首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hemoglobin Attleboro, a new alpha-chain variant with a substitution of proline for serine at position 138 (H21), was found to be a noncooperative high-affinity hemoglobin (P50 = 0.26 mmHg at pH 7 and 20 degrees C) which lacked an alkaline Bohr effect. Addition of 2,3-diphosphoglycerate (DPG) or inositol hexaphosphate (IHP) led to a decrease in oxygen affinity but to no alteration in either Bohr effect or cooperativity. Ligand binding kinetics studies revealed an overall rate of oxygen dissociation at pH 7.0 and 20 degrees C that was 2.7-fold slower than that for Hb A. At pH 8.5, the kinetic profile was identical with that at pH 7, confirming the absence of a Bohr effect for this variant hemoglobin. Measurement of the rate of oxygen dissociation with carbon monoxide replacement indicated a lack of cooperativity. Sedimentation velocity experiments yielded s20,w values of 2.8 and 4.3 for 65 microM solutions of oxyhemoglobins Attleboro and A, respectively (indicating an enhancement in the oxy dimer population of this variant). Studies of the carbon monoxide combination of this variant revealed an association rate 20-fold faster than that for Hb A; only in the presence of a 1000-fold molar excess of IHP was there a significant reduction in the overall rate. Rapid-scan and traditional stopped-flow experiments conducted in the Soret Soret region demonstrated an alteration in the structure and rate of assembly of the deoxy tetramer of Hb Attleboro relative to that of Hb A. The abnormal properties of this hemoglobin variant can be attributed to major perturbations in the C-terminal region.  相似文献   

2.
Hemoglobin (Hb) Bart's is present in the red blood cells of millions of people worldwide who suffer from alpha-thalassemia. alpha-Thalassemia is a disease in which there is a deletion of one or more of the four alpha-chain genes, and excess gamma and beta chains spontaneously form homotetramers. The gamma(4) homotetrameric protein known as Hb Bart's is a stable species that exhibits neither a Bohr effect nor heme-heme cooperativity. Although Hb Bart's has a higher O(2) affinity than either adult (alpha(2)beta(2)) or fetal (alpha(2)gamma(2)) Hbs, it has a lower affinity for O(2) than HbH (beta(4)). To better understand the association and ligand binding properties of the gamma(4) tetramer, we have solved the structure of Hb Bart's in two different oxidation and ligation states. The crystal structure of ferrous carbonmonoxy (CO) Hb Bart's was determined by molecular replacement and refined at 1.7 A resolution (R = 21.1%, R(free) = 24.4%), and that of ferric azide (N(3)(-)) Hb Bart's was similarly determined at 1.86 A resolution (R = 18.4%, R(free) = 22.0%). In the carbonmonoxy-Hb structure, the CO ligand is bound at an angle of 140 degrees, and with an unusually long Fe-C bond of 2.25 A. This geometry is attributed to repulsion from the distal His63 at the low pH of crystallization (4.5). In contrast, azide is bound to the oxidized heme iron in the methemoglobin crystals at an angle of 112 degrees, in a perfect orientation to accept a hydrogen bond from His63. Compared to the three known quaternary structures of human Hb (T, R, and R2), both structures most closely resemble the R state. Comparisons with the structures of adult Hb and HbH explain the association and dissociation behaviour of Hb homotetramers relative to the heterotetrameric Hbs.  相似文献   

3.
Periodate-oxidized adenosine triphosphate (o-ATP), a ribose ring-opened dialdehyde derivative of ATP, reacts specifically with human deoxyhemoglobin to give a single major covalently modified product after reduction with sodium borohydride. This product, designated di-ATP Hb, was isolated using ion-exchange chromatography and shown to have incorporated two molecules of o-ATP/tetramer. Peptide mapping and x-ray crystallography at 2.8-A resolution indicate that a covalent adduct is formed between the ligand and residues Lys-82 EF6 of each beta chain in the organic phosphate-binding site of the molecule. di-ATP Hb exhibits a significantly decreased oxygen affinity (P50 = 20.8 mm Hg versus 5.8 mm Hg control; 50 mM 2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)-propane-1,3-diol, pH 7.4, 0.1 M C, 20 degrees C). The subunit cooper-activity of di-ATP Hb is also reduced (nmax = 1.9 versus 2.7 control).  相似文献   

4.
Holt JM  Klinger AL  Yarian CS  Keelara V  Ackers GK 《Biochemistry》2005,44(36):11925-11938
The complete binding cascade of human hemoglobin consists of eight partially ligated intermediates and 16 binding constants. Each intermediate binding constant can be evaluated via dimer-tetramer assembly when ligand configurations within the tetramer are fixed through the use of hemesite analogs. The Zn/Fe analog, in which the nonbinding Zn2+ heme substitutes for deoxy Fe2+ heme, also permits direct measurement of O2 binding to the remaining Fe2+ hemesites within the symmetrically ligated Hb tetramers. Measurement of O2 binding over a range of Zn/Fe Hb concentrations to both alpha-subunits (species 23) or to both beta-subunits (species 24) shows noncooperative binding and incomplete saturation of the available Fe2+ hemesites. In contrast, the asymmetrically ligated Zn/FeO2 species 21, in which both oxygens are bound to one of the dimers within the tetramer, exhibits positive cooperativity and >90% ligation under atmospheric conditions. These properties are confirmed in the present study by measurement of the rate constant for tetramer dissociation to free dimer. The binding constants thus derived for these partially ligated intermediates are consistent with the stoichiometric constants measured for native hemoglobin by standard O2 binding techniques, providing additional evidence that Zn2+-heme substitution provides an excellent deoxy hemoglobin analog. There is no evidence that Zn-substitution stabilizes a low-affinity form of the tetramer, as previously suggested. These characterizations demonstrate distinct, nonadditive physical properties of the doubly ligated tetrameric species, yielding an asymmetric distribution of cooperativity within the cascade of O2 binding by human hemoglobin.  相似文献   

5.
The effect of ionic strength (I) on substrate-induced spin transitions and cooperativity in cytochrome P450eryF was studied. At a saturating concentration of 1-pyrenebutanol (1-PB) increasing ionic strength in the 0.06-1.2 M range promotes the formation of the high-spin state of P450, which fraction increases from 26% at 0.06 M to 75% at 1.2 M. This effect was associated with a considerable decrease in cooperativity as revealed in the 1-PB-induced spin shift. While P450eryF exhibits distinct positive cooperativity (S(50) = 8.3 microM, n = 2.4) with this substrate at low ionic strength (I = 0.06 M), n decreases to 1.2 (S(50) = 3.2 microM) at I = 0.66 M. Increasing ionic strength also increases the distance between the first (effector) molecule of 1-PB and the heme, as detected by the changes in the efficiency of FRET from 1-PB to the heme. The modification of Cys(154) with 7-(diethylamino)-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM) largely suppresses these effects of ionic strength and causes a prominent decrease in the cooperativity. The same effect was observed when Cys(154) was substituted with isoleucine. Importantly, Cys(154) is located at the C-terminal end of helix E and is surrounded by salt bridges formed by arginine, glutamate, and aspartate residues located in helices D, E, F, and G. Our results suggest that the binding of the first substrate molecule causes an important conformational transition in the P450eryF that facilitates the substrate-induced spin shift. This transition is apparently accompanied by dissociation or rearrangement of several salt bridges in the proximity of Cys(154) and modulates accessibility and hydration of the heme pocket.  相似文献   

6.
The physiological significance of the cooperativity of human hemoglobin (Hb) is considered from the viewpoint of the effectiveness of the Bohr shift at the sites of O(2) release and uptake across the placental membrane. The effects of the Bohr shift was examined by changing the O(2) saturation of Hb (S(pO2)) per unit change in P(50), -dS(PO2)/d P(50), where P(50) is partial pressure of O(2) at half saturation. The Bohr shift at the sites of O(2) uptake and release was found to be highly effective in both fetal and maternal bloods at physiological degree of cooperativity (Hill's coefficient, n=2.65). From the results obtained in this paper, it is concluded that the positions of OECs of fetal and maternal Hbs are regulated to receive a maximal benefit from the Bohr shift, and that a relatively low n value of human tetrameric Hb is adequate for the O(2) and CO(2) exchange across the placental membrane.  相似文献   

7.
Experimental conditions favouring the dissociation of tetrameric rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase into active monomers were elaborated. The urea-induced dissociation of the tetramer was shown to be a stepwise process (in 2 M urea only dimers are formed; an increase in urea concentration up to 3 M causes the splitting of the dimers into monomers). The specific activity of immobilized monomers in the glyceraldehyde-3-phosphate oxidation reaction does not differ from that of the parent immobilized tetrameric form. The tetrameric enzyme molecule binds the coenzyme with a negative cooperativity (the first two NAD+ molecules bind with KD below 0.1 microM; for the third and fourth molecules the dissociation constant was determined to be equal to 5.5 +/- 1.5 microM (50 mM medinal buffer, 10 mM sodium phosphate, pH 8.2). The cooperativity of NAD+ binding is preserved in the immobilized preparation of tetrameric dehydrogenase. The immobilized monomers bind NAD+ with KD of 1.6 +/- 1.0 microM. The experimental results are consistent with the hypothesis according to which the association of catalytically active subunits into a tetramer changes their coenzyme-binding properties in such a way that the first two NAD+ molecules bind more firmly to a tetramer than to a monomer, whereas the third and the fourth NAD+ molecules bind less firmly.  相似文献   

8.
Human hemoglobin (Hb) conjugated to benzene tetracarboxylate substituted dextran produces a polymeric Hb (Dex-BTC-Hb) with similar oxygen affinity to that of red blood cells (P(50)=28-29 mm Hg). Under physiological conditions, the oxygen affinity (P(50)) of Dex-BTC-Hb is 26 mm Hg, while that of native purified human HbA(0) is 14 mm Hg, but it exhibits a slight reduction in cooperativity (n(50)), Bohr effect, and lacks sensitivity to inositol hexaphosphate (IHP), when compared to HbA(0). Oxygen-binding kinetics, measured by rapid mixing stopped-flow method showed comparable oxygen dissociation and association rates for both HbA(0) and Dex-BTC-Hb. The rate constant for NO-mediated oxidation of the oxy form of Dex-BTC-Hb, which is governed by NO entry to the heme pocket, was reduced to half of the value obtained for HbA(0). Moreover, Dex-BTC-Hb is only slightly more sensitive to oxidative reactions than HbA(0), as shown by about 2-fold increase in autoxidation, and slightly higher H(2)O(2) reaction and heme degradation rates. Dextran-BTC-based modification of Hb produced an oxygen-carrying compound with increased oxygen release rates, decreased oxygen affinity and reduced nitric oxide scavenging, desirable properties for a viable blood substitute. However, the reduction in the allosteric function of this protein and the lack of apparent quaternary T-->R transition may hinder its physiological role as an oxygen transporter.  相似文献   

9.
Changes in the slope of haemoglobin-oxygen dissociation curve and its position were studied before and after the influence of long wave u.v. irradiation. Haemoglobin showed a lower than normal affinity for oxygen when exposed to 5.45 x 10(-3) J/cm2 and to lesser extent to doses of 10.90 x 10(-3) J/cm2. The elevation in P50 (representing PO2 at which Hb is half saturated) at these doses is mainly due to the new acidic groups which, by unfolding of this globular protein, become exposed in its surface. The fall in P50 at relatively high doses was found as a result of methaemoglobin increase and the partial dissociation of Hb tetramer to dimer and monomer.  相似文献   

10.
Hemoglobin Alberta has an amino acid substitution at position 101 (Glu----Gly), a residue involved in the alpha 1 beta 2 contact region of both the deoxy and oxy conformers of normal adult hemoglobin. Oxygen equilibrium measurements of stripped hemoglobin Alberta at 20 degrees C in the absence of phosphate revealed a high affinity (P50 = 0.75 mm Hg at pH 7), co-operative hemoglobin variant (n = 2.3 at pH 7) with a normal Bohr effect (- delta log P50/delta pH(7-8) = 0.65). The addition of inositol hexaphosphate resulted in a decrease in oxygen affinity (P50 = 8.2 mm Hg at pH 7), a slight increase in the value of n and an enhanced Bohr effect. Rapid mixing experiments reflected the equilibrium results. A rapid rate of carbon monoxide binding (l' = 7.0 X 10(5) M-1 S-1) and a slow rate of overall oxygen dissociation (k = 15 s-1) was seen at pH7 and 20 degrees C in the absence of phosphate. Under these experimental conditions the tetramer stability of liganded and unliganded hemoglobin Alberta was investigated by spectrophotometric kinetic techniques. The 4K4 value (the liganded tetramer-dimer equilibrium dissociation constant) for hemoglobin Alberta was found to be 0.83 X 10(-6) M compared to a 4K4 value for hemoglobin A of 2.3 X 10(-6) M, indicating that the Alberta tetramer was less dissociated into dimers than the tetramer of hemoglobin A. The values of 0K4 (the unliganded tetramer-dimer equilibrium dissociation constant) for hemoglobin Alberta and hemoglobin A were also measured and found to be 2.5 X 10(-8) M and 1.5 X 10(-10) M, respectively, demonstrating a greatly destabilized deoxyhemoglobin tetramer for hemoglobin Alberta compared to deoxyhemoglobin A. The functional and subunit dissociation properties of hemoglobin Alberta appear to be directly related to the dual role of the beta 101 residue in stabilizing the tetrameric form of the liganded structure, while concurrently destabilizing the unliganded tetramer molecule.  相似文献   

11.
Oxygenation measurements at equilibrium were carried out for solutions of pure haemoglobin (Hb) Olympia (alpha 2 beta 2 20 (B2) Val----Met) at 200 microM (haem) and revealed a high oxygen affinity (P50 = 4.2 torr at pH 7.20, 25 degrees C) compared to HbA (P50 = 5.6 torr), with the Hill coefficient (eta H) reduced from the normal value of 2.9 to 2.5 for Hb Olympia at neutral pH. 2,3-Diphosphoglycerate and chloride effects were normal, but measurements of the alkaline Bohr effect indicated an excess Bohr effect of about 20% for Hb Olympia. Precise determinations of the oxygen binding curves gave the unexpected finding of a dependence of co-operativity on pH with eta H rising from 2.4 at pH 6.8 to 3.0 at pH 8. Moreover, the Hill coefficient was dependent upon the concentration at alkaline pH and fell to 1.8 in low concentration solutions (approximately 30 microM-haem) of the haemoglobin variant; at this concentration the Bohr effect was normal. This effect of concentration on co-operativity could be accounted for fully by the allosteric model, with introduction of Hb Olympia self-association. In this case the allosteric constant L' for the supramolecular species has the value of the allosteric constant L for the tetramer species, raised to a power equal to the number of molecules in the aggregates and modulated by the ratio of the dissociation constants of the aggregates, DNR/DNT. Model curves with N tetramers per aggregate (where N approximately 2 at pH 7.5 and N approximately 4 at pH 8.0) fully represented the concentration dependence for Hb Olympia of the eta H values and the detailed shape of the experimental curves for eta H as a function of log[y/(1-y)], the first derivative of the Hill plot. These curves are much steeper when supramolecular species are present. Direct measurements of the protein aggregation by centrifugation confirmed the presence of aggregates in the solutions of Hb Olympia. Hb Olympia is therefore one of the few examples of mutant human haemoglobins that self-associate with functional consequences in terms of oxygen binding properties.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The mutant haemoglobin Hb M Iwate alpha 2Mmet87His leads to Tyr beta 2, is characterized by a stable T structure and a low ligand affinity. Sigmoidal CO-binding isotherms of symmetrical shape with Hill coefficients of n = 1.4 at pH 6 to n = 1.9 at pH 10 and the differences in the mean affinity (PCO(1/2)) and the affinity of the first ligand-binding beta subunit (1/L1 greater than Pco(1/2)) are the evidence for the cooperativity. The comparison of the Bohr effects of the two valency hybrid states (alpha 2Mmet beta met beta deoxy alpha 2Mmet beta 2deoxy) in the absence of and in the presence of polyphosphates leads to an indirect proof of pH-dependent subunit-subunit interaction. Inositol hexaphosphate-binding suppresses cooperativity in the pH range 5.5-8 (n = 1). Above pH 8 hte cooperativity increases to a final value of n = 1.9 at pH greater than 10, which is identical to that of stripped Hb M Iwate. The CO binding to the first binding site exhibits a Bohr effect. Polyphosphate anions have no influence on the CO binding of the first binding site. The heterotropic effects are discussed as intrachain effects (Bohr effect of the first binding site) and interchain effects (Bohr effect of Pco(1/2); influence of polyphosphates).  相似文献   

13.
Artificial blood substitutes based on glutaraldehyde cross-linked hemoglobin (PolyHb) are currently being developed for use in human subjects needing blood transfusions. Despite the commercial development of PolyHb dispersions, a systematic study of the effect of varying the glutaraldehyde to hemoglobin (G-Hb) molar ratio on the resulting PolyHb physical properties (molecular weight distribution and oxygen binding parameters) has not been conducted to date. The results of this study show that increasing the G-Hb molar ratio elicits a general decrease in the P50 (partial pressure of oxygen at which Hb is half saturated with oxygen) and cooperativity and a simultaneous increase in the weight averaged molecular weight (Mw) of the PolyHb dispersion and methemoglobin (MetHb) level. Three PolyHb dispersions (20:1, 30:1, and 40:1 G-Hb molar ratios) displayed potential as artificial blood substitutes. The 20:1 PolyHb dispersion resulted in the presence of more intramolecularly cross-linked and non-cross-linked tetramers versus cross-linked species that were larger than a tetramer ( approximately 75% tetrameric and approximately 25% higher-order species), lower MetHb level (8%), and P50 (20.1 mmHg) similar in magnitude to that of non-cross-linked Hb. The 30:1 PolyHb dispersion consisted of more higher-order species ( approximately 76%), higher MetHb level (28%), and lower P50 (13.3 mmHg). The 40:1 PolyHb dispersion resulted in a similar P50 of 13.0 mmHg and similar MetHb level (30%); however, this PolyHb dispersion only consisted of species larger than a tetramer. The molecular weight distribution of PolyHb dispersions was determined using asymmetric flow field-flow fractionator (AFFF) coupled with multiangle static light scattering (MASLS). This is the first time that AFFF-MASLS has been used to characterize the molecular weight distribution of PolyHb dispersions.  相似文献   

14.
Dynamic equilibrium analysis of the (H2A-H2B-H3-H4)2 histone octamer with lower oligomers was performed in 2 M NaCl. Calculated data on the relative content of histone oligomers upon changing protein concentration in solution are given. The red shift of lambda max for histone tyrosine fluorescence spectra is shown to be due to hydrogen bond formation by tyrosyl OH-groups. Analysis of free energy changes of histone oligomers upon association (delta G = -17,37 +/- 0,14 kcal/mole) as well as the effect of urea on histone octamer dissociation made it possible to conclude that virtually all tyrosyls in octamer form hydrogen bonds. Intermolecular hydrogen bonds formed by tyrosyls contribute substantially to octamer stabilization. The (H2A-H2B) dimer positive cooperativity in association with the (H3-H4)2 tetramer was found. This cooperativity is caused by interaction between association sites with a two order increase in an apparent constant of dimers with tetramer association. The histone octamer was determined to be of asymmetric structure due to unequivolency of the two binding sites for the (H2A-H2B) dimers.  相似文献   

15.
The dimeric high spin c-type cytochrome c' from Chromatium vinosum has been crystallized and the crystals characterized by x-ray diffraction. This cytochrome c' exhibits ligand-controlled dissociation from a dimer to a monomer upon binding carbon monoxide and represents an opportunity to obtain unique information concerning cooperativity in heme proteins. The C. vinosum cytochrome c' protein crystals are grown from polyethylene glycol 4000 and grow in both space group P2(1)2(1)2(1) (a = 49.2, b = 56.7, c = 98.8 A) and space group P2(1) (a = 55, b = 94, c = 50, beta = 106.1 A) depending upon the growth rate, with the P2(1)2(1)2(1) form favored at slower growth rates. The high resolution (2.0 A) atomic structure of the P2(1)2(1)2(1) form is being determined.  相似文献   

16.
Bovine carbonmonoxy hemoglobin investigated with light scattering studies is found to dissociate from its native tetramer structure into dimers and monomers. The values of the hydrated tetramer radius, RT = 32.1 Å, and the fractional dissociation vs pH, have been obtained at different ionic strengths from the autocorrelation function of the scattered light. The results suggest that a relevant contribution to Hb dissociation is due to electrostatic effects and, by means of a model derived by Tanford, it has been possible to predict the behavior of dissociation. Among the findings of this approach, we recall the estimates of the electrostatic energy contributions to Hb dissociation, up to ? GRT, and the predicted charge of tetrameric Hb vs pH, which agrees very well with the experimental data. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
Hemoglobin (Hb) Chico (Lys beta 66----Thr at E10) has a diminished oxygen affinity (Shih, D. T.-b., Jones, R. T., Shih, M. F.-C., Jones, M. B., Koler, R. D., and Howard, J. (1987) Hemoglobin 11, 453-464). Our studies show that its P50 is about twice that of Hb A and that its cooperativity, anion, and Bohr effects between pH 7 and 8 are normal. The Bohr effect above pH 8 is somewhat reduced, indicating a small but previously undocumented involvement of the ionic bond formed by Lys beta 66 in the alkaline Bohr effect. Since the oxygen affinity of the alpha-hemes is likely to be normal, that of the beta-hemes in the tetramer is likely to be reduced by the equivalent of 1.2 kcal/mol beta-heme in binding energy. Remarkably, both initial and final stages of oxygen binding to Hb Chico are of lowered affinity relative to Hb A under all conditions examined. The isolated beta chains also show diminished oxygen affinity. In T-state Hb A, Lys(E10 beta) forms a salt bridge with one of the heme propionates, but comparison with other hemoglobin variants shows that rupture of this bridge cannot be the cause of the low oxygen affinity. X-ray analysis of the deoxy structure has now shown that Thr beta 66 either donates a hydrogen bond to or accepts one from His beta 63 via a bridging water molecule. This introduces additional steric hindrance to ligand binding to the T-state that results in slower rates of ligand binding. We measured the O2/CO partition coefficient and the kinetics of oxygen dissociation and carbon monoxide binding and found that lowered O2 and CO affinity is also exhibited by the R-state tetramers and the isolated beta chains of Hb Chico.  相似文献   

18.
The reaction between carboxyhemoglobin and reduced microperoxidase (MP): Hb4(CO)4 + 4MP=Hb4 + 4MPCO, recently reported by us, has been further studied. By generating species Hb4(CO), Hb4(CO)2, and Hb(CO)3 in the stopped flow cuvette by the reaction of dithionite with the species of the general formula Hb4(O2)x(CO)y(x + y=4) in the presence of microperoxidase it has been possible to determine the stepwise CO dissociation rate constants l4, l3, l2, and l1. The overall CO dissociation rate constant l, which is the same in this system as l4, is not affected by 2,3-diphosphoglyceric acid. The activation energy of the reaction is 21,400 cal in 15-25 degrees range. The ratio deltal/deltapH is approximately 3 in 6.5 to 7.5 pH range. The kinetic data indicate that, compared to HbO2, the contribution to the cooperativity of the dissociation rate constants of carboxyhemoglobin is greatly reduced. The ligand-dependent differences in the reactions of Hb with CO, O2, and NO suggest that in the combination reactions the ligand plays an active role in the rate-limiting step.  相似文献   

19.
20.
In this work, we describe the synthesis and characterization of a novel glycosylated hemoglobin (Hb) with high oxygen affinity as a potential Hb-based oxygen carrier. Site-selective glycosylation of bovine Hb was achieved by conjugating a lactose derivative to Cys 93 on the beta subunit of Hb. LC-MS analysis indicates that the reaction was quantitative, with no unmodified Hb present in the reaction product. The glycosylation site was identified by chymotrypsin digestion of the glycosylated bovine Hb followed with LC-MS/MS and from the X-ray crystal structure of the glycosylated Hb. The chemical conjugation of the lactose derivative at Cys beta93 yields an oxygen carrier with a high oxygen affinity (P(50) of 4.94 mmHg) and low cooperativity coefficient (n) of 1.20. Asymmetric flow field-flow fractionation (AFFFF) coupled with multiangle static light scattering (MASLS) was used to measure the absolute molecular weight of the glycosylated Hb. AFFFF-MASLS analysis indicates that glycosylation of Hb significantly altered the alpha(2)beta(2)-alphabeta equilibrium compared to native Hb. Subsequent X-ray analysis of the glycosylated Hb crystal showed that the covalently linked lactose derivative is sandwiched between the beta(1) and alpha(2) (and hence by symmetry the beta(2) and alpha(1)) subunits of the tetramer, and the interaction between the saccharide and amino acid residues located at the interface is apparently stabilized by hydrogen bonding interactions. The resultant structural analysis of the glycosylated Hb helps to explain the shift in the alpha(2)beta(2)-alphabeta equilibrium in terms of the hydrogen bonding interactions at the beta(1)alpha(2)/beta(2)alpha(1) interface. Taken together, all of these results indicate that it is feasible to site-specifically glycosylate Hb. This work has great potential in developing an oxygen carrier with defined chemistry that can target oxygen delivery to low pO(2) tissues and organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号