首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The brindled mouse is an accurate model of the fatal human X-linked copper deficiency disorder, Menkes disease. Males carrying the mutant allele of the Menkes gene orthologue Atp7a die in the second week of life. To determine whether the genetic defect in the brindled mice could be corrected by expression of the human Menkes gene, male transgenic mice expressing ATP7A from the chicken beta-actin composite promoter (CAG) were mated with female carriers of the brindled mutation (Atp7a(Mo-br)). Mutant males carrying the transgene survived and were fertile but the copper defect was not completely corrected. Unexpectedly males corrected with one transgenic line (T25#5) were mottled and resembled carrier females, this effect appeared to be caused by mosaic expression of the transgene. In contrast, males corrected with another line (T22#2) had agouti coats. Copper concentrations in tissues of the rescued mutants also resembled those of the heterozygous females, with high levels in kidney (84.6+/-4.9 microg/g in corrected males vs. 137.0+/-44.3 microg/g in heterozygotes) and small intestine (15.6+/-2.5 microg/g in corrected males vs. 15.7+/-2.8 microg/g in heterozygotes). The results show that the Menkes defect in mice is corrected by the human Menkes gene and that adequate correction is obtained even when the transgene expression does not match that of the endogenous gene.  相似文献   

2.
The clinical and biochemical effects of disulfiram were evaluated in three boys with the disorders characterized by copper deficiency due to the defect of ATP7A. Two suffered from Menkes disease (MD) and one from occipital horn syndrome. Disulfiram was orally given, in addition to a parenteral administration of copper-histidine in the case of MD patients. Serum levels of copper and ceruloplasmin slightly increased in one MD patient, and he showed favorable emotional expression and behavior more often than before according to his caretakers. However, no obvious changes were observed in the other two patients. Serum ratios of noradrenaline to dopamine, and adrenaline to dopamine, which are thought to be the indicators of dopamine β-hydroxylase activity, one of the copper requiring enzymes, were unaltered after disulfiram treatment. No adverse effects were recognized during the treatment period in all patients. Although the major improvement was not observed clinically or biochemically by disulfiram treatment so far, the trial will be continued to see the possible effects in these disorders with copper transport defect.  相似文献   

3.
Menkes disease is an X-linked recessive disorder of copper metabolism. Deficient quantity or functional activity of a molecule involved in intracellular copper transport is believed to represent the basic defect. We applied an in vitro copper binding assay (copper blotting) to tissue proteins from Menkes patients and controls to evaluate differences in copper-binding. Proteins were separated by SDS-PAGE, electrotransferred to nitrocellulose, and probed with67CuCl2. Copper-binding polypeptides were visualized by autoradiography. No major differences were observed between a Menkes patient and control subjects in copper blots of post-mortem liver, kidney, or brain—tissues affected clinically by the disturbance of copper metabolism in Menkes disease. We also applied the copper blotting technique to fibroblast proteins from an affected female in whom the gene responsible for Menkes disease is interrupted by a chromosomal translocation, and detected no differences in copper-binding proteins relative to normal controls. These experiments suggest that the gene product defective in Menkes disease is not detectable in copper blots, either because normal tissue levels are below the limits of detection of this method, or because the molecule involved does not bind copper under these conditions.  相似文献   

4.
Menkes disease is a fatal neurodegenerative disorder in infants caused by mutations in the gene ATP7A which encodes a copper (Cu) transporter. Defects in ATP7A lead to accumulated copper in the small intestine and kidneys and to copper deficiencies in the brain and the liver. The copper level in the kidney in postnatal copper-treated Menkes patients may reach toxic levels. The mouse model, mosaic Atp7a (mo-ms) recapitulates the Menkes phenotype and die about 15.75±1.5 days of age. In the present study we found that prenatal treatment of mosaic murine fetuses throughout gestation days 7, 11, 15 and 18 with a combination of CuCl(2) (50 mg/kg) and dimethyldithiocarbamate (DMDTC) (280 mg/kg) leads to an increase in survival to about 76±25.3 days, whereas treatment with CuCl(2) alone (50 mg/kg) only leads to survival for about 21 days ±5 days. These copper-DMDTC treated mutants showed an improved locomotor activity performance and a gain in body mass. In contrast to treatment with CuCl(2) alone, a significant increase in the amount of copper was observed in the brain after prenatal copper-DMDTC treatment as well as a decrease in the amount of accumulated copper in the kidney, both leading towards a normalization of the copper level. Although copper-DMDTC prenatal treatment only leads to a small increase in the sub-normal copper concentration in the liver and to an increase of copper in the already overloaded small intestine, the combined results suggest that prenatal copper-DMDTC treatment also should be considered for humans.  相似文献   

5.
Little is known about copper metabolism at the cellular level. The brindled mouse is an animal model of Menkes disease which is an inborn error of copper metabolism. Control and brindled mice were used to identify copper-binding proteins with possible roles in normal copper metabolism that are affected by the defect in the brindled mice. When 64Cu-labeled hepatic or renal cytosols from control mice were applied to Mono Q or Superose columns, a approximately 48-kDa protein coeluted with the protein fractions which contained the radiolabeled copper. Large decreases in copper binding were detected in these fractions from the brindled mice. The same column fractions which showed decreased copper binding showed large decreases in the levels of the approximately 48-kDa protein. Decreased copper binding and approximately 48-kDa protein were not simply secondary to the abnormal hepatic and renal copper levels that are found in the brindled mice since although their liver copper levels are low, their kidney copper levels are high. Elevated levels of an approximately 80-kDa heat shock protein were also detected in the hepatic and renal cytosols from the brindled mice. Consistent with expression of the primary defect in both the liver and kidney, the levels of the approximately 48- and approximately 80-kDa proteins were affected similarly in both organs. Irrespective of how the low levels of the approximately 48-kDa protein may be related to the basic defect in the brindled mice, the data are consistent with an important role for the approximately 48-kDa protein in intracellular copper metabolism.  相似文献   

6.
Menkes disease is an X‐linked, recessive disorder of copper metabolism that occurs in approximately 1 in 200,000 live births. The condition is characterized by skeletal abnormalities, severe mental retardation, neurologic degeneration, and patient mortality in early childhood. The symptoms of Menkes disease result from a deficiency of serum copper and copper‐dependent enzymes. A candidate gene for the disease has been isolated and designated MNK. The MNK gene codes for a P‐type cation transporting ATPase, based on homology to known P‐type ATPases and in vitro experimentation. cDNA clones of MNK in Menkes patients show diminished or absented hybridization in northern blot experiments. The Menkes protein functions to export excess intracellular copper and activates upon Cu(I) binding to the six metal‐binding repeats in the amino‐terminal domain. The loss of Menkes protein activity blocks the export of dietary copper from the gastrointestinal tract and causes the copper deficiency associated with Menkes disease. Each of the Menkes protein amino‐terminal repeats contains a conserved ‐X‐Met‐X‐Cys‐X‐X‐Cys‐ motif (where X is any amino acid). These metal‐binding repeats are conserved in other cation exporting ATPases involved in metal metabolism and in proteins involved in cellular defense against heavy metals in both prokaryotes and eukaryotes. An overview of copper metabolism in humans and a discussion of our understanding of the molecular basis of cellular copper homeostasis is presented. This forms the basis for a discussion of Menkes disease and the protein deficit in this disease. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 93–106, 1999  相似文献   

7.
Mottled Tohoku (Atp7a(Mo-Tohm) or Mo(Tohm)) is an X-linked mutation with mottled pigmentation in heterozygous (Mo(Tohm)/+) females and is embryonic lethal at E11 in hemizygous (Mo(Tohm)/Y) males. Copper levels were low in the brain and high in the intestine of Mo(Tohm) mice. Two congenic strains with ICR or C57BL/6 (B6) background were produced for genetic and phenotypic analyses and revealed that Mo(Tohm)/+ females with ICR background survived until adulthood, while most with B6 background died within 2 days after birth. The Mo(Tohm)/Y males with both backgrounds died at around E11. Massive hemorrhage was shown in the yolk sac cavity with irregular attachment between the mesoderm and the endothelial cells of blood vessels in the embryos at E10.5, suggesting that this irregular attachment causes embryonic lethality. The Mo(Tohm) mutant had a 1440-bp deletion between intron 22 and exon 23 of the Atp7a gene. Mo(Tohm)/Y males with the wild-type Atp7a cDNA transgene were rescued from embryonic lethality, confirming that the Mo(Tohm) mutant is caused by the defect in the Atp7a gene. This mutant mouse is the most severe model of human Menkes disease in mottled mice established to date and one of the useful models for understanding the gene function of Menkes disease.  相似文献   

8.
Cunliffe P  Reed V  Boyd Y 《Genomics》2001,74(2):155-162
Mottled mice have mutations in the copper-transporting ATPase Atp7a. They are proven models for the human disorder Menkes disease (MD), which results from mutations in a homologous gene. Mottled mice can be divided into three classes: class 1, in which affected males die before birth; class 2, in which affected males die in the early postnatal period; and class 3, in which affected males survive to adulthood. In humans, it has been shown that mutations that lead to a complete absence of functional protein cause classical MD, which is characterized by death of boys in early childhood. We hypothesized that the most severely affected mottled alleles would be the most likely to carry mutations equivalent to those causing classical MD and therefore undertook mutational analysis of several class 1 mottled alleles to assess whether these were appropriate models for the disease at the molecular level. Two novel mutations, a deletion of exons 11-14 in mottled spot and an insertion in exon 10 leading to missplicing in mottled candy, were identified. However, these are both "in-frame" mutations, as are the other eight Atp7a mutations reported to date, and therefore no frameshift or nonsense mutations have yet been associated with the mottled phenotype. This contrasts with the mutation spectrum associated with MD, emphasizing the need for caution when mottled mice are used as models for the clinical disorder.  相似文献   

9.
Copper is an essential co-factor for several key metabolic processes. This requirement in humans is underscored by Menkes disease, an X-linked copper deficiency disorder caused by mutations in the copper transporting P-type ATPase, MNK. MNK is located in the trans-Golgi network where it transports copper to secreted cuproenzymes. Increases in copper concentration stimulate the trafficking of MNK to the plasma membrane where it effluxes copper. In this study, a Menkes disease mutation, G1019D, located in the large cytoplasmic loop of MNK, was characterized in transfected cultured cells. In copper-limiting conditions the G1019D mutant protein was retained in the endoplasmic reticulum. However, this mislocalization was corrected by the addition of copper to cells via a process that was dependent upon the copper binding sites at the N-terminal region of MNK. Reduced growth temperature and the chemical chaperone, glycerol, were found to correct the mislocalization of the G1019D mutant, suggesting this mutation interferes with protein folding in the secretory pathway. These findings identify G1019D as the first conditional mutation associated with Menkes disease and demonstrate correction of the mislocalized protein by copper supplementation. Our findings provide a molecular framework for understanding how mutations that affect the proper folding of the MNK transporter in Menkes patients may be responsive to parenteral copper therapy.  相似文献   

10.
11.
The Menkes protein (MNK; ATP7A) is a copper-transporting P-type ATPase that is defective in the copper deficiency disorder, Menkes disease. MNK is localized in the trans-Golgi network and transports copper to enzymes synthesized within secretory compartments. However, in cells exposed to excessive copper, MNK traffics to the plasma membrane where it functions in copper efflux. A conserved feature of all P-type ATPases is the formation of an acyl-phosphate intermediate, which occurs as part of the catalytic cycle during cation transport. In this study we investigated the effect of mutations within conserved catalytic regions of MNK on intracellular localization and trafficking from the trans-Golgi network (TGN). Our findings suggest that mutations that block formation of the phosphorylated catalytic intermediate also prevent copper-induced relocalization of MNK from the TGN. Furthermore, mutations in the phosphatase domain, which resulted in hyperphosphorylation of MNK, caused constitutive trafficking from the TGN to the plasma membrane. A similar effect on trafficking was observed with a phosphatase mutation in the closely related copper ATPase, ATP7B, affected in Wilson disease. These findings suggest that the copper-induced trafficking of the Menkes and Wilson disease copper ATPases is associated with the phosphorylated intermediate that is formed during the catalysis of these pumps. Our findings describe a novel mechanism for regulating the subcellular location of a transport protein involving the recognition of intermediate conformations during catalysis.  相似文献   

12.
Body copper homeostasis is regulated by the liver, which removes excess copper via bile. In Wilson's disease (WD), this function is disrupted due to inactivation of the copper transporter ATP7B resulting in hepatic copper overload. High urinary copper is a diagnostic feature of WD linked to liver malfunction; the mechanism behind urinary copper elevation is not fully understood. Using Positron Emission Tomography-Computed Tomography (PET-CT) imaging of live Atp7b(-/-) mice at different stages of disease, a longitudinal metal analysis, and characterization of copper-binding molecules, we show that urinary copper elevation is a specific regulatory process mediated by distinct molecules. PET-CT and atomic absorption spectroscopy directly demonstrate an age-dependent decrease in the capacity of Atp7b(-/-) livers to accumulate copper, concomitant with an increase in urinary copper. This reciprocal relationship is specific for copper, indicating that cell necrosis is not the primary cause for the initial phase of metal elevation in the urine. Instead, the urinary copper increase is associated with the down-regulation of the copper-transporter Ctr1 in the liver and appearance of a 2 kDa Small Copper Carrier, SCC, in the urine. SCC is also elevated in the urine of the liver-specific Ctr1(-/-) knockouts, which have normal ATP7B function, suggesting that SCC is a normal metabolite carrying copper in the serum. In agreement with this hypothesis, partially purified SCC-Cu competes with free copper for uptake by Ctr1. Thus, hepatic down-regulation of Ctr1 allows switching to an SCC-mediated removal of copper via kidney when liver function is impaired. These results demonstrate that the body regulates copper export through more than one mechanism; better understanding of urinary copper excretion may contribute to an improved diagnosis and monitoring of WD.  相似文献   

13.
Copper (Cu) plays a critical role in the developing foetus, but virtually nothing is known concerning the regulation of its uptake and metabolism in the placenta. In this issue of the Biochemical Journal, Hardman and colleagues, using a model of placental trophoblasts in culture, identify differential hormonal regulation of two copper-transporting ATPases; namely, those responsible for Menkes disease (ATP7A; MNK) and Wilson disease (ATP7B; WND). Insulin and oestrogen, which are essential during gestation, up-regulate MNK and this leads to trafficking of the MNK protein from the Golgi to the basolateral membrane, resulting in increased Cu efflux. At the same time, insulin decreased WND levels, and this leads to intracellular sequestration of the protein to a perinuclear region that reduces apical Cu release. As such, this results in a concerted flux of Cu from the basolateral surface of the trophoblast that would potentially be used by the developing foetus. An integrated model of vectorized Cu transport is proposed, which involves co-ordinated expression of transporters, organelle interactions and probable protein-protein interactions. The findings have wider implications for considering general models of intracellular metal transport.  相似文献   

14.
15.
Wilson disease (WD) and Menkes disease (MNK) are inherited disorders of copper metabolism. The genes that mutate to give rise to these disorders encode highly homologous copper transporting ATPases. We use yeast and mammalian two-hybrid systems, along with an in vitro assay to demonstrate a specific, copper-dependent interaction between the six metal-binding domains of the WD and MNK ATPases and the cytoplasmic copper chaperone HAH1. We demonstrate that several metal-binding domains interact independently or in combination with HAH1p, although notably domains five and six of WDp do not. Alteration of either the Met or Thr residue of the HAH1p MTCXXC motif has no observable effect on the copper-dependent interaction, whereas alteration of either of the two Cys residues abolishes the interaction. Mutation of any one of the HAH1p C-terminal Lys residues (Lys(56), Lys(57), or Lys(60)) to Gly does not affect the interaction, although deletion of the 15 C-terminal residues abolishes the interaction. We show that apo-HAH1p can bind in vitro to copper-loaded WDp, suggesting reversibility of copper transfer from HAH1p to WD/MNKp. The in vitro HAH1/WDp interaction is metalospecific; HAH1 preincubated with Cu(2+) or Hg(+) but not with Zn(2+), Cd(2+), Co(2+), Ni(3+), Fe(3+), or Cr(3+) interacted with WDp. Finally, we model the protein-protein interaction and present a theoretical representation of the HAH1p.Cu.WD/MNKp complex.  相似文献   

16.
Respiratory allergic disease is an inflammatory condition accompanied by oxidative stress. Supplementation of an anti-inflammatory agent with antioxidants may have a therapeutic effect. In this study, the effects of choline chloride in combination with antioxidants were evaluated via the intranasal route in a mouse model of allergic airway disease. Balb/c mice were sensitized on days 0, 7, and 14 and challenged on days 25–30 with cockroach extract (CE) and with a booster challenge on day 38. They were treated with choline chloride (ChCl; 1 mg/kg), vitamin C (Vit C; 308.33 mg/kg), and selenium (Se; 1 mg/kg) alone or in combination via the intranasal route on days 31, 33, 35, 37, and 39. The mice were sacrificed on day 40 to collect blood, bronchoalveolar lavage fluid, lungs, and spleen. Mice immunized with CE showed a significant increase in airway hyperresponsiveness (AHR), lung inflammation, Th2 cytokines, and the oxidative stress markers intracellular reactive oxygen species and 8-isoprostanes compared to the phosphate-buffered saline control group. A significant decrease was observed in these parameters with all the treatments (p<0.01). The highest decrease was noticed in the ChCl+Vit C+Se-treated group, with AHR decreased to the normal level. This group also showed the highest decrease in airway inflammation (p<0.001), IL-4 and IL-5 (p<0.001), IgE and IgG1 (p<0.001), NF-κB (p<0.001), and 8-isoprostane levels (p<0.001). Glutathione peroxidase activity, which was decreased significantly in CE-immunized mice, was restored to normal levels in this group (p<0.001). IL-10 level was decreased in CE-immunized mice and was restored to normal by combination treatment. The combination treatment induced FOXP3+ cells in splenocyte culture, responsible for the upregulation of IL-10. In conclusion, the combination of choline chloride, vitamin C, and selenium via the intranasal route reduces AHR, inflammation, and oxidative stress, probably by causing IL-10 production by FOXP3+ cells, and possesses therapeutic potential against allergic airway disease.  相似文献   

17.
The Hah1 metallochaperone protein is implicated in copper delivery to the Menkes and Wilson disease proteins. Hah1 and the N-termini of its target proteins belong to a family of metal binding domains characterized by a conserved MT/HCXXC sequence motif. The crystal structure of Hah1 has been determined in the presence of Cu(I), Hg(II), and Cd(II). The 1.8 A resolution structure of CuHah1 reveals a copper ion coordinated by Cys residues from two adjacent Hah1 molecules. The CuHah1 crystal structure is the first of a copper chaperone bound to copper and provides structural support for direct metal ion exchange between conserved MT/HCXXC motifs in two domains. The structures of HgHah1 and CdHah1, determined to 1.75 A resolution, also reveal metal ion coordination by two MT/HCXXC motifs. An extended hydrogen bonding network, unique to the complex of two Hah1 molecules, stabilizes the metal binding sites and suggests specific roles for several conserved residues. Taken together, the structures provide models for intermediates in metal ion transfer and suggest a detailed molecular mechanism for protein recognition and metal ion exchange between MT/HCXXC containing domains.  相似文献   

18.
The Menkes copper-translocating P-type ATPase (ATP7A; MNK) is a key regulator of copper homeostasis in humans. It has a dual role in supplying copper to essential cuproenzymes in the trans-Golgi network (TGN) and effluxing copper from the cell. These functions are achieved through copper-regulated trafficking of MNK between the TGN and the plasma membrane. However, the exact mechanism(s) which regulate the localisation and biochemical functions of MNK are still unknown. Here we investigated copper-dependent phosphorylation of MNK by a putative protein kinase(s). We found that in the presence of elevated copper there was a substantial increase in phosphorylation of the wild-type MNK in vivo. The majority of copper-dependent phosphorylation was on serine residues in two phosphopeptides. In contrast, there was no up-regulation of phosphorylation of a non-trafficking MNK mutant with mutated cytosolic copper-binding sites. Our findings suggest a potentially important role of kinase-dependent phosphorylation in the regulation of function of the MNK protein.  相似文献   

19.
Oxidative modifications are a hallmark of oxidative imbalance in the brains of individuals with Alzheimer's, Parkinson's and prion diseases and their respective animal models. While the causes of oxidative stress are relatively well-documented, the effects of chronically reducing oxidative stress on cognition, pathology and biochemistry require further clarification. To address this, young and aged control and amyloid-β protein precursor-over-expressing mice were fed a diet with added R-alpha lipoic acid for 10 months to determine the effect of chronic antioxidant administration on the cognition and neuropathology and biochemistry of the brain. Both wild type and transgenic mice treated with R-alpha lipoic acid displayed significant reductions in markers of oxidative modifications. On the other hand, R-alpha lipoic acid had little effect on Y-maze performance throughout the study and did not decrease end-point amyloid-β load. These results suggest that, despite the clear role of oxidative stress in mediating amyloid pathology and cognitive decline in ageing and AβPP-transgenic mice, long-term antioxidant therapy, at levels within tolerable nutritional guidelines and which reduce oxidative modifications, have limited benefit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号