共查询到20条相似文献,搜索用时 15 毫秒
1.
M M Khananashvili V L Silakov E G Zarkeshev 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》1975,25(6):1218-1225
The possibility of setting up intraanalyser temporary connections integrating the activity of various elements within the central part of the visual analyser at a neuronal level was studied in acute experiments on unanaesthetized immobilized cats. In the given model of temporary connection the unit activity in the lateral geniculate bodies (LGB) was investigated. Electrical stimulation of the superior colliculi was used as a conditioned stimulus, and illumination of the receptive fields of the studied LGB neurones, as an unconditioned one. In the process of conditioning, 10 to 11% of learning elements were revealed in LGB. The possibility is discussed of integration of learning elements into a definite microsystem achieving the process of temporary connection closing in the visual analyser in the course of conditioning. 相似文献
2.
S E Fraser 《Current opinion in neurobiology》1992,2(1):83-87
Recent work on the retinotectal projection clearly establishes the roles of neuronal activity and position-based cues in the patterning of nerve connections. In some species, the high degree of spatial order has been shown to emerge from a continued process of terminal growth and refinement. The future challenge is now to determine how multiple cues work together to guide the sculpting of the final pattern. 相似文献
3.
4.
5.
Halpain S 《Trends in cell biology》2002,12(10):455-457
A Keystone symposium held in Taos, New Mexico, 21-26 March 2002 provided the setting for a pioneering gathering of cell biologists and neuroscientists. Under the guidance of organizers Tom Pollard, James Sabry and Carla Schatz, the meeting, entitled 'Cellular Motility and Signaling in the Wiring and Plasticity of Nervous Systems', brought together two groups of researchers that ordinarily rarely connect at scientific conferences. The goal of this new collegial interchange was to fuse expertise on cytoskeletal dynamics with emerging ideas in neuronal development. 相似文献
6.
N. B. Kenigfest M. G. Belekhova 《Journal of Evolutionary Biochemistry and Physiology》2009,45(3):406-416
In two turtle species—Emys orbicularis and Testudo horsfieldi—by the method of anterograde and retrograde traicing at the light and electron microscopy level, the existence is proven of direct descending projections from the thalamic nucleus of the tectofugal visual system n. rotunds (Rot) to the optic tectum. After injection of tracers into Rot alone and into Rot with involvement of the tectothalamic tract (Trtth), occasional labeled fibers with varicosities and terminals are revealed predominantly in the deep sublayers of SGFS of the rostral optic tectum, while in the lower amount—in other tectal layers. After the tracer injections into the optic tectum, a few retrogradely labeled neurons were found mainly in the Rot ventral parts and within Trtth. Their localization coincides with that of GABA-immunoreactive cells. Electron microscopy showed the existence of many retrogradely labeled dendrites throughout the whole Rot; a few labeled cell bodies were also present there, some of them being also GABA-immunoreactive. These results allow us to conclude about the existence of reciprocal connections between the optic tectum and Rot in turtles, these connections being able to affect processing of visual information in tectum. We suggest that reciprocity of tectothalamic connections might be the ancestral feature of the vertebrate brain; in the course of amniote evolution the functional significance of this feature can be decreased and even lost in parallel with a rise of the role of direct corticotectal projections. 相似文献
7.
The visual system of the fly performs various computations on photoreceptor outputs. The detection and measurement of movement is based on simple nonlinear multiplication-like interactions between adjacent pairs and groups of photoreceptors. The position of a small contrasted object against a uniform background is measured, at least in part, by (formally) 1-input nonlinear flicker detectors. A fly can also detect and discriminate a figure that moves relative to a ground texture. This computation of relative movement relies on a more complex algorithm, one which detects discontinuities in the movement field. The experiments described in this paper indicate that the outputs of neighbouring movement detectors interact in a multiplication-like fashion and then in turn inhibit locally the flicker detectors. The following main characteristic properties (partly a direct consequence of the algorithm's structure) have been established experimentally: a) Coherent motion of figure and ground inhibit the position detectors whereas incoherent motion fails to produce inhibition near the edges of the moving figure (provided the textures of figure and ground are similar). b) The movement detectors underlying this particular computation are direction-insensitive at input frequencies (at the photoreceptor level) above 2.3 Hz. They become increasingly direction-sensitive for lower input frequencies. c) At higher input frequencies the fly cannot discriminate an object against a texture oscillating at the same frequency and amplitude at 0° and 180° phase, whereas 90° or 270° phase shift between figure and ground oscillations yields maximum discrimination. d) Under conditions of coherent movement, strong spatial incoherence is detected by the same mechanism. The algorithm underlying the relative movement computation is further discussed as an example of a coherence measuring process, operating on the outputs of an array of movement detectors. Possible neural correlates are also mentioned. 相似文献
8.
Warren PH 《Trends in ecology & evolution》1994,9(4):136-141
Patterns in food web structure have provided an important, though contentious, testing ground for ideas about the population dynamics and energetics of multispecies systems. One of the most debated of these patterns is the apparent decrease in food web connectance as the number of species in a web Increases. Several contrasting mechanisms that might determine food web connectance have been suggested. These mechanisms, in combination with new, food web data, suggest that the conventional pattern, and explanations for it, may well be open to dispute. The true nature of the relationship between connectance and species number has implications for the explanation of other web patterns and for theories of food web structure, but a general explanation remains elusive. 相似文献
9.
10.
K. Okajima 《Biological cybernetics》1991,65(4):235-241
A recurrent system is constructed in order to investigate the role of the backward neural connections found in the primate visual system. The system incorporates a layer to perform localized spatial frequency analysis of input images, a function which has been assumed to take place in the primary visual cortex. The function of the system is examined by simulation. The results show that the system can separate an object pattern from its background, irrespective of its precise position. The acceptable displacement range for input images is determined from the width of the window function used to calculate the local Fourier transform. A multilayer version of the above recurrent system is also constructed. 相似文献
11.
Direction-selective cells in the fly visual system that have large receptive fields play a decisive role in encoding the time-dependent optic flow the animal encounters during locomotion. Recent experiments on the computations performed by these cells have highlighted the significance of dendritic integration and have addressed the role of spikes versus graded membrane potential changes in encoding optic flow information. It is becoming increasingly clear that the way optic flow is encoded in real time is constrained both by the computational needs of the animal in visually guided behaviour as well as by the specific properties of the underlying neuronal hardware. 相似文献
12.
Flies can detect a small object in front of a randomly contrasted background if the object undergoes small motions. The effect was investigated in fixed flying flies under open-loop conditions. The results suggest that nonlinear inhibitory interactions underly this elementary case of figure-ground discrimination. 相似文献
13.
The visual system of the fly is able to extract different types of global retinal motion patterns as may be induced on the eyes during different flight maneuvers and to use this information to control visual orientation. The mechanisms underlying these tasks were analyzed by a combination of quantitative behavioral experiments on tethered flying flies (Musca domestica) and model simulations using different conditions of oscillatory large-field motion and relative motion of different segments of the stimulus pattern. Only torque responses about the vertical axis of the animal were determined. The stimulus patterns consisted of random dot textures (Julesz patterns) which could be moved either horizontally or vertically. Horizontal rotatory large-field motion leads to compensatory optomotor turning responses, which under natural conditions would tend to stabilize the retinal image. The response amplitude depends on the oscillation frequency: It is much larger at low oscillation frequencies than at high ones. When an object and its background move relative to each other, the object may, in principle, be discriminated and then induce turning responses of the fly towards the object. However, whether the object is distinguished by the fly depends not only on the phase relationship between object and background motion but also on the oscillation frequency. At all phase relations tested, the object is detected only at high oscillation frequencies. For the patterns used here, the turning responses are only affected by motion along the horizontal axis of the eye. No influences caused by vertical motion could be detected. The experimental data can be explained best by assuming two parallel control systems with different temporal and spatial integration properties: TheLF-system which is most sensitive to coherent rotatory large-field motion and mediates compensatory optomotor responses mainly at low oscillation frequencies. In contrast, theSF-system is tuned to small-field and relative motion and thus specialized to discriminate a moving object from its background; it mediates turning responses towards objects mainly at high oscillation frequencies. The principal organization of the neural networks underlying these control systems could be derived from the characteristic features of the responses to the different stimulus conditions. The input to the model circuits responsible for the characteristic sensitivity of the SF-system to small-field and relative motion is provided by retinotopic arrays of local movement detectors. The movement detectors are integrated by a large-field element, the output cell of the network. The synapses between the detectors and the output cells have nonlinear transmission characteristics. Another type of large-field elements (pool cells) which respond to motion in front of both eyes and have characteristic direction selectivities are assumed to interact with the local movement detector channels by inhibitory synapses of the shunting type, before the movement detectors are integrated by the output cells. The properties of the LF-system can be accounted for by similar model circuits which, however, differ with respect to the transmission characteristic of the synapses between the movement detectors and the output cell; moreover, their pool cells are only monocular. This type of network, however, is not necessary to account for the functional properties of the LF-system. Instead, intrinsic properties of single neurons may be sufficient. Computer simulations of the postulated mechanisms of the SF-and LF-system reveal that these can account for the specific features of the behavioral responses under quite different conditions of coherent large-field motion and relative motion of different pattern segments. 相似文献
14.
15.
16.
D A Farber T G Beteleva E I Savchenko 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》1985,35(3):520-527
Analysis of evoked potentials and unit activity in the visual cortical projection area of rabbits revealed a definite succession of forming of interneuronal connections in ontogeny. In early postnatal period, the neuronal reactions were characterized by stable responses with one excitatory phase corresponding to initially negative surface evoked potential. Similarity of reactions of neurones situated in the same vertical column was observed and explained by functioning of a system of rigid connections of the thalamic relay nuclei afferents with cortical pyramidal neurones. Beginning from the third week of postnatal life of rabbits the neuronal reactions assumed a distinctly expressed phasic character, and variability of responses was seen along the vertical line. The changes revealed correlated with formation of a system of interneurones providing a possibility of plastic neuronal interaction. A study of the influence of preliminary cortical stimulation of the associative areas showed that intercentral cooperation mediated by cortical interneurones providing a systemic analysis of visual information began to form from the third week of postnatal life and reached the definitive level at later stages of development. 相似文献
17.
18.
19.
The visual system must make predictions to compensate for inherent delays in its processing. Yet little is known, mechanistically, about how prediction aids natural behaviors. Here, we show that despite a 20-30ms intrinsic processing delay, the vertical motion sensitive (VS) network of the blowfly achieves maximally efficient prediction. This prediction enables the fly to fine-tune its complex, yet brief, evasive flight maneuvers according to its initial ego-rotation at the time of detection of the visual threat. Combining a rich database of behavioral recordings with detailed compartmental modeling of the VS network, we further show that the VS network has axonal gap junctions that are critical for optimal prediction. During evasive maneuvers, a VS subpopulation that directly innervates the neck motor center can convey predictive information about the fly’s future ego-rotation, potentially crucial for ongoing flight control. These results suggest a novel sensory-motor pathway that links sensory prediction to behavior. 相似文献