首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the interaction of divalent and trivalent with a potent phospholipase A(2) neurotoxin, crotoxin, from Crotalus durissus terrificus venom. The pharmacological action of crotoxin requires dissociation of its catalytic subunit (component B) and of its non-enzymatic chaperone subunit (component A), then the binding of the phospholipase subunit to target sites on cellular membranes and finally phospholipid hydrolysis. In this report, we show that the phospholipase A(2) activity of crotoxin and of component B required Ca2+ and that other divalent cations (Sr2+, Cd2+ and Ba2+) and trivalent lanthanide ions are inhibitors. The lowest phospholipase A(2) activity was observed in the presence of Ba2+, which proved to be a competitive inhibitor of Ca2+. The binding of divalent cations and trivalent lanthanide ions to crotoxin and to its subunits has been examined by equilibrium dialysis and by spectrofluorimetric methods. We found that crotoxin binds two divalent cations per mole with different affinities; the site presenting the highest affinity (K(d) in the mM range) in involved in the activation (or inhibition) of the phospholipase A(2) activity and must therefore be located on component B, the other site (K(d) higher than 10 mM) is probably localized on component A and does not play any role in the catalytic activity of crotoxin. We also observed that crotoxin component B binds to vesicular and micellar phospholipids, even in the absence of divalent cations. The affinity of this interaction either does not change or else increases by an order of magnitude in the presence of divalent cations.  相似文献   

2.
Crotoxin, isolated from the venom of Crotalus durissus terrificus, is a potent neurotoxin consisting of a basic and weakly toxic phospholipase A2 subunit (component B) and an acidic nonenzymatic subunit (component A). The nontoxic component A enhances the toxicity of the phospholipase subunit by preventing its nonspecific adsorption. The binding of crotoxin and of its subunits to small unilamellar phospholipid vesicles was examined under experimental conditions that prevented any phospholipid hydrolysis. Isolated component B rapidly bound with a low affinity (Kapp in the millimolar range) to zwitterionic phospholipid vesicles and with a high affinity (Kapp of less than 1 microM) to negatively charged phospholipid vesicles. On the other hand, the crotoxin complex did not interact with zwitterionic phospholipid vesicles but dissociated in the presence of negatively charged phospholipid vesicles; the noncatalytic component A was released into solution, whereas component B remained tightly bound to lipid vesicles, with apparent affinity constants from 100 to less than 1 microM, according to the chemical composition of the phospholipids. On binding, crotoxin or its component B caused the leakage of a dye entrapped in vesicles of negatively charged but not of zwitterionic phospholipids. The selective binding of crotoxin suggests that negatively charged phospholipids may constitute a component of the acceptor site of crotoxin on the presynaptic plasma membrane.  相似文献   

3.
The inhibitory effects of botulinum neurotoxins types A and B on Ca2(+)-dependent evoked release of [3H]noradrenaline from rat cerebrocortical synaptosomes were compared and their molecular basis investigated. A23187, a Ca2+ ionophore, proved more efficacious in reversing the blockade produced by type A than that by B, whereas the actions of neither were changed by increasing intraterminal cyclic GMP levels using 8-bromo-cyclic GMP of nitroprusside. Disruption of the actin-based cytoskeleton with cytochalasin D did not alter the inhibition seen subsequently with either toxin. However, prior disassembly of microtubules with colchicine, nocodazole, or griseofulvin reduced the potency of type B toxin, but not that of type A toxin; stabilization of the microtubules with taxol counteracted this effect of colchicine. Because colchicine treatment of synaptosomes did not interfere with the measurable binding of type B toxin or its apparent uptake, it appears to act intracellularly. Collectively, these data suggest that botulinum neurotoxins types A and B inactivate transmitter release by interaction at different sites in the process. Based on the consistent results observed with four different drugs known to affect selectively microtubules, their involvement in the action of the type B neurotoxin is proposed.  相似文献   

4.
Rabbit antibodies were prepared against both purified catalytic (component-B) and purified non-catalytic (component-A) subunits of crotoxin, the major phospholipase A2 neurotoxin from the South American rattlesnake. They cross-react with crotoxin-like toxins from the venom of several Crotalus species as well as with single-chain phospholipase A2 neurotoxins from Crotalid and Viperid venoms (agkistrodontoxin and ammodytoxin A) but not from Elapid venoms (notexin). Immunological cross-reactions of anti-component-A and anti-component-B sera with crotoxin and with its isolated components A and B showed that component-A exposes determinants of low immunogenicity which are present on component-B, whereas the major antigenic determinants of component-B are not present on component-A. Anti-component-B antibodies, but not anti-component-A antibodies, neutralize the lethal potency of crotoxin and inhibit its enzymatic activity. Furthermore, non-precipitating anti-component-B Fab fragments were as potent as antibodies, indicating that crotoxin neutralization results from the binding of the antibodies to the catalytic subunit, rather than the formation of an immunoprecipitate.  相似文献   

5.
The ability of the two-chain form of tetanus toxin (TeTx), its constituent light (LC) or heavy (HC) chains, and papain fragment to block evoked acetylcholine (ACh) release in the buccal ganglia of Aplysia californica was studied electrophysiologically. Extracellularly applied, TeTx or its B fragment (consisting of LC and beta 2, the amino-terminal portion of HC) blocked ACh release, whereas LC, HC, or the beta 2 fragment did not affect it. Toxicity was restored when LC was bath applied together with HC or the beta 2 fragment. When injected into the presynaptic neuron, TeTx, the B fragment or LC, but not HC, induced inhibition of ACh release. These results indicate that the blockade of ACh release by TeTx is mimicked by intracellular action of LC, the internalization of which is mediated by the HC via its amino-terminal moiety.  相似文献   

6.
翟进  马如纯 《生理学报》1990,42(1):29-36
本文应用细胞内记录技术,观察了钙通道阻滞剂硝苯吡啶(nifedipine)对离体豚鼠腹腔神经节突触传递的影响,硝苯吡啶(0.1-10umol/L)不影响所检细胞的静息膜电位,膜电阻及细胞内刺激引起的动作电位,但能显著阻断N-型胆碱能的突触传递,并且这种作用可被低钙模拟、高钙拮抗,硝苯吡啶(10umol/L)也不影响突触后膜对乙酰胆碱(ACh)的敏感性;但在高钾克氏液中,能减少微小兴奋性突触后电位(mEPSPs)的频率;在低钙和高镁克氏液中,能减少量子含量,而对量子大小无影响。结果表明,治疗量的硝苯吡啶(0.1umol/L)通过阻滞突触前膜钙内流及ACh的量子性释放,产生突触阻断作用。这可能是硝苯吡啶降压机理的一个组成部分。  相似文献   

7.
Abstract: Ouabain, an Na+,K+-ATPase inhibitor, increases the release of acetylcholine (ACh) from various preparations in a Ca2+-independent way. However, in other preparations the release of ACh evoked by ouabain is dependent on the presence of extracellular calcium. In the present study, we have labeled the ACh of myenteric plexus longitudinal muscles of guinea pig ileum and compared the effect of calcium channel blockers on ouabain-evoked release of [3H]ACh. Release of [3H]ACh evoked by ouabain is dose dependent and decreased markedly in the absence of calcium or in the presence of cadmium, a nonspecific calcium channel blocker. N-type calcium channel blockage by the ω-conotoxins GVIA (selective N-type calcium channel blocker) and MVIIC (a nonselective calcium channel blocker) inhibited by 45 and 55%, respectively, the release of [3H]ACh. L-type calcium channel suppression by low concentrations of verapamil, nifedipine, and diltiazem had no effect on the release of [3H]ACh. The release of transmitter was also not affected significantly by nickel, a T-type calcium channel blocker. In addition, ω-agatoxin-IVA, at concentrations that block P- and Q-type calcium channels, did not affect significantly the release of [3H]ACh. Thus, extracellular Ca2+ is essential for the release of ACh induced by ouabain from guinea pig ileum myenteric plexus. In this preparation, the N-type calcium channel plays a dominant role in transmitter release evoked by inhibition of Na+,K+-ATPase, but other routes of calcium entry in addition to these channels can also support the release of neurotransmitter induced by ouabain.  相似文献   

8.
Crotalus durissus terrificus snakes possess a protein in their blood, named crotoxin inhibitor from Crotalus serum (CICS), which protects them against crotoxin, the main toxin of their venom. CICS neutralizes the lethal potency of crotoxin and inhibits its phospholipase A2 (PLA2) activity. The aim of the present study is to investigate the specificity of CICS towards snake venom neurotoxic PLA2s (beta-neurotoxins) and nontoxic mammalian PLA2s. This investigation shows that CICS does not affect the enzymatic activity of pancreatic and nonpancreatic PLA2s, bee venom PLA2 and Elapidae beta-neurotoxins but strongly inhibits the PLA2 activity of Viperidae beta-neurotoxins. Surface plasmon resonance and PAGE studies further demonstrated that CICS makes complexes with monomeric and multimeric Viperidae beta-neurotoxins but does not interact with nontoxic PLA2s. In the case of dimeric beta-neurotoxins from Viperidae venoms (crotoxin, Mojave toxin and CbICbII), which are made by the noncovalent association of a PLA2 with a nonenzymatic subunit, CICS does not react with the noncatalytic subunit, instead it binds tightly to the PLA2 subunit and induces the dissociation of the heterocomplex. In vitro assays performed with Torpedo synaptosomes showed a protective action of CICS against Viperidae beta-neurotoxins but not against other PLA2 neurotoxins, on primary and evoked liberation of acetylcholine. In conclusion, CICS is a specific PLA2 inhibitor of the beta-neurotoxins from the Viperidae family.  相似文献   

9.
The effects of adenosine and nifedipine on endogenous acetylcholine (ACh) release evoked by electrical stimulation from guinea pig ileal longitudinal muscle preparations exposed to physostigmine were evaluated using an HPLC with electrochemical detection (ECD) system. Resting ACh release, which was sensitive to tetrodotoxin (0.3 microM), was enhanced by Bay K 8644 (0.5 microM; a Ca2+ antagonist) or 4-aminopyridine (30 microM; a K+ channel blocker) but not by theophylline (100 microM; a P1 purinoceptor antagonist) or atropine (0.3 microM). The enhancement of the resting ACh release by Bay K 8644 was virtually unaffected by atropine. Electrically evoked ACh release was enhanced by around two- to fourfold in the presence of theophylline, atropine, Bay K 8644, 4-aminopyridine, or atropine. On the other hand, the evoked ACh release was reduced by adenosine (10-30 microM), nifedipine (0.1-0.3 microM; a dihydropyridine Ca2+ channel antagonist), or bethanechol (1-3 microM) in a concentration-related fashion. The reduction induced by adenosine or nifedipine was almost abolished by either theophylline or Bay K 8644, whereas that induced by bethanechol was virtually unaffected by these drugs. The inhibition by adenosine of ACh release was not influenced in the presence of 4-aminopyridine or atropine. However, this inhibition by adenosine was considerably enhanced by halving the Ca2+ concentration in the Krebs solution and was diminished by doubling the Ca2+ concentration. These findings suggest that adenosine produces a cholinergic neuromodulation presumably via modifying dihydropyridine-sensitive Ca2+ channel activities in the cholinergic neurons, and thus L-type Ca2+ channels may exist on the nerve terminals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effects of botulinum neurotoxins or their light and heavy chain subunits were investigated in digitonin-permeabilized adrenal chromaffin cells. Because these cells are permeable to proteins, the toxin had direct access to the cell interior. Botulinum type A neurotoxin and its light chain subunit inhibited Ca2+-dependent catecholamine secretion in a dose-dependent manner. The heavy chain subunit had no effect. Inhibition required introduction of the neurotoxin or light chain into the cell and was not seen when intact cells were incubated with these proteins. The inhibition of secretion by type A neurotoxin and light chain was incomplete, the maximal response being 65%. The inhibition was not overcome by increasing Ca2+ concentrations. The action of the light chain was irreversible and rapid. Botulinum type E neurotoxin also inhibited secretion in a dose-dependent manner. Its potency was increased 30-fold following mild trypsinization, which nicked the single chain protein to the dichain form. In contrast to the results seen with types A and E, botulinum type B neurotoxin did not inhibit secretion, while its light chain totally abolished secretion. Trypsinization of the neurotoxin produced the dichain form, which did not inhibit secretion. Reduction of the trypsinized neurotoxin with dithiothreitol produced inhibition equivalent to that seen with the purified light chain subunit. Isolated type A heavy chain had no effect on the inhibitory action of type A or B light chains. The data demonstrate that the ability of botulinum neurotoxins to inhibit secretion is confined to the light chain region of these proteins. Furthermore, while the botulinum neurotoxin types A, B, and E have similar macrostructures, they are not identical with respect to their biological activities.  相似文献   

11.
Retrograde Inhibition of Transmitter Release by ATP   总被引:9,自引:7,他引:2  
Abstract: After labelling ACh tissue stores in Torpedo electric organ prisms with radioactive acetate, the release of ACh and ATP triggered by electrical stimulation or KCI depolarization was measured in the same perfusate samples. The luciferin-luciferase reaction for ATP was first counted, then the radioactive content of the sample determined. Further evidence showing that ATP release resulted from postsynaptic transmitter action was that carbachol could induce the release of ATP. A dose-response curve was obtained. Curare or α-bungarotoxin block the release of ATP elicited by carbachol. When triggered by KCI depolarization the increased efflux of ACh and ATP returned to low levels in spite of the maintained depolarization. After two successive KCI depolarizations, it was possible to dissociate the release of both substances. The efflux of ATP was exhausted while ACh release was maintained. If the second KCI depolarization was delayed ATP release recovered, but the release kinetics of ACh and ATP were sustained. The exhaustion of endogenous ATP release or the action of exogenous ATP had little or no effect on the release of ACh triggered by KCI depolarization. On the contrary, the release of ACh induced by electrical stimulation was sensitive to the action of adenine nucleotides, and a quantitative estimation of the inhibition of ACh release by ATP and adenosine could be made. At the onset of stimulation ATP release predominated, being gradually replaced by adenosine, which can be reuptaken. This would terminate the inhibitory action of the nucleotide. Carbachol inhibits evoked ACh release, while the effect of α-bungarotoxin was to increase spontaneous ACh release. These effects could be respectively mediated by an increased or a reduced release of ATP resulting from the postsynaptic action of ACh agonists or antagonists. However, a direct presynaptic effect of these substances is not excluded. It seems possible that the action of ATP on ACh release can be explained through its inhibition of the depolarization-evoked Ca2+ entry.  相似文献   

12.
Under optimised conditions for intoxication, botulinum neurotoxin type A was shown to inhibit approximately 90% of Ca2+-dependent K+-evoked release of [3H]acetylcholine, [3H]noradrenaline, and [3H]dopamine from rat cerebrocortical synaptosomes; cholinergic terminals were most susceptible. In each case, the dose-response curve for the neurotoxin was extended, with about 50% of evoked release being inhibited at approximately 10 nM whereas 200 nM was required for the maximal blockade. This may suggest some heterogeneity in the release process. The action of the toxin was time and temperature dependent and appeared to involve binding and sequestration steps prior to blockade of release. The neurotoxin failed to exert any effect on synaptosomal integrity or on Ca2+-independent release of the transmitters tested; it produced only minimal changes in neurotransmitter uptake although small secondary effects were detected with cholinergic terminals. Blockade by the neurotoxin of Ca2+-dependent resting release of transmitter was apparent; Sr2+, Ba2+, or high concentrations of Ca2+ restored the resting release of 3H-catecholamine but not [3H]acetylcholine. Interestingly, none of the latter conditions or 4-aminopyridine could reverse the toxin-induced blockade of evoked release. This lack of specificity in its action on synaptosomes, and other published findings, lead to the conclusion that toxin-sensitive component(s) exist in all nerve terminals that are concerned with transmitter release.  相似文献   

13.
Only tetraprenol (n = 4), among the (n)-polyprenols studied, induced activation of rabbit platelets. Tetraprenol-induced responses, including platelet aggregation, Ca2+ mobilization, inositol phosphate formation, and arachidonic acid release, were greatly inhibited by a thromboxane A2 (TXA2) receptor antagonist and a cyclooxygenase inhibitor, indicating an essential role for endogenously produced TXA2. The TXA2-mimetic agonist U46619 induced platelet aggregation, Ca2+ mobilization and phospholipase C action but did not induce arachidonic acid release. These results suggest that arachidonic acid is not released via phospholipase C but by phospholipase A2, and this is also supported by the finding that phospholipase C action was inhibited by depletion of extracellular Ca2+, while arachidonic acid release was not. Full arachidonic acid release was found to be induced by the synergistic action of U46619 and tetraprenol. Therefore, the initial, most essential response induced by tetraprenol is a small arachidonic acid release by phospholipase A2, which results in initial TXA2 formation. Further action of phospholipase C as well as Ca2+ mobilization and aggregation were induced by the initially formed TXA2 while further activation of phospholipase A2 required the synergistic action of tetraprenol and TXA2.  相似文献   

14.
We have investigated the interaction of crotoxin (component A-component B complex) and of its isolated phospholipase subunit (component B) with hydrophobic compounds by ESR, using spin-labeled fatty acids as probes. The phospholipase subunit alone (component B) binds more than three labeled fatty acid molecules/molecule with different affinities, the highest corresponding to a Kd of 10 microM in the case of 5-doxyl palmitic acid. In contrast, the noncatalytic subunit (component A) and the crotoxin complex do not bind fatty acids. ESR studies of the component B-fatty acid complex reveal a strong immobilization of the whole length of the fatty acid chain, strong spin-spin interactions between bound fatty acids, and nonaccessibility of the bound paramagnetic probe to Ni2+ ions. This suggests that the phospholipase component B possesses a hydrophobic cleft which may contain one or two fatty acids. This hydrophobic cleft is not accessible to spin-labeled fatty acids in the crotoxin complex. An overall rotational correlation time of about 200 ns of the phospholipase component B was determined by saturation transfer ESR. This high value is incompatible with the diffusion of a polypeptide of 14,500 molecular weight. The hydrodynamic analysis of the fatty acid-component B complex led us to estimate an apparent molecular weight of 95,000 which reveals that fatty acids induce the formation of polymers (most probably octamers) of component B. We propose a model in which the phospholipase component B exists in two conformational states which differ by their hydrophobicity.  相似文献   

15.
The action of phospholipases A2 and C in the course of collagen-stimulated platelet activation and the effect of cytochalasins on the responses were studied. Stimulation of human platelets with collagen was accompanied by aggregation, Ca2+ mobilization, inositol phosphate formation, and arachidonic acid release. However, in the presence of a cyclooxygenase inhibitor or a thromboxane A2 (TXA2) receptor antagonist, collagen induced only weak arachidonic acid release and weak inositol phosphate formation. The TXA2 mimetic agonist U46619 induced all the responses except for arachidonic acid release, which was induced by synergistic action of collagen and U46619. The result that U46619 did not induce arachidonic acid release despite the activation of phospholipase C suggested that arachidonic acid was not released via phospholipase C but by phospholipase A2. These findings suggested that collagen initially induced weak activation of phospholipases A2 and C and that further activation of phospholipase C as well as Ca2+ mobilization and aggregation were induced by TXA2, whereas further activation of phospholipase A2 required the synergistic action of collagen and TXA2. Platelets pretreated with cytochalasins did not respond to collagen. Further analysis revealed that the initial activation of phospholipases A2 and C was specifically inhibited by cytochalasins, but the responses induced by U46619 or a synergistic action of collagen and U46619 were not inhibited. Therefore, we proposed that interaction of collagen receptor with actin filaments might have some roles in the collagen-induced initial activation of phospholipases.  相似文献   

16.
The effects of neurotensin (NT) on endogenous acetylcholine (ACh) release from basal forebrain, frontal cortex, and parietal cortex slices were tested. The results show that NT differentially regulates evoked ACh release from frontal and parietal cortex slices without altering either spontaneous or evoked ACh release from basal forebrain slices. In the frontal cortex, NT significantly inhibited evoked ACh release by a tetrodotoxin (TTX)-insensitive mechanism, suggesting an action directly on cholinergic terminals. In the parietal cortex, NT enhanced evoked ACh release by a TTX-sensitive mechanism, suggesting an action of NT on the cholinergic neuron or in close proximity to the cholinergic neuron. The effects of NT on ACh release were confined to evoked ACh release; that is, spontaneous ACh release was not affected. NT did not affect spontaneous or potassium-evoked ACh release from occipital cortex slices. The second set of experiments tested the effects of quinolinic acid (QUIN) lesions of the basal forebrain cell bodies on the NT-induced regulation of evoked ACh release in the cerebral cortex. QUIN lesions of basal forebrain cell bodies caused decreases in choline acetyltransferase activity (27 and 28%), spontaneous ACh release (14 and 21%), and evoked ACh release (38 and 44%) in frontal and parietal cortex, respectively. In addition, 11 days following QUIN lesions of basal forebrain cell bodies, the action of NT to regulate evoked ACh release in frontal cortex or parietal cortex was no longer observed. The results suggest that in the rat frontal and parietal cortex, NT differentially regulates the activity of cholinergic neurons by decreasing and increasing evoked ACh release, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The phospholipolytic neurotoxin from Crotalusdurissusterrificus, crotoxin, is able to produce a dose- and time-dependent block of carbachol-stimulated 22Na efflux from pre-loaded Torpedocalifornica excitable vesicles. The blocking activity is dependent on calcium and is abolished by chemical modification with p-bromophenacyl bromide. The isolated basic subunit, crotoxin B, produces an identical block, whereas the isolated acidic subunit, crotoxin A, has no detectable effect. Neither crotoxin nor crotoxin B antagonizes the binding of [125I]-α-bungarotoxin to purified acetylcholine receptor, although, at high concentrations, they antagonize its binding to acetylcholine receptor-rich membrane fragments. Certain phospholipase A2 enzymes and the fatty acid products of their digestion can mimic the crotoxin action. It is therefore suggested that, although considered a pre-synaptic neurotoxin, crotoxin can have invitro post-synaptic effects, possibly mediated by its endogeneous phospholipase A2 activity.  相似文献   

18.
Abstract: The effect of platelet-activating factor (PAF) on neurotransmitter release from rat brain slices prelabeled with [3H]acetylcholine ([3H]ACh), [3H]norepinephrine ([3H]NE), or [3H]serotonin ([3H]5-HT) was studied. PAF inhibited K+ depolarization-induced [3H]ACh release in slices of brain cortex and hippocampus by up to 59% at 10 n M but did not inhibit [3H]ACh release in striatal slices. PAF did not affect 5-HT or NE release from cortical brain slices. The inhibition of K+-evoked [3H]ACh release induced by PAF was prevented by pretreating tissues with several structurally different PAF receptor antagonists. The effect of PAF was reversible and was not affected by pretreating brain slices with tetrodotoxin. PAF-induced inhibition of [3H]ACh release was blocked 90 ± 3 and 86 ± 2% by pertussis toxin and by anti-Gαi1/2 antiserum incorporated into cortical synaptosomes, respectively. The results suggest that PAF inhibits depolarization-induced ACh release in brain slices via a Gαi1/2 protein-mediated action and that PAF may serve as a neuromodulator of brain cholinergic system.  相似文献   

19.
Some snake venom neurotoxins, such as beta-bungarotoxin (beta-BuTX), which possess relatively low phospholipase A2 (PLA2) activity, act presynaptically to alter acetylcholine (ACh) release both in the periphery and in the CNS. In investigating the mechanism of this action, we found that beta-BuTX (5 and 15 nM) inhibited phosphorylation, in both resting and depolarized synaptosomes, of a wide range of proteins, including synapsin I. Naja naja atra PLA2, which has higher PLA2 activity, also inhibited phosphorylation but was less potent than beta-BuTX. At 1 nM, beta-BuTX and N. n. atra PLA2 inhibited phosphorylation of synapsin I only in depolarized synaptosomes. Synaptosomal ATP levels were not affected by 5 or 15 nM beta-BuTX or by 5 nM N. n. atra PLA2. Limited proteolysis, using Staphylococcus aureus V-8 protease, indicated that beta-BuTX inhibited phosphorylation of synapsin I in both the head and the tail regions. The inhibition of phosphorylation was not antagonized by nordihydroguaiaretic acid or indomethacin, suggesting that arachidonic acid derivatives do not mediate this inhibition. Furthermore, inhibition of phosphorylation by beta-BuTX and N. n. atra PLA2 was not altered in the presence of the phosphatase inhibitor okadaic acid, suggesting that stimulation of phosphatase activity is not responsible for this inhibition. Inhibition of protein phosphorylation by PLA2 neurotoxins and enzymes may be associated with an inhibition of ACh release.  相似文献   

20.
Certain phospholipase A2 enzymes (E.C.3.1.1.4) selectively inhibit neurotransmitter release from cholinergic nerve terminals. Both specific acceptor proteins and the physical state of nerve terminal phospholipids have been implicated in studies of the mechanism of phospholipase neurotoxin action. Here we have examined the effects of charge on a micellar phospholipid substrate by comparing the enzyme activity and binding of two neurotoxic phospholipases (beta-bungarotoxin and crotoxin) with other non-neurotoxic phospholipases. This has been achieved by altering either the phospholipid or the ionic charge of the detergent in the mixed phospholipid micelle. The neurotoxic phospholipases were only active on negatively charged micelles, whereas the non-neurotoxic enzymes were equally active in hydrolyzing neutral micelles. This distinction was also reflected in binding studies; the non-neurotoxic phospholipases bound to both types of substrate, whereas beta-bungarotoxin and crotoxin selectively bound to negatively charged micellar structures. These experiments suggest that, in addition to the existence of any specific acceptor proteins, neurotoxin binding is also governed by the charge on the lipid phase of the nerve terminal membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号