首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently reported that collaborative testing (i.e., group test taking) increased student performance on quizzes. It is unknown, however, whether collaborative testing improves student retention of course content. Therefore, this study was designed to test the hypotheses that collaborative-group testing improves student retention of course content. To test this hypothesis, our undergraduate exercise physiology class of 38 students was randomly divided into two groups: group A (n = 19) and group B (n = 19). During exam 1, students from both groups answered questions in the traditional format as individuals. Immediately after completing the exam as individuals, students from group A answered a randomly selected subset of questions from exam 1 in groups of two (1 group had 3 students) to test the effectiveness of collaborative-group testing on test performance and level of student retention. On the next exam (exam 2, 4 wk later), students from both groups answered questions in the traditional format as individuals and responded to the same subset of questions from exam 1. The subset of questions was analyzed to determine the level of retention of the original test material. In addition, immediately after completing the exam as individuals, students from group B answered a randomly selected subset of questions from exam 2 in groups of two (1 group had 3 students). Finally, on the next exam (exam 3, 4 wk later), students from both groups answered questions in the traditional format as individuals and responded to the same subset of questions from exam 2. This protocol followed a randomized crossover design to control for time and order effects. Student retention of course content was reduced when students completed the original examinations individually. In sharp contrast, student retention was improved (P < 0.05) when students completed the original examinations in groups. Results suggest that collaborative testing is an effective strategy to enhance learning and increase student retention of course content.  相似文献   

2.
Examinations and quizzes should be used as learning as well as assessment tools. To achieve this goal, an assessment procedure was developed to enhance as well as assess student learning. Students were tested on four different topics of cardiovascular physiology. Each topic was tested by a different type of quiz (fill in the blanks, single best response multiple choice, short essay, or true/false). The students first completed a quiz individually. Once the quiz was completed individually, the students completed the same quiz in groups. Eighty percent of the score on the quiz was based on the individual results, and 20% of the score on the quiz was based on the group results. The performance on the quizzes was significantly higher (P < 0.001) when students completed the quizzes in groups than when they completed the quizzes individually. Results document that completing the quizzes in groups enhances the understanding of the material. In addition, students rated this format superior to the traditional method.  相似文献   

3.
To improve science learning, science educators' teaching tools need to address two major criteria: teaching practice should mirror our current understanding of the learning process; and science teaching should reflect scientific practice. We designed a small-group learning (SGL) model for a fourth year university neurobiology course using these criteria and studied student achievement and attitude in five course sections encompassing the transition from individual work-based to SGL course design. All students completed daily quizzes/assignments involving analysis of scientific data and the development of scientific models. Students in individual work-based (Individualistic) sections usually worked independently on these assignments, whereas SGL students completed assignments in permanent groups of six. SGL students had significantly higher final exam grades than Individualistic students. The transition to the SGL model was marked by a notable increase in 10th percentile exam grade (Individualistic: 47.5%; Initial SGL: 60%; Refined SGL: 65%), suggesting SGL enhanced achievement among the least prepared students. We also studied student achievement on paired quizzes: quizzes were first completed individually and submitted, and then completed as a group and submitted. The group quiz grade was higher than the individual quiz grade of the highest achiever in each group over the term. All students--even term high achievers--could benefit from the SGL environment. Additionally, entrance and exit surveys demonstrated student attitudes toward SGL were more positive at the end of the Refined SGL course. We assert that SGL is uniquely-positioned to promote effective learning in the science classroom.  相似文献   

4.
Students learn best when they are focused and thinking about the subject at hand. To teach physiology, we must offer opportunities for students to actively participate in class. This approach aids in focusing their attention on the topic and thus generating genuine interest in the mechanisms involved. This study was conducted to determine if offering voluntary active learning exercises would improve student understanding and application of the material covered. To compare performance, an anonymous cardiorespiratory evaluation was distributed to two groups of students during the fall (control, n = 168) and spring (treatment, n = 176) semesters. Students in both groups were taught by traditional methods, and students in the treatment group had the option to voluntary participate in two additional active learning exercises: 1) a small group discussion, where students would discuss a physiology topic with their Teaching Assistant before running BIOPAC software for the laboratory exercise and 2) a free response question, where students anonymously responded to one short essay question after the laboratory exercise. In these formative assessments, students received feedback about their present state of learning from the discussion with their peers and also from the instructor comments regarding perceived misconceptions. As a result of the participation in these activities, students in the treatment group had a better overall performance [χ(2) (degree of freedom = 1) = 31.2, P < 0.001] on the evaluation (treatment group: 62% of responses correct and control group: 49%) with an observed difference of 13% (95% confidence interval: 8, 17). In conclusion, this study presents sufficient evidence that when the opportunity presents itself, students become active participants in the learning process, which translates into an improvement in their understanding and application of physiological concepts.  相似文献   

5.
Students must be able to interpret, relate, and incorporate new information with existing knowledge and apply the new information to solve novel problems. Peer instruction is a cooperative learning technique that promotes critical thinking, problem solving, and decision-making skills. Therefore, we tested the hypothesis that peer instruction enhances meaningful learning or transfer, defined as the student's ability to solve novel problems or the ability to extend what has been learned in one context to new contexts. To test this hypothesis, our undergraduate exercise physiology class of 38 students was randomly divided into two groups: group A (n = 19) and group B (n = 19). A randomized crossover design in which students either answered questions individually or during peer instruction was used to control for time and order effects. The first factor that influences meaningful learning is the degree of mastery of the original material. Importantly, peer instruction significantly enhanced mastery of the original material. Furthermore, the student's ability to solve novel problems was significantly enhanced following peer instruction. Thus pausing two to three times during a 50-min class to allow peer instruction enhanced the mastery of the original material and enhanced meaningful learning, i.e., the student's ability to solve novel problems.  相似文献   

6.
7.
I developed an inquiry-based laboratory model that uses a central theme throughout the semester to develop in undergraduate biology majors the skills required for conducting science while introducing them to modern and classical physiological techniques. The physiology laboratory uses a goal-oriented approach, with students working cooperatively in small groups to answer basic biological questions. The student teams work to develop skills associated with experimental design, data analysis, written and oral communication, science literacy, and critical thinking. The laboratory curriculum is a research-based model that offers the advantage of students asking open-ended questions by use of a variety of techniques. For the students and instructor alike, this presents an exciting and challenging approach for learning physiology and basic biological principles. Another advantage of this laboratory model is that it is flexible and adaptable; the central theme can be any that the instructor chooses, and the goals and techniques developed are based on student and instructor needs and interests. Students who have completed this model at Loyola College in Maryland have become equipped with the skills essential for any area of the biological sciences and, most importantly, showed elevated excitement and commitment to learning.  相似文献   

8.
Educators in medical schools around the world are presently experimenting with innovative ways of using web-based learning to supplement the existing teaching and learning process. We have recently used a popular open-source course management system (CMS) called the modular object-oriented dynamic learning environment (Moodle) to construct an online site (DPhysiol) to facilitate our face-to-face teaching of physiology to a group of first-year students in the Bachelor of Medicine and Bachelor of Surgery program. The integration of the Moodle site into our teaching was assessed using online log activity, student examination marks, and feedback from students. The freely available Moodle platform was simple to use, helped to effectively deliver course materials, and has features that allowed cooperative learning. Students who used the CMS throughout their academic year and commented favorably regarding its use as a complement to the face-to-face classroom sessions. The group of students used the CMS obtained significantly higher scores in the final examination compared with the previous class that did not use the CMS. In addition, there was a significant correlation between student participation and performance in online quizzes and their final examination marks. However, students' overall online usage of the CMS did not correlate with their examination marks. We recommend Moodle as a useful tool for physiology educators who are interested in integrating web-based learning into their existing teaching curriculum.  相似文献   

9.
Systems physiology, studied by biomedical engineers, is an analytical way to approach the homeostatic foundations of basic physiology. In many systems physiology courses, students attend lectures and are given homework and reading assignments to complete outside of class. The effectiveness of this traditional approach was compared with an approach in which a wireless classroom communication system was used to provide instant feedback on in-class learning activities and reading assignment quizzes. Homework was eliminated in this approach. The feedback system used stimulated 100% participation in class and facilitated rapid formative assessment. The results of this study indicate that learning of systems physiology concepts including physiology is at least, as if not more, effective when in-class quizzes and activities with instant feedback are used in place of traditional learning activities including homework. When results of this study are interpreted in light of possible effects of the September 11, 2001 terrorist attacks on student learning in the test group, it appears that the modified instruction may be more effective than the traditional instruction.  相似文献   

10.
The popularity of the problem-based learning paradigm has stimulated new interest in small group, interactive teaching techniques. Medical educators of physiology have long recognized the value of such methods, using animal-based laboratories to demonstrate difficult physiological principles. Due to ethical and other concerns, a replacement of this teaching tool has been sought. Here, the author describes the use of a full-scale human patient simulator for such a workshop. The simulator is a life-size mannequin with physical findings (palpable pulses, breath/heart sounds, blinking eyes, etc.) and sophisticated mechanical and software models of the cardiovascular and pulmonary systems. It can be connected to standard physiological monitors to reproduce a realistic clinical environment. In groups of 10, first-year medical students explore Starling's law of the heart, the physiology of the Valsalva maneuver, and the function of the baroreceptor in a clinically realistic context using the simulator. With the use of a novel pre-/postworkshop assessment instrument that included student confidence in their answers, student confidence improved for all questions and survey items following the simulator session (P < 0.0001). The students give these laboratory exercises uniformly superior evaluations with > 85% of the students rating the workshop "very good" or "excellent".  相似文献   

11.
To increase student engagement, active participation, and performance, personal response systems (clickers) were incorporated into six lecture-based sections of four required courses within the Health Sciences Department major curriculum: freshman-level Anatomy and Physiology I and II, junior-level Exercise Physiology, and senior-level Human Pathophysiology. Clickers were used to gather anonymous student responses to questions posed within the class period after individual thought and peer discussion. Students (n = 293, 88% of students completing the courses) completed a perceptual survey on clicker effectiveness inserted into the Student Assessment of Learning Gains online instrument. Across courses and years, students uniformly rated several dimensions of clicker use as providing good to great gain in engaging them in active learning, increasing participation and involvement during class, maintaining attention, applying material immediately, providing feedback concerning their understanding, and offering an anonymous format for participation. Within these four sections, quiz grades were compared between clicker and nonclicker years. Significant increases in pre- and posttest scores were seen in Exercise Physiology in clicker years and on some, but not all material, in Anatomy and Physiology I and II based on content quizzes. Human Pathophysiology results were unexpected, with higher quiz scores in the nonclicker year. The results support the hypothesis of increased engagement with clicker use. The hypothesis of increased student performance was not consistently supported. Increased performance was seen in Exercise Physiology. In Anatomy and Physiology I and II, performance improved on some content quizzes. In Human Pathophysiology, performance did not improve with clickers.  相似文献   

12.
World Wide Web (Web)-based learning (WBL), problem-based learning (PBL), and collaborative learning are at present the most powerful educational options in higher education. A blended (hybrid) course combines traditional face-to-face and WBL approaches in an educational environment that is nonspecific as to time and place. To provide educational services for an undergraduate second-year elective course in acid-base physiology, a rich, student-centered educational Web-environment designed to support PBL was created by using Web Course Tools courseware. The course is designed to require students to work in small collaborative groups using problem solving activities to develop topic understanding. The aim of the study was to identify the impact of the blended WBL-PBL-collaborative learning environment on student learning outcomes. Student test scores and satisfaction survey results from a blended WBL-PBL-based test group (n = 37) were compared with a control group whose instructional opportunities were from a traditional in-class PBL model (n = 84). WBL students scored significantly (t = 3.3952; P = 0.0009) better on the final acid-base physiology examination and expressed a positive attitude to the new learning environment in the satisfaction survey. Expressed in terms of a difference effect, the mean of the treated group (WBL) is at the 76th percentile of the untreated (face-to-face) group, which stands for a "medium" effect size. Thus student progress in the blended WBL-PBL collaborative environment was positively affected by the use of technology.  相似文献   

13.
The Finapres finger cuff recording system provides continuous calculations of beat-to-beat variations in cardiac output (CO), total peripheral resistance, heart rate (HR), and blood pressure (BP). This system is unique in that it allows experimental subjects to immediately, continuously, and noninvasively visualize changes in CO at rest and during exercise. This study provides evidence that using the Finapres system improves undergraduate student engagement, understanding, and learning of how the cardiovascular system responds to exercise. Second-year science students undertaking a physiology practical class in 2009 (n = 243) and 2010 (n = 263) used the Finapres system to record CO, BP, and HR during graded exercise on a cycle ergometer. Student experiences with the Finapres was evaluated with a survey (a 5-point scale from strongly disagree to strongly agree). This indicated that students appreciated the immediacy of the recordings (88% of students agreed or strongly agreed, average for 2009 and 2010), gained an understanding of how to record physiological data (84%), enjoyed the practical (81%), and would recommend the Finapres to other students (81%). To determine if the practical enhanced student learning of cardiovascular physiology, identical tests were given to the students at the beginning (pretest) and end (posttest) of the class. There was a significant improvement from the pretest to the posttest (4% in 2009 and 20% in 2010). In summary, the ability of the Finapres to continuously display CO, BP, and HR during experimental protocols provides students with immediate feedback and improves their understanding of cardiovascular physiology.  相似文献   

14.
This study examined the effect of different anatomic representations on student learning in a human anatomy class studying the muscular system. Specifically, we examined the efficacy of using dissected cats (with and without handouts) compared with clay sculpting of human structures. Ten undergraduate laboratory sections were assigned to three treatment groups: cat dissection only, cat dissection with handouts, and human clay sculpting with handouts. Exams included higher-order questions that presented novel anatomic images and scenarios that the students did not practice in class. The higher-order anatomy exam questions varied the degree to which students in the different treatments had to transform the anatomic representation studied during laboratory activities to match the representation used in the exam questions. In this respect, exam questions manipulated the similarity between the surface features of the anatomic representations used in the classroom versus the exam. When identifying anatomic structures presented in a photograph or diagram, student performance improved significantly when transformation demands decreased, i.e., students in the human clay sculpting treatment group performed best on human anatomy questions and students in the cat dissection treatment group performed better on cat anatomy questions (independent of the use of handouts). There were similar, but nonsignificant, trends when students were asked functional anatomy questions presented in human and cat contexts. On survey questions designed to measure student attitudes about dissection versus nonanimal alternatives, students typically preferred the method used in their treatment group, suggesting that student preference is too fluid to factor into curricular decisions. When designing curricula, instructors must choose anatomic representations that support their course goals. Human representations are most effective when teaching the human muscular system.  相似文献   

15.
We developed an inquiry-based learning model to better stimulate undergraduate students' cognitive development of exercise physiology laboratory concepts. The course core is the two independent research projects that students, working in small groups, complete during the last 9 wk of the semester. Student groups develop their own research question and hypothesis, design the experiment, collect and analyze the data, and report their findings to the rest of the class using presentation software. To help with success of the research projects, students are taken through a series of guided-inquiry laboratory activities during the initial 6 wk of the semester to develop laboratory skills and an understanding of the scientific process. Observations of student behaviors reflected a high level of enthusiasm and engagement in laboratory activities. Surveys, journal entries, and interviews indicated that students felt empowered by having ownership in their projects, which may be the key reason for the success of this model.  相似文献   

16.
The Bernard Distinguished Lecturers are individuals who have a history of experience and expertise in teaching that impacts multiple levels of health science education. Dr. Joel Michael more than meets these criteria. Joel earned a BS in biology from CalTech and a PhD in physiology from MIT following which he vigorously pursued his fascination with the mammalian central nervous system under continuous National Institutes of Health funding for a 15-yr period. At the same time, he became increasingly involved in teaching physiology, with the computer being his bridge between laboratory science and classroom teaching. Soon after incorporating computers into his laboratory, he began developing computer-based learning resources for his students. Observing students using these resources to solve problems led to an interest in the learning process itself. This in turn led to a research and development program, funded by the Office of Naval Research (ONR), that applied artificial intelligence to develop smart computer tutors. The impact of problem solving on student learning became the defining theme of National Science Foundation (NSF)-supported research in health science education that gradually moved all of Dr. Michael's academic efforts from neurophysiology to physiology education by the early 1980's. More recently, Joel has been instrumental in developing and maintaining the Physiology Education Research Consortium, a group of physiology teachers from around the nation who collaborate on diverse projects designed to enhance learning of the life sciences. In addition to research in education and learning science, Dr. Michael has devoted much of his time to helping physiology teachers adopt modern approaches to helping students learn. He has organized and presented faculty development workshops at many national and international venues. The topics for these workshops have included computer-based education, active learning, problem-based learning, and the use of general models in teaching physiology.  相似文献   

17.
Over half of the undergraduate students entering physiology hold a misconception concerning how breathing pattern changes when minute ventilation increases. Repair of this misconception was used as a measure to compare the impact of three student laboratory protocols on learning by 696 undergraduate students at 5 institutions. Students were tested for the presence of the misconception before and after performing a laboratory activity in which they measured the effect of exercise on tidal volume and breathing frequency. The first protocol followed a traditional written "observe and record" ("cookbook") format. In the second treatment group, a written protocol asked students to complete a prediction table before running the experiment ("predictor" protocol). Students in the third treatment group were given the written "predictor" protocol but were also required to verbalize their predictions before running the experiment ("instructor intervention" protocol). In each of the three groups, the number of students whose performance improved on the posttest was greater than the number of students who performed less well on the posttest (P < 0.001). Thus the laboratory protocols helped students correct the misconception. However, the remediation rate for students in the "instructor intervention" group was more than twice that observed for the other treatment groups (P < 0.001). The results indicate that laboratory instruction is more effective when students verbalize predictions from their mental models than when they only "discover" the outcome of the experiment.  相似文献   

18.
目的:通过自行设计的启发式思考题,让问题式学习伴随医学生分子生物学实验教学全程,利用实验课的教学互动环节发挥学生学习的主观能动性。方法:借鉴启发式教学经验和问题式教学方法,在实验的平时考核中增加了启发式思考题,针对教学内容设置拓展性问题,以开卷回答的方式引导学生通过自学寻找操作实践及其理论基础中潜在的知识内涵和科学规律。结果:思考题的引入在强化学生自主学习,锻炼思考和解决问题能力的同时也显示出了良好的区分度。思考题成绩以及以此为基础的平时成绩与实验理论考核成绩之间显示出了显著的相关性。结论:贯穿于实验课教学活动中的启发式思考题在拓展思维、提升学生自主学习能力的同时促进了实验课的教学效果。  相似文献   

19.
The Association of American Medical Colleges has encouraged educators to investigate proper linkage of simulation experiences with medical curricula. The authors aimed to determine if student knowledge and satisfaction differ between participation in web-based and manikin simulations for learning shock physiology and treatment and to determine if a specific training sequencing had a differential effect on learning. All 40 second-year medical students participated in a randomized, counterbalanced study with two interventions: group 1 (n = 20) participated in a web-based simulation followed by a manikin simulation and group 2 (n = 20) participated in reverse order. Knowledge and attitudes were documented. Mixed-model ANOVA indicated a significant main effect of time (F(1,38) = 18.6, P < 0.001, η(p)(2) = 0.33). Group 1 scored significantly higher on quiz 2 (81.5%) than on quiz 1 (74.3%, t(19) = 3.9, P = 0.001), for an observed difference of 7.2% (95% confidence interval: 3.3, 11.0). Mean quiz scores of group 2 did not differ significantly (quiz 1: 77.0% and quiz 2: 79.7%). There was no significant main effect of group or a group by time interaction effect. Students rated the simulations as equally effective in teaching shock physiology (P = 0.88); however, the manikin simulation was regarded as more effective in teaching shock treatment (P < 0.001). Most students (73.7%) preferred the manikin simulation. The two simulations may be of similar efficacy for educating students on the physiology of shock; however, the data suggest improved learning when web-based simulation precedes manikin use. This finding warrants further study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号