首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thiolactomycin [(4S)(2E,5E)-2,4,6-trimethyl-3-hydroxy-2,5,7-octatriene- 4-thiolide] (TLM) is a unique antibiotic structure that inhibits dissociated type II fatty acid synthase systems but not the multifunctional type I fatty acid synthases found in mammals. We screened an Escherichia coli genomic library for recombinant plasmids that impart TLM resistance to a TLM-sensitive strain of E. coli K-12. Nine independent plasmids were isolated, and all possessed a functional beta-ketoacyl-acyl carrier protein synthase I gene (fabB) based on their restriction enzyme maps and complementation of the temperature-sensitive growth of a fabB15(Ts) mutant. A plasmid (pJTB3) was constructed that contained only the fabB open reading frame. This plasmid conferred TLM resistance, complemented the fabB(Ts) mutation, and directed the overproduction of synthase I activity. TLM selectively inhibited unsaturated fatty acid synthesis in vivo; however, synthase I was not the only TLM target, since supplementation with oleate to circumvent the cellular requirement for an active synthase I did not confer TLM resistance. Overproduction of the FabB protein resulted in TLM-resistant fatty acid biosynthesis in vivo and in vitro. These data show that beta-ketoacyl-acyl carrier protein synthase I is a major target for TLM and that increased expression of this condensing enzyme is one mechanism for acquiring TLM resistance. However, extracts from a TLM-resistant mutant (strain CDM5) contained normal levels of TLM-sensitive synthase I activity, illustrating that there are other mechanisms of TLM resistance.  相似文献   

2.
Mutations in Plasmodium falciparum dihydropteroate synthase have been linked to resistance to the antimalarial drug, sulfadoxine, which competes with the dihydropteroate synthase substrate, p-aminobenzoate. In an effort to evaluate the role of these mutations in a simple model system, we have expressed six relevant alleles of the P. falciparum dihydropteroate synthase gene in Escherichia coli. When each construct was produced in a dihydropteroate synthase disrupted E. coli strain that required thymidine, the thymidine requirement was lost, indicating heterologous complementation had occurred. In the presence of sulfadoxine, the growth of the strain with the wild-type dihydropteroate synthase allele was inhibited while those containing each of the five mutant alleles grew, indicating that these mutations can confer sulfadoxine resistance in E. coli. When tested against twelve additional 'sulfa' drugs a variety of responses were obtained. All strains were resistant to sulfadiazine, but the wild-type allele conferred sensitivity to all other sulfa drugs. Three alleles conferred resistance to dapsone, a drug that is to be targetted for a new regime of malaria treatment in Africa. All mutant alleles remained sensitive to sulfachloropyridazine and sulfacetamide. These results suggest new drugs that could be tried for effective malaria treatment.  相似文献   

3.
A chromosomal gene of Streptococcus pneumoniae carrying a spontaneous mutation to sulfonamide resistance was identified. Comparison of its DNA sequence with the wild-type sequence showed that the mutation, sul-d, consisted of an insert of 6 base pairs, a repeat of an adjacent 6-base-pair segment. The gene encoded a 34-kilodalton polypeptide, SulA, which as a dimer or trimer constituted the enzyme dihydropteroate synthase. This was shown by enzyme activity measurements, expression in minicells of Bacillus subtilis, and the amino-terminal sequence of the polypeptide product. Subcloning of the gene in an Escherichia coli expression vector allowed purification of the enzyme to 80% homogeneity in a single step and at high yield. Although a deleted plasmid, pLS83, produced the mutant dihydropteroate synthase, it did not confer sulfonamide resistance in vivo. It is suggested that the SulA polypeptide is also a component of an enzyme that acts in another step of folate biosynthesis and that this step is inhibited in vivo by either free or conjugated sulfonamides.  相似文献   

4.
KMR plasmids controlling antibiotic resistance and the capacity for production of the colonization antigen were identified in wild strains of E. coli (026, 0126, 0124) and S. sonnei isolated from patients with acute intestinal diseases. The strains of E. coli 026 and E. coli 0126 carried p KMR207-1 plasmid determining resistance to chloramphenicol and tetracycline and the adhesive properties. The molecular weight of the plasmid is 98 mD. The strain of S. sonnei carried p KMR 208-1 plasmid responsible for resistance to streptomycin, chloramphenicol and tetracycline and the adhesive properties. The molecular weight of this plasmid is 98 mD. The resistance to streptomycin and tetracycline and the capacity for the synthesis of the colonization antigen in E. coli 0214 was controlled by p KMR209 plasmid with the molecular weight of 2.66 mD. The restriction analysis suggests that p KMR207a-1 and p KMR 207b-1 plasmids detected in E. coli of different serotypes were identical, since they could be broken with BamH1 endonuclease into equal numbers of fragments similar by their molecular weights. p KMR207-1 and p KMR208-1 plasmids differed in their sensitivity to BamH-1 endonuclease. However, they were broken into 6 fragments similar by their molecular weights. p KMR207-1 and p KMR208-1 plasmids are probably closely related but not identical.  相似文献   

5.
Penicillinase plasmids are present in most MRSA strains. They are very varying in their genotype and phenotype they confer. Penicillinase plasmids were transduced from 80 hospital MRSA strains to NCTC 8325 and the phenotype as well as the incompatibility group of plasmid were determined. Resistance to cadmium (high and low level), resistance to organic and nonorganic mercury compounds, arsenate/arsenite/antimonium resistance, resistance to bismuth and hypersensitivity to bismuth, resistance to macrolides as well as beta-lactamase production and its inductibility were checked. Among the examined strains 20 different phenotypes of penicillinase plasmids were found. Patterns of penicillinase plasmids were compared to DNA patterns of the investigated strains after digestion with SmaI and separation in pulsed field electrophoresis (PFGE). It was shown that strains with the same PFGE pattern often differ in the type of their penicillinase plasmid. Determining of penicillinase plasmid phenotype could be useful in differentiating S. aureus strains sharing the same pattern of PFGE.  相似文献   

6.
In an outbreak of hospital infection caused by Klebsiella aerogenes type K-16 isolates over a 3-month period carried, apparently unaltered, a cryptic 90-Megadalton (Md) plasmid (unclassified) and a multiple-resistance 65-Md plasmid of IncM. The IncM plasmid, identified in environmentally related strains of Citrobacter koseri and Escherichia coli, showed minor variations from that in the klebsiella vector. The IncM plasmids, as well as all wild host strains cured of the IncM plasmids, carried a transposable DNA sequence, encoding trimethoprim and, in every case but one, streptomycin resistance. This transposon appeared identical with Tn7, previously identified in unrelated plasmids in bacteria from different environments.  相似文献   

7.
《Plasmid》1986,15(2):119-131
A set of plasmids conferring resistance to several antibiotics, including the combination of trimethoprim and sulfamethoxazole, has been isolated from Escherichia coli following conjugative cotransfer from a clinical isolate of Shigella flexneri 2a. One of the plasmids, pCN1, was shown by subcloning and DNA sequencing to carry a gene encoding a trimethoprim-insensitive dihydrofolate reductase identical to that found in E. coli transposon 7. This plasmid was also shown to confer resistance to both streptomycin and spectinomycin by production of an adenylyltransferase that inactivated the drugs and the gene encoding this enzyme has also been sequenced. A second plasmid from the set, pCN2, was shown to inactivate streptomycin by a phosphotransferase mechanism and also to confer resistance to sulfonamides. The third plasmid from the set could not be correlated with a drug-resistance phenotype, but does appear to play a crucial role in plasmid mobilization.  相似文献   

8.
The 10-kb chromosomal fragment of Streptococcus pneumoniae cloned in pLS80 contains the sul-d allele of the pneumococcal gene for dihydropteroate synthase. As a single copy in the chromosome this allele confers resistance to sulfanilamide at 0.2 mg/ml; in the multicopy plasmid it confers resistance to 2.0 mg/ml. The sul-d mutation was mapped by restriction analysis to a 0.4-kb region. By the mechanism of chromosomal facilitation, in which the chromosome restores information to an entering plasmid fragment, a BamHI fragment missing the sul-d region of pLS80 established the full-sized plasmid, but with the sul-s allele of the recipient chromosome. A spontaneous deletion beginning approximately 1.5 kb to the right of the sul-d mutation prevented gene function, possibly by removing a promoter. This region could be restored by chromosomal facilitation and be demonstrated in the plasmid by selection for sulfonamide resistance. Under selection for a vector marker, tetracycline resistance, only the deleted plasmid was detectable, apparently as a result of plasmid segregation and the advantageous growth rates of cells with smaller plasmids. When such cells were selected for sulfonamide resistance, the deleted region returned to the plasmid, presumably by equilibration between the chromosome and the plasmid pool, to give a low frequency (approximately 10(-3) of cells resistant to sulfanilamide at 2.0 mg/ml. Models for the mechanisms of chromosomal facilitation and equilibration are proposed. Several derivatives of pLS80 could be transferred to Bacillus subtilis, where they conferred resistance to sulfanilamide at 2 mg/ml, thereby demonstrating cross-species expression of the pneumococcal gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Abstract The presence of plasmid encoded resistance to fostomycin among enterobacteriaceae isolated from sewage was studied. These plasmids found were classified into 7 varieties according to their original host, size, resistance determinants, restriction pattern and incompatibility group. All of them were related to the Inc M group, indicating a probable common origin from an ancestral replicon. The bacteria carrying these plasmids modified fosfomycin as did those carrying fosfomycin resistant (For) hospital plasmids. The plasmids showed positive hybridization with a 1-kb DNA fragment which carried a For-determinant from a hospital plasmid.  相似文献   

10.
Haneda T  Okada N  Miki T  Danbara H 《Plasmid》2004,52(3):218-224
The nucleotide sequence of a small plasmid, designated pRF-1, isolated from Salmonella enterica serovar Choleraesuis, was determined. We identified seven open reading frames (ORFs) encoded by 6066 nucleotides with a total G + C content of 53.6%. Analysis of the complete nucleotide sequence revealed a replicon of pRF-1 to have high similarity to the p15A origin of replication, with a possible cer-like region. ORF1, which is composed of 816 nucleotides, shows a high degree of similarity to dihydropteroate synthetase encoded by the sulII gene from plasmids in several enteropathogenic bacteria, which functions as the sulfonamide resistance determinant. In fact, Salmonella and Escherichia coli strains carrying pRF-1 were found to show strong resistance to sulfathiazole, suggesting that orf1 is a functional gene. Four of seven ORFs were found to encode putative proteins of unknown function.  相似文献   

11.
Incompatibility group A/C (IncA/C) plasmids have received recent attention for their broad host range and ability to confer resistance to multiple antimicrobial agents. Due to the potential spread of multidrug resistance (MDR) phenotypes from foodborne pathogens to human pathogens, the dissemination of these plasmids represents a public health risk. In this study, four animal-source IncA/C plasmids isolated from Escherichia coli were sequenced and analyzed, including isolates from commercial dairy cows, pigs and turkeys in the U.S. and Chile. These plasmids were initially selected because they either contained the floR and tetA genes encoding for florfenicol and tetracycline resistance, respectively, and/or the bla(CMY-2) gene encoding for extended spectrum β-lactamase resistance. Overall, sequence analysis revealed that each of the four plasmids retained a remarkably stable and conserved backbone sequence, with differences observed primarily within their accessory regions, which presumably have evolved via horizontal gene transfer events involving multiple modules. Comparison of these plasmids with other available IncA/C plasmid sequences further defined the core and accessory elements of these plasmids in E. coli and Salmonella. Our results suggest that the bla(CMY-2) plasmid lineage appears to have derived from an ancestral IncA/C plasmid type harboring floR-tetAR-strAB and Tn21-like accessory modules. Evidence is mounting that IncA/C plasmids are widespread among enteric bacteria of production animals and these emergent plasmids have flexibility in their acquisition of MDR-encoding modules, necessitating further study to understand the evolutionary mechanisms involved in their dissemination and stability in bacterial populations.  相似文献   

12.
Atypical psychrophilic Aeromonas salmonicida isolates were obtained from farmed and wild fish in Northeastern North America. These bacteria were isolated between 1992 and 2001 and carried tetracycline resistance (Tc(r)) plasmids of approximately 58 kb. The nine isolates had plasmids which could be divided into four groups based on the specific tetracycline resistance (tet) gene carried [tet(A) or tet(B)], incompatibility of the plasmid [IncU or other], whether the plasmid carried the IS6100 sequences, the sul1 gene, coding for sulfonamide resistance, the dfrA16 gene, coding for trimethoprim resistance, and/or carried a complete Tn1721, and their ability to transfer their Tc(r) plasmids to an Escherichia coli recipient at 15 degrees C. Five of the isolates, with genetically related Tc(r) plasmids, were able to transfer their plasmids to an E. coli recipient at frequencies ranging from 5.7x10(-4) to 2.8x10(-6) per recipient. The 1992 isolate carried a genetically distinct plasmid, which transferred at a slightly higher rate. The three remaining isolates carried one of two genetically different plasmids, which were unable to transfer to an E. coli recipient. Conjugal transfer at 15 degrees C is the lowest temperature that has been documented in bacteria.  相似文献   

13.
Abstract In Streptococcus cremoris SK11, different permutations of a total of 8 plasmids were observed within and between cultures of various origins. All showed similar growth rates in milk. Those variants which carried a 34-MDa plasmid, pSK112, were resistant to bacteriophage øSK11G, whereas those from which the plasmid was absent or had been cured were sensitive to this phage. Plasmid pSK112 was shown to confer resistance by reduced phage adsorption. These observations have important potential for the development of phage-resistant dairy cultures.  相似文献   

14.
Among spontaneous mutants of Escherichia coli selected for resistance against sulfonamides, thermosensitive strains were found. These were shown to possess a changed dihydropteroate synthase (EC 2.5.1.15), which had a substantially higher Km value for its normal substrate, p-aminobenzoic acid, and an about 150-fold higher Km for sulfonamides. The mutationally changed dihydropteroate synthase was found to be thermosensitive by in vitro assays. The thermosensitivity was used as an enzyme marker to demonstrate the complex formation between 2-amino-4-hydroxy-6-pyrophosphorylmethyl pteridine and sulfonamides by partially purified dihydropteroate synthase. The formation of folate from 2-amino-4-hydroxy-6-pyrophosphorylmethyl pteridine and p-aminobenzoylglutamic acid by dihydropteroate synthase was found to be very sensitive to inhibition by sulfonamides and very inefficient with the mutationally changed enzyme.  相似文献   

15.
The 46.4-kb nucleotide sequence of pSK41, a prototypical multiresistance plasmid from Staphylococcus aureus, has been determined, representing the first completely sequenced conjugative plasmid from a gram-positive organism. Analysis of the sequence has enabled the identification of the probable replication, maintenance, and transfer functions of the plasmid and has provided insights into the evolution of a clinically significant group of plasmids. The basis of deletions commonly associated with pSK41 family plasmids has been investigated, as has the observed insertion site specificity of Tn552-like β-lactamase transposons within them. Several of the resistance determinants carried by pSK41-like plasmids were found to be located on up to four smaller cointegrated plasmids. pSK41 and related plasmids appear to represent a consolidation of antimicrobial resistance functions, collected by a preexisting conjugative plasmid via transposon insertion and IS257-mediated cointegrative capture of other plasmids.  相似文献   

16.
DNA was extracted from 71 meat samples obtained from UK retail outlets. All of these DNA preparations gave the expected polymerase chain reaction products when amplified with primers specific for the species from which the meat originated. A second polymerase chain reaction analysis, using primers specific for the Toxoplasma gondii SAG2 locus, revealed the presence of this parasite in 27 of the meat samples. Restriction analysis and DNA sequencing showed that 21 of the contaminated meats contained parasites genotyped as type I at the SAG2 locus, whilst six of the samples contained parasites of both types I and II. Toxoplasma- positive samples were subjected to further polymerase chain reaction analysis to determine whether any carried an allele of the dihydropteroate synthase gene that has recently been shown to be causally associated with sulfonamide resistance in T. gondii. In all cases, this analysis confirmed that parasites were present in the samples and, additionally, revealed that none of them carried the drug-resistant form of dihydropteroate synthase. These results suggest that a significant proportion of meats commercially available in the UK are contaminated with T. gondii. Although none of the parasites detected in this study carried the sulfonamide-resistance mutation, a simplified procedure for monitoring this situation merits development.  相似文献   

17.
Twenty-two Streptococcus thermophilus strains used for milk fermentations were analyzed for their plasmid content and 13 of them (59%) were found to contain one or two plasmids. Fifteen S. thermophilus plasmids were divided into four groups using DNA homology. Ten plasmids were classified within group A and they shared homologies with all the previously sequenced S. thermophilus plasmids. Three plasmids (group B) hybridized with each other and two plasmids only hybridized with themselves (groups C and D). Single-stranded DNA was detected within strains containing plasmids of groups A, C, and D, indicating that they replicate via a rolling-circle mode. The only plasmid of group C, named pSMQ172, was further characterized. This 4230-bp plasmid replicates in Escherichia coli, Lactococcus lactis, and Streptococcus salivarius and does not confer phage resistance. Comparisons with databases showed that pSMQ172 was related to pMV158 of Streptococcus agalactiae and to pSSU1 of Streptococcus suis. These results suggest that genetic exchanges may have occurred between pathogenic and nonpathogenic streptococci.  相似文献   

18.
An Escherichia coli genomic library was constructed in order to facilitate selection for genes which confer bacitracin resistance through amplification. One of the plasmids from the library, plasmid pXV62, provided a high level of bacitracin resistance for E. coli. Deletion and nucleotide sequence analyses of bacitracin resistance plasmid pXV62 revealed that a single open reading frame, designated the bacA gene, was sufficient for antibiotic resistance. The bacA gene mapped to approximately 67 min on the E. coli chromosome by proximity to a previously mapped locus. The deduced amino acid sequence of the bacA-encoded protein suggests an extremely hydrophobic protein of 151 amino acids, approximately 65% of which were nonpolar amino acids. E. coli cells containing plasmid pXV62 have increased isoprenol kinase activity. The physical characteristics of the deduced protein and enhanced lipid kinase activity suggest that the bacA gene may confer resistance to bacitracin by phosphorylation of undecaprenol.  相似文献   

19.
The number, diversity and restriction enzyme fragmentation patterns of plasmids harboured by 44 multidrug-resistant hospital-acquired methicillin-resistant Staphylococcus aureus (MR-HA-MRSA) isolates, two multidrug-resistant community-acquired MRSA (MR-CA-MRSA), 50 hospital-acquired MRSA (HA-MRSA) isolates (from the University Hospital Birmingham, NHS Trust, UK) and 34 community-acquired MRSA (CA-MRSA) isolates (from general practitioners in Birmingham, UK) were compared. In addition, pulsed-field gel electrophoresis (PFGE) type following SmaI chromosomal digest and SCCmec element type assignment were ascertained for each isolate. All MR-HA-MRSA and MR-CA-MRSA isolates possessed the type II SCCmec, harboured no plasmid DNA and belonged to one of five PFGE types. Forty-three out of 50 HA-MRSA isolates and all 34 CA-MRSA isolates possessed the type IV SCCmec and all but 10 of the type IV HA-MRSA isolates and nine CA-MRSA isolates carried one or two plasmids. The 19 non-multidrug-resistant isolates (NMR) that did not harbour plasmids were only resistant to methicillin whereas all the NMR isolates harbouring at least one plasmid were resistant to at least one additional antibiotic. We conclude that although plasmid carriage plays an important role in antibiotic resistance, especially in NMR-HA-MRSA and CA-MRSA, the multidrug resistance phenotype from HA-MRSA is not associated with increased plasmid carriage and indeed is characterised by an absence of plasmid DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号