has not been uniform. Frequently, pilot or proof of concept studies of promising diagnostic technologies have not been followed by much needed product development, and in many settings diagnosis continues to rely on insensitive and unsatisfactory parasitological or serodiagnostic techniques. In contrast, PCR-based xenomonitoring of arthropod vectors, and use of parasite recombinant proteins as reagents for serodiagnostic tests, have resulted in critical advances in the control of specific helminth parasites. The Disease Reference Group on Helminths Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR) was given the mandate to review helminthiases research and identify research priorities and gaps. In this review, the diagnostic technologies relevant to control of helminth infections, either available or in development, are reviewed. Critical gaps are identified and opportunities to improve needed technologies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号