首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The cytochrome P450 arachidonic acid epoxygenase metabolites, the epoxyeicosatrienoic acids (EETs) are powerful, nonregioselective, stimulators of cell proliferation. In this study we compared the ability of the four EETs (5,6-, 8,9-, 11,12-, and 14,15-EETs) to regulate endothelial cell proliferation in vitro and angiogenesis in vivo and determined the molecular mechanism by which EETs control these events. Inhibition of the epoxygenase blocked serum-induced endothelial cell proliferation, and exogenously added EETs rescued cell proliferation from epoxygenase inhibition. Studies with selective ERK, p38 MAPK, or PI3K inhibitors revealed that whereas activation of p38 MAPK is required for the proliferative responses to 8,9- and 11,12-EET, activation of PI3K is necessary for the cell proliferation induced by 5,6- and 14,15-EET. Among the four EETs, only 5,6- and 8,9-EET are capable of promoting endothelial cell migration and the formation of capillary-like structures, events that are dependent on EET-mediated activation of ERK and PI3K. Using subcutaneous sponge models, we showed that 5,6- and 8,9-EET are pro-angiogenic in mice and that their neo-vascularization effects are enhanced by the co-administration of an inhibitor of EET enzymatic hydration, presumably because of reduced EET metabolism and inactivation. These studies identify 5,6- and 8,9-EET as powerful and selective angiogenic lipids, provide a functional link between the EET proliferative chemotactic properties and their angiogenic activity, and suggest a physiological role for them in angiogenesis and de novo vascularization.  相似文献   

2.

Background

Cytochrome P450- and ω-hydrolase products (epoxyeicosatrienoic acids (EETs), hydroxyeicosatetraeonic acid (20-HETE)), natural omega-3 fatty acids (ω3), and pentacyclic triterpenes have been proposed to contribute to a wide range of vaso-protective and anti-fibrotic/anti-cancer signaling pathways including the modula-tion of membrane ion channels. Here we studied the modulation of intermediate-conductance Ca2+/calmodulin-regulated K+ channels (KCa3.1) by EETs, 20-HETE, ω3, and pentacyclic triterpenes and the structural requirements of these fatty acids to exert channel blockade.

Methodology/Principal Findings

We studied modulation of cloned human hKCa3.1 and the mutant hKCa3.1V275A in HEK-293 cells, of rKCa3.1 in aortic endothelial cells, and of mKCa3.1 in 3T3-fibroblasts by inside-out and whole-cell patch-clamp experiments, respectively. In inside-out patches, Ca2+-activated hKCa3.1 were inhibited by the ω3, DHA and α-LA, and the ω6, AA, in the lower µmolar range and with similar potencies. 5,6-EET, 8,9-EET, 5,6-DiHETE, and saturated arachidic acid, had no appreciable effects. In contrast, 14,15-EET, its stable derivative, 14,15-EEZE, and 20-HETE produced channel inhibition. 11,12-EET displayed less inhibitory activity. The KCa3.1V275A mutant channel was insensitive to any of the blocking EETs. Non-blocking 5,6-EET antagonized the inhibition caused by AA and augmented cloned hKCa3.1 and rKCa3.1 whole-cell currents. Pentacyclic triterpenes did not modulate KCa3.1 currents.

Conclusions/Significance

Inhibition of KCa3.1 by EETs (14,15-EET), 20-HETE, and ω3 critically depended on the presence of electron double bonds and hydrophobicity within the 10 carbons preceding the carboxyl-head of the molecules. From the physiological perspective, metabolism of AA to non-blocking 5,6,- and 8,9-EET may cause AA-de-blockade and contribute to cellular signal transduction processes influenced by these fatty acids.  相似文献   

3.
Direct effects on epithelial Na+ channels (ENaC) activity by lipids, e.g., arachidonic acid (AA), eicosatetraynoic acid (ETYA), linoleic acid (LA), stearic acid (SA), hydroxyeicosatetraenoic acid (HETE), 11,12–epoxyeicosatrienoic acid (EET), (PGF2), and (PGE2), in cultured mouse cortical collecting duct (M1) cells were clarified by using single-channel recordings in this study. In a cell-attached recording, a bath application of 10 μM AA significantly reduced the ENaC open probability (NPo), whereas 10 μM ETYA or 5 μM LA only induced a slight inhibition. The inside-out recording as a standard protocol was thereafter performed to examine effects of these lipids on ENaC activity. Within 10 min after the formation of the inside-out configuration, the NPo of ENaC in cultured mouse cortical collecting duct (M1) cells remained relatively constant. Application of ETYA or LA or SA exhibited a similar inhibition on the channel NPo when applied to the extracellular side, suggesting that fatty acids could exert a nonspecific inhibition on ENaC activity. 11,12-EET, a metabolite of AA via the cytochrome P450 epoxygenase pathway, significantly inhibited the ENaC NPo, whereas 20-HETE, a metabolite of AA via the hydroxylase pathway, only caused a small inhibition of the ENaC NPo, to a similar degree as that seen with ETYA and LA. However, both PGE2 and PGF2α significantly enhanced the ENaC NPo. These results suggest that fatty acids exert a nonspecific effect on ENaC activity due to the interaction between the channel proximity and the lipid. The opposite effects of 11,12-EET and prostaglandin (PG) implicate different mechanisms in regulation of ENaC activity by activation of epoxygenase and cyclooxygenase.  相似文献   

4.
Little information is available regarding the vasoactive effects of epoxyeicosatrienoic acids (EETs) in the lung. We demonstrate that 5, 6-, 8,9-, 11,12-, and 14,15-EETs contract pressurized rabbit pulmonary arteries in a concentration-dependent manner. Constriction to 5,6-EET methyl ester or 14,15-EET is blocked by indomethacin or ibuprofen (10(-5) M), SQ-29548, endothelial denuding, or submaximal preconstriction with the thromboxane mimetic U-46619. Constriction of pulmonary artery rings to phenylephrine is blunted by treatment with the epoxygenase inhibitor N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide. Pulmonary arteries and peripheral lung microsomes metabolize arachidonate to products that comigrate on reverse-phrase HPLC with authentic regioisomers of 5,6-, 8,9-, 11,12-, and 14,15-EETs, but no cyclooxygenase products of EETs could be demonstrated. Proteins of the CYP2B, CYP2E, CYP2J, CYP1A, and CYP2C subfamilies are present in pulmonary artery and peripheral lung microsomes. Constriction of isolated rabbit pulmonary arteries to EETs is nonregioselective and depends on intact endothelium and cyclooxygenase, consistent with the formation of a pressor prostanoid compound. These data raise the possibility that EETs may contribute to regulation of pulmonary vascular tone.  相似文献   

5.
11,12-Epoxyeicosatrienoic acid (11,12-EET), a potent vasodilator produced by the endothelium, acts on calcium-activated potassium channels and shares biological activities with the heme oxygenase/carbon monoxide (HO/CO) system. We examined whether activation of HO mediates the dilator action of 11,12-EET, and that of the other EETs, on rat mesenteric arteries. Dose-response curves (10(-9) to 10(-6) M) to 5,6-EET, 8,9-EET, 11,12-EET, 14,15-EET, and ACh (10(-9) to 10(-4) M) were evaluated in preconstricted (10(-6) mol/l phenylephrine) mesenteric arteries (<350 microm diameter) in the presence or absence of 1) the cyclooxygenase inhibitor indomethacin (2.8 microM), 2) the HO inhibitor chromium mesoporphyrin (CrMP) (15 microM), 3) the soluble guanylyl cyclase (GC) inhibitor ODQ (10 microM), and 4) the calcium-activated potassium channel inhibitor iberiotoxin (25 nM). The vasodilator response to 11,12-EET was abolished by CrMP and iberiotoxin, whereas indomethacin and ODQ had no effect. In contrast, the effect of ACh was attenuated by ODQ but not by CrMP. The vasodilator effect of 8,9-EET, like that of 11,12-EET, was greatly attenuated by HO inhibition. In contrast, the mesenteric vasodilator response to 5,6-EET was independent of both HO and GC, whereas that to 14,15-EET demonstrated two components, an HO and a GC, of equal magnitude. Incubation of mesenteric microvessels with 11,12-EET caused a 30% increase in CO release, an effect abolished by inhibition of HO. We conclude that the rat mesenteric vasodilator action of 11,12-EET is mediated via an increase in HO activity and an activation of calcium-activated potassium channels.  相似文献   

6.
Arachidonic acid is metabolized to four regioisomeric epoxyeicosatrienoic acids (EETs) by cytochrome P-450. 5,6-, 8,9-, 11,12-, and 14,15-EET are equipotent in relaxing bovine coronary arteries (BCAs). Vasorelaxant effects of EETs are nonselectively antagonized by 14,15-epoxyeicosa-5(Z)-enoic acid. The 11,12-EET analogs, 20-hydroxy-11,12-epoxyeicosa-8(Z)-enoic acid (20-H-11,12-EE8ZE) and 11,12,20-trihydroxyeicosa-8(Z)-enoic acid (11,12,20-THE8ZE) were synthesized and tested for antagonist activity against EET-induced relaxations in BCAs. In U-46619-preconstricted arterial rings, 5,6-, 8,9-, 11,12-, and 14,15-EET caused concentration-dependent relaxations with maximal relaxations ranging from 80 to 96%. Preincubation of arteries with 20-H-11,12-EE8ZE (10(-5) M) inhibited relaxations to 14,15- and 11,12-EET, but not 5,6- and 8,9-EET; however, greatest inhibitory effect was against 11,12-EET (maximal relaxation = 80.6 ± 4.6 vs. 26.7 ± 7.4% without and with 20-H-11,12-EE8ZE, respectively). Preincubation with the soluble epoxide hydrolase inhibitor (tAUCB, 10(-6) M) significantly enhanced the antagonist effect of 20-H-11,12-EE8ZE against 14,15-EET-induced relaxations (maximal relaxation = 86.6 ± 4.4 vs. 27.8 ± 3.3%, without and with 20-H-11,12-EE8ZE and tAUCB) without any change in its effect against 11,12-EET-induced relaxations. In contrast to the parent compound, the metabolite, 11,12,20-THE8ZE (10(-5) M), significantly inhibited relaxations to 11,12-EET and was without effect on other EET regioisomers. Mass spectrometric analysis revealed conversion of 20-H-11,12-EE8ZE to 11,12,20-THE8ZE by incubation with BCA. The conversion was blocked by tAUCB. 14,15-Dihydroxy-eicosa-5Z-enoic acid (a 14,15-EET antagonist), but not 11,12,20-THE8ZE (an 11,12-EET antagonist), inhibited BCA relaxations to arachidonic acid and flow-induced dilation in rat mesenteric arteries. These results indicate that 11,12,20-THE8ZE is a selective antagonist of 11,12-EET relaxations and a useful pharmacological tool to elucidate the function of 11,12-EET in the cardiovascular system.  相似文献   

7.
Epoxyeicosatrienoic acids (EETs), the cytochrome P450 metabolites of arachidonic acid (AA), are potent and stereospecific activators of cardiac ATP-sensitive K(+)(K(ATP)) channels. EETs activate K(ATP) channels by reducing channel sensitivity to ATP. In this study, we determined the direct effects of EETs on the binding of ATP to K(ATP) channel protein. A fluorescent ATP analog, 2,4,6-trinitrophenyl (TNP)-ATP, which increases its fluorescence emission significantly upon binding with proteins, was used for binding studies with glutathione-S-transferase (GST) Kir6.2 fusion proteins. TNP-ATP bound to GST fusion protein containing the C-terminus of Kir6.2 (GST-Kir6.2C), but not to the N-terminus of Kir6.2, or to GST alone. 11,12-EET (5 muM) did not change TNP-ATP binding K(D) to GST-Kir6.2C, but B(max) was reduced by half. The effect of 11,12-EET was dose-dependent, and 8,9- and 14,15-EETs were as effective as 11,12-EET in inhibiting TNP-ATP binding to GST-Kir6.2C. AA and 11,12-dihydroxyeicosatrienoic acid (11,12-DHET), the parent compound and metabolite of 11,12-EET, respectively, were not effective inhibitors of TNP-ATP binding to GST-Kir6.2C, whereas the methyl ester of 11,12-EET was. These findings suggest that the epoxide group in EETs is important for modulation of ATP binding to Kir6.2. We conclude that EETs bind to the C-terminus of K(ATP) channels, inhibiting binding of ATP to the channel.  相似文献   

8.
Cytochrome P-450 (CYP) epoxygenases and their arachidonic acid (AA) metabolites, the epoxyeicosatrienoic acids (EETs), have been shown to produce increases in postischemic function via ATP-sensitive potassium channels (K(ATP)); however, the direct effects of EETs on infarct size (IS) have not been investigated. We demonstrate that two major regioisomers of CYP epoxygenases, 11,12-EET and 14,15-EET, significantly reduced IS in dogs compared to control (22.1 +/- 1.8%), whether administered 15 min before 60 min of coronary occlusion (6.4 +/- 1.9%, 11,12-EET; and 8.4 +/- 2.4%, 14.15-EET) or 5 min before 3 h of reperfusion (8.8 +/- 2.1%, 11,12-EET; and 9.7 +/- 1.4%, 14,15-EET). Pretreatment with the epoxide hydrolase metabolite of 14,15-EET, 14,15-dihydroxyeicosatrienoic acid, had no effect. The protective effect of 11,12-EET was abolished (24.3 +/- 4.6%) by the K(ATP) channel antagonist glibenclamide. Furthermore, one 5-min period of ischemic preconditioning (IPC) reduced IS to a similar extent (8.7 +/- 2.8%) to that observed with the EETs. The selective CYP epoxygenase inhibitor, N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH), did not block the effect of IPC. However, administration of MS-PPOH concomitantly with N-methylsulfonyl-12,12-dibromododec-11-enanide (DDMS), a selective inhibitor of endogenous CYP omega-hydroxylases, abolished the reduction in myocardial IS expressed as a percentage of area at risk (IS/AAR) produced by DDMS (4.6 +/- 1.2%, DDMS; and 22.2 +/- 3.4%, MS-PPOH + DDMS). These data suggest that 11,12-EET and 14,15-EET produce reductions in IS/AAR primarily at reperfusion. Conversely, inhibition of CYP epoxygenases and endogenous EET formation by MS-PPOH, in the presence of the CYP omega-hydroxylase inhibitor DDMS blocked cardioprotection, which suggests that endogenous EETs are important for the beneficial effects observed when CYP omega-hydroxylases are inhibited. Finally, the protective effects of EETs are mediated by cardiac K(ATP) channels.  相似文献   

9.
Epoxyeicosatrienoic acids (EETs), the eicosanoid biomediators synthesized from arachidonic acid by cytochrome P450 epoxygenases, are inactivated in many tissues by conversion to dihydroxyeicosatrienoic acids (DHETs). However, we find that human skin fibroblasts convert EETs mostly to chain-shortened epoxy-fatty acids and produce only small amounts of DHETs. Comparative studies with [5,6,8,9,11,12,14,15-(3)H]11,12-EET ([(3)H]11,12-EET) and [1-(14)C]11,12-EET demonstrated that chain-shortened metabolites are formed by removal of carbons from the carboxyl end of the EET. These metabolites accumulated primarily in the medium, but small amounts also were incorporated into the cell lipids. The most abundant 11, 12-EET product was 7,8-epoxyhexadecadienoic acid (7,8-epoxy-16:2), and two of the others that were identified are 9, 10-epoxyoctadecadienoic acid (9,10-epoxy-18:2) and 5, 6-epoxytetradecaenoic acid (5,6-epoxy-14:1). The main epoxy-fatty acid produced from 14,15-EET was 10,11-epoxyhexadecadienoic acid (10, 11-epoxy-16:2). [(3)H]8,9-EET was converted to a single metabolite with the chromatographic properties of a 16-carbon epoxy-fatty acid, but we were not able to identify this compound. Large amounts of the chain-shortened 11,12-EET metabolites were produced by long-chain acyl CoA dehydrogenase-deficient fibroblasts but not by Zellweger syndrome and acyl CoA oxidase-deficient fibroblasts. We conclude that the chain-shortened epoxy-fatty acids are produced primarily by peroxisomal beta-oxidation. This may serve as an alternate mechanism for EET inactivation and removal from the tissues. However, it is possible that the epoxy-fatty acid products may have metabolic or functional effects and that the purpose of the beta-oxidation pathway is to generate these products.  相似文献   

10.
Cytochromes P450 of the CYP2C and CYP4A gene subfamilies metabolize arachidonic acid to 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs) and to 19- and 20-hydroxyeicosatetraenoic acids (HETEs), respectively. Abundant functional studies indicate that EETs and HETEs display powerful and often opposing biological activities as mediators of ion channel activity and regulators of vascular tone and systemic blood pressures. Incubation of 8,9-, 11,12-, and 14,15-EETs with microsomal and purified forms of rat CYP4A isoforms led to rapid NADPH-dependent metabolism to the corresponding 19- and 20-hydroxylated EETs. Comparisons of reaction rates and catalytic efficiency with those of arachidonic and lauric acids showed that EETs are one of the best endogenous substrates so far described for rat CYP4A isoforms. CYP4A1 exhibited a preference for 8,9-EET, whereas CYP4A2, CYP4A3, and CYP4A8 preferred 11,12-EET. In general, the closer the oxido ring is to the carboxylic acid functionality, the higher the rate of EET metabolism and the lower the regiospecificity for the EET omega-carbon. Analysis of cis-parinaric acid displacement from the ligand-binding domain of the human peroxisome proliferator-activated receptor-alpha showed that omega-hydroxylated 14,15-EET bound to this receptor with high affinity (K(i) = 3 +/- 1 nm). Moreover, at 1 microm, the omega-alcohol of 14,15-EET or a 1:4 mixture of the omega-alcohols of 8,9- and 11,12-EETs activated human and mouse peroxisome proliferator-activated receptor-alpha in transient transfection assays, suggesting a role for them as endogenous ligands for these orphan nuclear receptors.  相似文献   

11.
Endothelium-derived hyperpolarizing factor (EDHF) is released in response to agonists such as ACh and bradykinin and regulates vascular smooth muscle tone. Several studies have indicated that ouabain blocks agonist-induced, endothelium-dependent hyperpolarization of smooth muscle. We have demonstrated that epoxyeicosatrienoic acids (EETs), cytochrome P-450 metabolites of arachidonic acid, function as EDHFs. To further test the hypothesis that EETs represent EDHFs, we have examined the effects of ouabain on the electrical and mechanical effects of 14,15- and 11,12-EET in bovine coronary arteries. These arteries are relaxed in a concentration-dependent manner to 14,15- and 11,12-EET (EC(50) = 6 x 10(-7) M), bradykinin (EC(50) = 1 x 10(-9) M), sodium nitroprusside (SNP; EC(50) = 2 x 10(-7) M), and bimakalim (BMK; EC(50) = 1 x 10(-7) M). 11,12-EET-induced relaxations were identical in vessels with and without an endothelium. Potassium chloride (1-15 x 10(-3) M) inhibited [(3)H]ouabain binding to smooth muscle cells but failed to relax the arteries. Ouabain (10(-5) to 10(-4) M) increased basal tone and inhibited the relaxations to bradykinin, 11,12-EET, and 14,15-EET, but not to SNP or BMK. Barium (3 x 10(-5) M) did not alter EET-induced relaxations and ouabain plus barium was similar to ouabain alone. Resting membrane potential (E(m)) of isolated smooth muscle cells was -50.2 +/- 0.5 mV. Ouabain (3 x 10(-5) and 1 x 10(-4) M) decreased E(m) (-48.4 +/- 0.2 mV), whereas 11,12-EET (10(-7) M) increased E(m) (-59.2 +/- 2.2 mV). Ouabain inhibited the 11,12-EET-induced increase in E(m). In cell-attached patch clamp studies, 11,12-EET significantly increased the open-state probability (NP(o)) of a calcium-activated potassium channel compared with control cells (0.26 +/- 0.06 vs. 0.02 +/- 0.01). Ouabain did not change NP(o) but blocked the 14,15-EET-induced increase in NP(o). These results indicate that: 1) EETs relax coronary arteries in an endothelium-independent manner, 2) unlike EETs, potassium chloride does not relax the coronary artery, and 3) ouabain inhibits bradykinin- and EET-induced relaxations as has been reported for EDHF. These findings provide further evidence that EETs are EDHFs.  相似文献   

12.
Nitric oxide (NO) is an inhibitor of hemoproteins including cytochrome P-450 enzymes. This study tested the hypothesis that NO inhibits cytochrome P-450 epoxygenase-dependent vascular responses in kidneys. In rat renal pressurized microvessels, arachidonic acid (AA, 0.03-1 microM) or bradykinin (BK, 0.1-3 microM) elicited NO- and prostanoid-independent vasodilation. Miconazole (1.5 microM) or 6-(2-propargyloxyphenyl)hexanoic acid (30 microM), both of which are inhibitors of epoxygenase enzymes, or the fixing of epoxide levels with 11,12-epoxyeicosatrienoic acid (11,12-EET; 1 and 3 microM) inhibited these responses. Apamin (1 microM), which is a large-conductance Ca2+-activated K+ (BKCa) channel inhibitor, or 18alpha-glycyrrhetinic acid (30 microM), which is an inhibitor of myoendothelial gap junctional electromechanical coupling, also inhibited these responses. NO donors spermine NONOate (1 and 3 microM) or sodium nitroprusside (0.3 and 3 microM) but not 8-bromo-cGMP (100 microM), which is an analog of cGMP (the second messenger of NO), blunted the dilation produced by AA or BK in a reversible manner without affecting that produced by hydralazine. However, the non-NO donor hydralazine did not affect the dilatory effect of AA or BK. Spermine NONOate did not affect the dilation produced by 11,12-EET, NS-1619 (a BKCa channel opener), or cromakalim (an ATP-sensitive K+ channel opener). AA and BK stimulated EET production, whereas hydralazine had no effect. On the other hand, spermine NONOate (3 microM) attenuated basal (19 +/- 7%; P < 0.05) and AA stimulation (1 microM, 29 +/- 9%; P < 0.05) of renal preglomerular vascular production of all regioisomeric EETs: 5,6-; 8,9-; 11,12-; and 14,15-EET. These results suggest that NO directly and reversibly inhibits epoxygenase-dependent dilation of rat renal microvessels without affecting the actions of epoxides on K+ channels.  相似文献   

13.
To determine the efficacy of cytochrome P450 2C9 metabolites of arachidonic acid, viz. 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), in inducing angiogenesis, we have studied their effects on human dermal microvascular endothelial cell (HDMVEC) tube formation and migration. All four EETs stimulated HDMVEC tube formation and migration in a dose-dependent manner. Because 14,15-EET was found to be slightly more efficacious than 5,6-, 8,9-, and 11,12-EETs in stimulating HDMVEC tube formation and migration, we next focused on elucidation of the signaling mechanisms underlying its angiogenic activity. 14,15-EET stimulated Akt and S6K1 phosphorylation in Src- and phosphatidylinositol 3-kinase (PI3K)-dependent manner in HDMVECs. Inhibition of Src and PI3K-Akt-mTOR signaling by both pharmacological and dominant-negative mutant approaches suppressed 14,15-EET-induced HDMVEC tube formation and migration in vitro and Matrigel plug angiogenesis in vivo. In addition, 14,15-EET induced the expression of fibroblast growth factor-2 (FGF-2) in Src- and PI3K-Akt-dependent and mTOR-independent manner in HDMVECs. Neutralizing anti-FGF-2 antibodies completely suppressed 14,15-EET-induced HDMVEC tube formation and migration in vitro and Matrigel plug angiogenesis in vivo. Together, these results show for the first time that Src and PI3K-Akt signaling via targeting in parallel with FGF-2 expression and mTOR-S6K1 activation plays an indispensable role in 14,15-EET-induced angiogenesis.  相似文献   

14.
Epoxyeicosatrienoic acids (EETs) derived from arachidonic acid exert anti-inflammation effects. We have reported that blocking the degradation of EETs with a soluble epoxide hydrolase (sEH) inhibitor protects mice from lipopolysaccharide (LPS)-induced acute lung injury (ALI). The underlying mechanisms remain essential questions. In this study, we investigated the effects of EETs on the activation of nucleotide-binding domain leucine-rich repeat-containing receptor, pyrin domain-containing-3 (NLRP3) inflammasome in murine macrophages. In an LPS-induced ALI murine model, we found that sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl), TPPU, profoundly attenuated the pathological injury and inhibited the activation of the NLRP3 inflammasome, characterized by the reduction of the protein expression of NLRP3, ASC, pro-caspase-1, interleukin precursor (pro-IL-1β), and IL-1β p17 in the lungs of LPS-treated mice. In vitro, primary peritoneal macrophages from C57BL/6 were primed with LPS and activated with exogenous adenosine triphosphate (ATP). TPPU treatment remarkably reduced the expression of NLRP3 inflammasome-related molecules and blocked the activation of NLRP3 inflammasome. Importantly, four EETs (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) inhibited the activation of NLRP3 inflammasome induced by LPS + ATP or LPS + nigericin in macrophages in various degree. While the inhibitory effect of 5,6-EET was the weakest. Mechanismly, EETs profoundly decreased the content of reactive oxygen species (ROS) and restored the calcium overload in macrophages receiving LPS + ATP stimulation. In conclusion, this study suggests that EETs inhibit the activation of the NLRP3 inflammasome by suppressing calcium overload and ROS production in macrophages, contributing to the therapeutic potency to ALI.  相似文献   

15.
Epoxyeicosatrienoic acids (EETs) are cytochrome P-450 (CYP) metabolites synthesized from the essential fatty acid arachidonic acid to generate four regioisomers, 14,15-, 11,12-, 8,9-, and 5,6-EET. Cultured human coronary artery endothelial cells (HCAECs) contain endogenous EETs that are increased by stimulation with physiological agonists such as bradykinin. Because EETs are known to modulate a number of vascular functions, including angiogenesis, we tested each of the four regioisomers to characterize their effects on survival and apoptosis of HCAECs and cultured human lung microvascular endothelial cells (HLMVECs). A single application of physiologically relevant concentration of 14,15-, 11,12-, and 8,9-EET but not 5,6-EET (0.75-300 nM) promoted concentration-dependent increase in cell survival of HLMVECs and HCAECs after removal of serum. The lipids also protected the same cells from death via the intrinsic, as well as extrinsic, pathways of apoptosis. EETs did not increase intracellular calcium concentration ([Ca2+]i) or phosphorylate mitogen-activated protein kinase p44/42 when applied to these cells, and their protective action was attenuated by the phosphotidylinositol-3 kinase inhibitor wortmannin (10 microM) but not the cyclooxygenase inhibitor indomethacin (20 microM). Our results demonstrate for the first time the capacity of EETs to enhance human endothelial cell survival by inhibiting both the intrinsic, as well as extrinsic, pathways of apoptosis, an important underlying mechanism that may promote angiogenesis and endothelial survival during atherosclerosis and related cardiovascular ailments.  相似文献   

16.
Novel glutathione conjugates formed from epoxyeicosatrienoic acids (EETs)   总被引:4,自引:0,他引:4  
The catalysis of glutathione (GSH) conjugation to epoxyeicosatrienoic acids (EETs) by various purified isozymes of glutathione S-transferase was studied. A GSH conjugate of 14,15-EET was isolated by HPLC and TLC; this metabolite contained one molecule of EET and one molecule of GSH. Fast atom bombardment mass spectrometry of the isolated metabolite confirmed the structure as a GSH conjugate of 14,15-EET. Studies designed to determine the isozyme specificity of this reaction demonstrated that two isozymes, 3-3, and 5-5, efficiently catalyzed this conjugation reaction. The Km values for 14,15-EET were approximately 10 microM and the Vmax values ranged from 25 to 60 nmol conjugate formed min-1 mg-1 purified transferase 3-3 and 5-5. The 5,6-, 8,9-, and 11,12-EETs were also substrates for the reaction, albeit at lower rates. These results demonstrate that the EETs can serve as substrates for the cytosolic glutathione S-transferases.  相似文献   

17.
We used the patch-clamp technique to study the effect of arachidonic acid (AA) on epithelial Na channels (ENaC) in the rat cortical collecting duct (CCD). Application of 10 microM AA decreased the ENaC activity defined by NPo from 1.0 to 0.1. The dose-response curve of the AA effect on ENaC shows that 2 microM AA inhibited the ENaC activity by 50%. The effect of AA on ENaC is specific because neither 5,8,11,14-eicosatetraynoic acid (ETYA), a nonmetabolized analogue of AA, nor 11,14,17-eicosatrienoic acid mimicked the inhibitory effect of AA on ENaC. Moreover, inhibition of either cyclooxygenase (COX) with indomethacin or cytochrome P450 (CYP) omega-hydroxylation with N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) failed to abolish the effect of AA on ENaC. In contrast, the inhibitory effect of AA on ENaC was absent in the presence of N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide (MS-PPOH), an agent that inhibits CYP-epoxygenase activity. The notion that the inhibitory effect of AA is mediated by CYP-epoxygenase-dependent metabolites is also supported by the observation that application of 200 nM 11,12-epoxyeicosatrienoic acid (EET) inhibited ENaC in the CCD. In contrast, addition of 5,6-, 8,9-, or 14,15-EET failed to decrease ENaC activity. Also, application of 11,12-EET can still reduce ENaC activity in the presence of MS-PPOH, suggesting that 11,12-EET is a mediator for the AA-induced inhibition of ENaC. Furthermore, gas chromatography mass spectrometry analysis detected the presence of 11,12-EET in the CCD and CYP2C23 is expressed in the principal cells of the CCD. We conclude that AA inhibits ENaC activity in the CCD and that the effect of AA is mediated by a CYP-epoxygenase-dependent metabolite, 11,12-EET.  相似文献   

18.
Sodium reabsorption via the epithelial Na(+) channel (ENaC) in the aldosterone-sensitive distal nephron plays a central role in the regulation of body fluid volume. Previous studies have indicated that arachidonic acid (AA) and its metabolite 11,12-EET but not other regioisomers of EETs inhibit ENaC activity in the collecting duct. The goal of this study was to investigate the endogenous metabolism of AA in cultured mpkCCD(c14) principal cells and the effects of these metabolites on ENaC activity. Liquid chromatography/mass spectrometry analysis of the mpkCCD(c14) cells indicated that these cells produce prostaglandins, 8,9-EET, 11,12-EET, 14,15-EET, 5-HETE, 12/8-HETE, and 15-HETE, but not 20-HETE. Single-channel patch-clamp experiments revealed that 8,9-EET, 14,15-EET, and 11,12-EET all decrease ENaC activity. Neither 5-, 12-, nor 15-HETE had any effect on ENaC activity. Diclofenac and ibuprofen, inhibitors of cyclooxygenase, decreased transepithelial Na(+) transport in the mpkCCD(c14) cells. Inhibition of cytochrome P-450 (CYP450) with MS-PPOH activated ENaC-mediated sodium transport when cells were pretreated with AA and diclofenac. Coexpression of CYP2C8, but not CYP4A10, with ENaC in Chinese hamster ovary cells significantly decreased ENaC activity in whole-cell experiments, whereas 11,12-EET mimicked this effect. Thus both endogenously formed EETs and their exogenous application decrease ENaC activity. Downregulation of ENaC activity by overexpression of CYP2C8 was PKA dependent and was prevented by myristoylated PKI treatment. Biotinylation experiments and single-channel analysis revealed that long-term treatment with 11,12-EET and overexpression of CYP2C8 decreased the number of channels in the membrane. In contrast, the acute inhibitory effects are mediated by a decrease in the open probability of the ENaC. We conclude that 11,12-EET, 8,9-EET, and 14,15-EET are endogenously formed eicosanoids that modulate ENaC activity in the collecting duct.  相似文献   

19.
Epoxyeicosatrienoic acids (EETs) are cytochrome P-450 metabolites of arachidonic acid involved in the regulation of vascular tone. The method of microbore column high-performance liquid chromatography with fluorescence detection was developed to determine 14,15-EET, 11, 12-EET, and the mixture of 8,9-EET and 5,6-EET. Tridecanoic acid (TA) was used as an internal standard. EETs were reacted with 2-(2, 3-naphthalimino)ethyl trifluoromethanesulfonate (NT) to form highly fluorescent derivatives. A C(18) microbore column and a water-acetonitrile mobile phase were used for separation. Samples were excited at 259 nm, and the fluorescence was detected at 395 nm. The overall recoveries were 88% for EETs and 40% for TA. EETs were detected in concentrations as low as 2 pg (signal-to-noise ratio = 3). The method was used to determine the EET production from endothelial cells (ECs). Bradykinin and methacholine (10(-6) M) stimulated an increase in the production of EETs by ECs two- and fivefold, respectively. This sensitive method may be used for determination of EETs at low concentrations normally detected in complex biological samples.  相似文献   

20.
As epoxyeicosatrienoic acids (EETs), particularly 11,12-EET, and the heme oxygenase/carbon monoxide (HO/CO) system share overlapping biological activities, we examined a possible link between 11,12-EET and HO activity in endothelial cells. Confocal microscopy analysis of immunostaining of HO-1 and HO-2 in cultured endothelial cells treated with 11,12-EET (1 microM) showed an increase in florescence of HO-1 protein in the various cellular compartments, but not of HO-2. Incubation of endothelial cells with 11,12-EET (1 microM) for 24 h increased the level of HO-1 protein by about three-fold. Similarly, incubation of endothelial cells with 8,9-EET and sodium nitroprussiate, a known inducer of HO-1, increased HO-1 protein without any effect on HO-2. Upregulation of HO-1 by 11,12-EET, as well as 8,9-EET, was associated with an increase in HO activity, which was inhibited by stannous mesoporphirin (10 microM). Incubation of rat aortas with 11,12-EET (1 microM for 60 min) increased HO activity. These findings identify a novel effect of EETs on endothelial HO-1 and indicate that the signaling pathway of EETs in endothelial cells is possibly via an increase in HO-1 expression and activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号