首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Germination is the irreversible loss of spore-specific properties prior to outgrowth. Because germinating spores become more susceptible to killing by stressors, induction of germination has been proposed as a spore control strategy. However, this strategy is limited by superdormant spores that remain unaffected by germinants. Harsh chemicals and heat activation are effective for stimulating germination of superdormant spores but are impractical for use in a hospital setting, where Clostridium difficile spores present a challenge. Here, we tested whether osmotic activation solutes will provide a mild alternative for stimulation of superdormant C. difficile spores in the presence of germinants as previously demonstrated in several species of Bacillus. In addition, we tested the hypothesis that the limitations of superdormancy can be circumvented with a combined approach using nisin, a FDA-approved safe bacteriocin, to inhibit outgrowth of germinated spores and osmotic activation solutes to enhance outgrowth inhibition by stimulating superdormant spores.

Principal Findings

Exposure to germination solution triggered ∼1 log10 colony forming units (CFU) of spores to germinate, and heat activation increased the spores that germinated to >2.5 log10CFU. Germinating spores, in contrast to dormant spores, became susceptible to inhibition by nisin. The presence of osmotic activation solutes did not stimulate germination of superdormant C. difficile spores exposed to germination solution. But, in the absence of germination solution, osmotic activation solutes enhanced nisin inhibition of superdormant spores to >3.5 log10CFU. The synergistic effects of osmotic activation solutes and nisin were associated with loss of membrane integrity.

Conclusions

These findings suggest that the synergistic effects of osmotic activation and nisin bypass the limitations of germination as a spore control strategy, and might be a novel method to safely and effectively reduce the burden of C.difficile spores on skin and environmental surfaces.  相似文献   

2.

Background

Bacillus anthracis is a pathogen that causes life-threatening disease--anthrax. B. anthracis spores are highly resistant to extreme temperatures and harsh chemicals. Inactivation of B. anthracis spores is important to ensure the environmental safety and public health. The 2001 bioterrorism attack involving anthrax spores has brought acute public attention and triggered extensive research on inactivation of B. anthracis spores. Single-walled carbon nanotubes (SWCNTs) as a class of emerging nanomaterial have been reported as a strong antimicrobial agent. In addition, continuous near infrared (NIR) radiation on SWCNTs induces excessive local heating which can enhance SWCNTs’ antimicrobial effect. In this study, we investigated the effects of SWCNTs coupled with NIR treatment on Bacillus anthracis spores.

Results and discussion

The results showed that the treatment of 10 μg/mL SWCNTs coupled with 20 min NIR significantly improved the antimicrobial effect by doubling the percentage of viable spore number reduction compared with SWCNTs alone treatment (88% vs. 42%). At the same time, SWCNTs-NIR treatment activated the germination of surviving spores and their dipicolinic acid (DPA) release during germination. The results suggested the dual effect of SWCNTs-NIR treatment on B. anthracis spores: enhanced the sporicidal effect and stimulated the germination of surviving spores. Molecular level examination showed that SWCNTs-NIR increased the expression levels (>2-fold) in 3 out of 6 germination related genes tested in this study, which was correlated to the activated germination and DPA release. SWCNTs-NIR treatment either induced or inhibited the expression of 3 regulatory genes detected in this study. When the NIR treatment time was 5 or 25 min, there were 3 out of 7 virulence related genes that showed significant decrease on expression levels (>2 fold decrease).

Conclusions

The results of this study demonstrated the dual effect of SWCNTs-NIR treatment on B. anthracis spores, which enhanced the sporicidal effect and stimulated the germination of surviving spores. SWCNTs-NIR treatment also altered the expression of germination, regulatory, and virulence-related genes in B. anthracis.
  相似文献   

3.
As previously reported, gerP Bacillus subtilis spores were defective in nutrient germination triggered via various germinant receptors (GRs), and the defect was eliminated by severe spore coat defects. The gerP spores'' GR-dependent germination had a longer lag time between addition of germinants and initiation of rapid release of spores'' dipicolinic acid (DPA), but times for release of >90% of DPA from individual spores were identical for wild-type and gerP spores. The gerP spores were also defective in GR-independent germination by DPA with its associated Ca2+ divalent cation (CaDPA) but germinated better than wild-type spores with the GR-independent germinant dodecylamine. The gerP spores exhibited no increased sensitivity to hypochlorite, suggesting that these spores have no significant coat defect. Overexpression of GRs in gerP spores did lead to faster germination via the overexpressed GR, but this was still slower than germination of comparable gerP+ spores. Unlike wild-type spores, for which maximal nutrient germinant concentrations were between 500 μM and 2 mM for l-alanine and ≤10 mM for l-valine, rates of gerP spore germination increased up to between 200 mM and 1 M l-alanine and 100 mM l-valine, and at 1 M l-alanine, the rates of germination of wild-type and gerP spores with or without all alanine racemases were almost identical. A high pressure of 150 MPa that triggers spore germination by activating GRs also triggered germination of wild-type and gerP spores identically. All these results support the suggestion that GerP proteins facilitate access of nutrient germinants to their cognate GRs in spores'' inner membrane.  相似文献   

4.

Aims and Background

The aim was to investigate the diversity and distribution of Glomeromycotan fungi forming arbuscular mycorrhizal associations (AMF) in undisturbed and disturbed habitats in the vicinity of Kakadu National Park in tropical Australia. This is a tropical region with a 7–9 month dry season and a monsoonal wet season. Complimentary methods of fungus detection were used to investigate the diversity and relative dominance of AMF at a regional scale.

Methods

Soils were sampled from 32 sites, representing eucalypt savanna woodlands, wetlands, sandstone escarpment, rainforest, and disturbed mine waste rock dumps (overburden or spoil). Populations of AMF were identified and quantified using spores from soil. Morphology patterns of fungi colonising bait plant roots were examined and isolates were obtained by four complimentary pot-culturing methods.

Results

Different methods of detecting fungi produced different answers about which AMF were most important in the tested soils. In particular, spore surveys apparently underestimated the importance of Glomus species and overestimated the activity of Acaulospora species with numerous small spores, while calculated spore biovolumes overestimated the importance of Scutellospora and Gigaspora species with large spores, relative to inoculum levels of these fungus categories measured in bioassays. Spore surveys revealed 15 species of fungi and 8 additional fungi were recovered from the same soil samples using pot-culture isolation methods. Pot-cultures were especially important for detecting Glomus species that had high inoculum levels, but rarely produced spores in soils. Spores of AMF increased in abundance as vegetation developed in mine habitats reaching a peak that was higher than in undisturbed plant communities. Spore numbers (but not biovolumes) were well correlated with bioassay measurements of inoculum levels.

Conclusions

Most AMF species were widespread, but several were restricted to disturbed habitats or wetland soils. Undisturbed sites had a substantially higher diversity of AMF than partially vegetated mine waste rock dumps. It is recommended that AMF population surveys should not be based entirely on spore occurrence data, to avoid overlooking important fungi that sporulate infrequently. These fungi could be detected by bioassays or pot culture isolation from soil. Major variations in the detectability of AMF correspond to different life history strategies and can mask variations in their abundance.  相似文献   

5.
Superdormant spores of Bacillus cereus and Bacillus subtilis germinated just as well as dormant spores with pressures of 150 or 500 MPa and with or without heat activation. Superdormant B. subtilis spores also germinated as well as dormant spores with peptidoglycan fragments or bryostatin, a Ser/Thr protein kinase activator.Spores of Bacillus species are formed in sporulation, a process that is generally triggered by starvation for one or more nutrients (13, 19). These spores are metabolically dormant and extremely resistant to a large variety of environmental stresses, including heat, radiation, and toxic chemicals, and as a consequence of these properties, these spores can remain viable in their dormant state for many years (13, 18, 19). However, spores are constantly sensing their environment, and if nutrients return, the spores can rapidly return to growth through the process of spore germination (17). Spore germination is generally triggered by specific nutrients that bind to nutrient germinant receptors, with this binding alone somehow triggering germination. However, spore germination can also be triggered by many non-nutrient agents, including cationic surfactants such as dodecylamine, a 1:1 complex of Ca2+ with pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA], a major spore small molecule), very high pressures, specific peptidoglycan fragments, and bryostatin, an activator of Ser/Thr protein kinases (17, 19, 20). For nutrient germinants in particular, spore germination is also potentiated by a prior sublethal heat treatment termed heat activation (17).While normally the great majority of spores in populations germinate relatively rapidly in response to nutrient germinants, a small percentage of spores germinate extremely slowly. These spores that are refractory to nutrient germination have been termed superdormant spores and are a major concern for the food industry (8). Recently superdormant spores of three Bacillus species have been isolated by repeated germination of spore populations with specific nutrient germinants and isolation of remaining dormant spores (5, 6). These superdormant spores germinate extremely poorly with the nutrient germinants used in superdormant spore isolation, as well as with other nutrient germinants. All of the specific defects leading to spore superdormancy are not known, although an increased level of receptors for specific nutrient germinants decreases levels of superdormant spores obtained with the nutrients that are ligands for these receptors (5). Superdormant spores also have significantly higher temperature optima for heat activation of nutrient germination than the spore population as a whole (7).In contrast to the poor germination of superdormant spores with nutrient germinants, superdormant spores germinate normally with dodecylamine and Ca-DPA (5, 6). This is consistent with possible roles of nutrient germinant receptor levels and/or heat activation temperature optima in affecting spore superdormancy, since neither dodecylamine nor Ca-DPA triggers Bacillus spore germination through nutrient germinant receptors, and germination with these agents is also not stimulated by heat activation (11, 15, 17). However, the effects of high pressures, peptidoglycan fragments, and bryostatin, all of which almost certainly trigger spore germination by mechanisms at least somewhat different than triggering of germination by nutrients, dodecylamine, and Ca-DPA (2, 3, 11, 15, 20, 22, 23), have not been tested for their effects on superdormant spores. Consequently, we have compared the germination of dormant and superdormant spores of two Bacillus species by high-pressures, peptidoglycan fragments, and bryostatin.The spores used in this work were from Bacillus subtilis PS533 (16), a derivative of strain 168 that also carries plasmid pUB110, providing resistance to kanamycin (10 μg/ml), and Bacillus cereus T (originally obtained from H. O. Halvorson). Spores of these strains were prepared and purified as described previously (6, 10, 12). Superdormant spores of B. subtilis were prepared by germination following heat activation at 75°C for 30 min by two germination treatments at 37°C with 10 mM l-valine for 2 h, followed by isolation of remaining dormant spores, all as described previously (5, 10, 12). These superdormant spores germinated extremely poorly with 10 mM valine at 37°C, giving ≤10% germination in 2 h at 37°C, while the initial spore population exhibited >95% germination under the same conditions (data not shown). Superdormant B. cereus spores were isolated similarly, although heat activation was at 65°C for 30 min and the germinant was 5 mM inosine as described previously (6). These superdormant B. cereus spores exhibited <5% germination with inosine in 2 h at 37°C compared to the >95% germination of the initial dormant spores under the same conditions (data not shown).  相似文献   

6.
The l-alanine mediated germination of food isolated Bacillus cereus DSA 1 spores, which lacked an intact exosporium, increased in the presence of d-cycloserine (DCS), which is an alanine racemase (Alr) inhibitor, reflecting the activity of the Alr enzyme, capable of converting l-alanine to the germination inhibitor d-alanine. Proteomic analysis of the alkaline extracts of the spore proteins, which include exosporium and coat proteins, confirmed that Alr was present in the B. cereus DSA 1 spores and matched to that encoded by B. cereus ATCC 14579, whose spore germination was strongly affected by the block of conversion of l- to d-alanine. Unlike ATCC 14579 spores, l-alanine germination of B. cereus DSA 1 spores was not affected by the preincubation with DCS, suggesting a lack of restriction in the reactant accessibility.  相似文献   

7.
In this study, we determined the effects of incubation temperature and prior heat treatment on the lag-phase kinetics of individual spores of nonproteolytic Clostridium botulinum Eklund 17B. The times to germination (tgerm), one mature cell (tC1), and two mature cells (tC2) were measured for individual unheated spores incubated at 8, 10, 15, or 22°C and used to calculate the tgerm, the outgrowth time (tC1tgerm), and the first doubling time (tC2tC1). Measurements were also made at 22°C of spores that had previously been heated at 80°C for 20 s. For unheated spores, outgrowth made a greater contribution to the duration and variability of the lag phase than germination. Decreasing incubation temperature affected germination less than outgrowth; thus, the proportion of lag associated with germination was less at lower incubation temperatures. Heat treatment at 80°C for 20 s increased the median germination time of surviving spores 16-fold and greatly increased the variability of spore germination times. The shape of the lag-time (tC1) and outgrowth (tC1tgerm) distributions were the same for unheated spores, but heat treatment altered the shape of the lag-time distribution, so it was no longer homogeneous with the outgrowth distribution. Although heat treatment mainly extended germination, there is also evidence of damage to systems required for outgrowth. However, this damage was quickly repaired and was not evident by the time the cells started to double. The results presented here combined with previous findings show that the stage of lag most affected, and the extent of any effect in terms of duration or variability, differs with both historical treatment and the growth conditions.Clostridium botulinum is a group of four physiologically and phylogenetically distinct anaerobic spore-forming bacteria (known as groups I, II, III, and IV) that produce the highly toxic botulinum neurotoxin (12). The severity of the intoxication, botulism, ensures considerable effort is directed at preventing the growth of this pathogen in food. Nonproteolytic (group II) C. botulinum is one of the two groups most frequently associated with food-borne botulism. It forms heat-resistant spores and can germinate, grow, and produce toxin at 3°C (8); thus, nonproteolytic C. botulinum is a particular concern in mild heat-treated chilled foods (16, 17).Spores formed by pathogens such as C. botulinum are a significant food safety issue since they are able to resist many of the processes, such as cooking, used to kill vegetative cells. Understanding the transformation from a dormant spore to active vegetative cells is an important part of quantifying the risk associated with such organisms. Considerable effort has been targeted at measuring and relating the kinetic responses of populations of C. botulinum to environmental conditions and such data have been used to create predictive models, for example, ComBase (www.combase.cc). Such approaches have made a considerable contribution to ensuring food safety but problems with using population based predictions may arise when an initial inoculum is very small or additional information beyond point values is required. Spores typically contaminate foods at low concentrations so that growth of C. botulinum, when it occurs, is likely to initiate from just a few spores. In these circumstances the distribution of times to growth in packs will reflect the heterogeneity of times to growth from the contaminating individual spores. There is an intrinsic variability between individual spores within a population, and the relationship between population lag and individual lag is complex. Consequently, individual lag times cannot be predicted from population measurements (3). Knowledge of the underlying distribution would allow greater refinement of risk assessments.The lag period between a spore being exposed to conditions suitable for growth and the start of exponential growth will reflect the combined times of germination, emergence, elongation, and first cell division. Currently, very little is known about the variability and duration of these stages and any relationships between them. Measuring the kinetics of spore germination is usually achieved by measuring a population to identify time to percent completion. Such germination curves represent the summation of responses by individual spores. Some authors have measured the biovariability associated with individual spores, but most studies have examined only germination (4-7, 11, 22) and not subsequent outgrowth. More recently, we have used phase-contrast microscopy and image analysis to follow individual spores of nonproteolytic C. botulinum from dormancy, through germination and emergence, to cell division (21, 23). These experiments showed there is very little, or no, relationship between the time spent in each stage by individual spores. We have now extended this work to determine distributions of times for different stages in lag phase as affected by heat treatment and incubation temperature.  相似文献   

8.
When exposed to nutrient or nonnutrient germinants, individual Bacillus spores can return to life through germination followed by outgrowth. Laser tweezers, Raman spectroscopy, and either differential interference contrast or phase-contrast microscopy were used to analyze the slow dipicolinic acid (DPA) leakage (normally ∼20% of spore DPA) from individual spores that takes place prior to the lag time, Tlag, when spores begin rapid release of remaining DPA. Major conclusions from this work with Bacillus subtilis spores were as follows: (i) slow DPA leakage from wild-type spores germinating with nutrients did not begin immediately after nutrient exposure but only at a later heterogeneous time T1; (ii) the period of slow DPA leakage (ΔTleakage = TlagT1) was heterogeneous among individual spores, although the amount of DPA released in this period was relatively constant; (iii) increases in germination temperature significantly decreased T1 times but increased values of ΔTleakage; (iv) upon germination with l-valine for 10 min followed by addition of d-alanine to block further germination, all germinated spores had T1 times of less than 10 min, suggesting that T1 is the time when spores become committed to germinate; (v) elevated levels of SpoVA proteins involved in DPA movement in spore germination decreased T1 and Tlag times but not the amount of DPA released in ΔTleakage; (vi) lack of the cortex-lytic enzyme CwlJ increased DPA leakage during germination due to longer ΔTleakage times in which more DPA was released; and (vii) there was slow DPA leakage early in germination of B. subtilis spores by the nonnutrients CaDPA and dodecylamine and in nutrient germination of Bacillus cereus and Bacillus megaterium spores. Overall, these findings have identified and characterized a new early event in Bacillus spore germination.  相似文献   

9.

Background

Infection processes consist of a sequence of steps, each critical for the interaction between host and parasite. Studies of host-parasite interactions rarely take into account the fact that different steps might be influenced by different factors and might, therefore, make different contributions to shaping coevolution. We designed a new method using the Daphnia magna - Pasteuria ramosa system, one of the rare examples where coevolution has been documented, in order to resolve the steps of the infection and analyse the factors that influence each of them.

Results

Using the transparent Daphnia hosts and fluorescently-labelled spores of the bacterium P. ramosa, we identified a sequence of infection steps: encounter between parasite and host; activation of parasite dormant spores; attachment of spores to the host; and parasite proliferation inside the host. The chances of encounter had been shown to depend on host genotype and environment. We tested the role of genetic and environmental factors in the newly described activation and attachment steps. Hosts of different genotypes, gender and species were all able to activate endospores of all parasite clones tested in different environments; suggesting that the activation cue is phylogenetically conserved. We next established that parasite attachment occurs onto the host oesophagus independently of host species, gender and environmental conditions. In contrast to spore activation, attachment depended strongly on the combination of host and parasite genotypes.

Conclusions

Our results show that different steps are influenced by different factors. Host-type-independent spore activation suggests that this step can be ruled out as a major factor in Daphnia - Pasteuria coevolution. On the other hand, we show that the attachment step is crucial for the pronounced genetic specificities of this system. We suggest that this one step can explain host population structure and could be a key force behind coevolutionary cycles. We discuss how different steps can explain different aspects of the coevolutionary dynamics of the system: the properties of the attachment step, explaining the rapid evolution of infectivity and the properties of later parasite proliferation explaining the evolution of virulence. Our study underlines the importance of resolving the infection process in order to better understand host-parasite interactions.  相似文献   

10.
Previous work indicated that Clostridium perfringens gerKA gerKC spores germinate significantly, suggesting that gerKB also has a role in C. perfringens spore germination. We now find that (i) gerKB was expressed only during sporulation, likely in the forespore; (ii) gerKB spores germinated like wild-type spores with nonnutrient germinants and with high concentrations of nutrients but more slowly with low nutrient concentrations; and (iii) gerKB spores had lower colony-forming efficiency and slower outgrowth than wild-type spores. These results suggest that GerKB plays an auxiliary role in spore germination under some conditions and is required for normal spore viability and outgrowth.Spores of Bacillus and Clostridium species can break dormancy upon sensing a variety of compounds (termed germinants), including amino acids, nutrient mixtures, a 1:1 chelate of Ca2+ and pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA]), and cationic surfactants such as dodecylamine (20). Nutrient germinants are sensed by their cognate receptors, located in the spore''s inner membrane (6), which are composed of proteins belonging to the GerA family (10, 11). In Bacillus subtilis, three tricistronic operons (gerA, gerB, and gerK) expressed uniquely during sporulation in the developing forespore each encode the three major germinant receptors, with different receptors responding to a different spectrum of nutrient germinants (5, 9, 20). Null mutations in any cistron in a gerA family operon inactivate the function of the respective receptor (9, 11). In contrast, Clostridium perfringens, a gram-positive, spore-forming, anaerobic pathogenic bacterium, has no tricistronic gerA-like operon but only a monocistronic gerAA that is far from a gerK locus. This locus contains a bicistronic gerKA-gerKC operon and a monocistronic gerKB upstream of and in the opposite orientation to gerKA-gerKC (Fig. (Fig.1A)1A) (16). GerAA has an auxiliary role in the germination of C. perfringens spores at low germinant concentrations, while GerKA and/or GerKC are required for l-asparagine germination and have partial roles in germination with KCl and a mixture of KCl and l-asparagine (AK) (16). In contrast to the situation with B. subtilis, where germinant receptors play no role in Ca-DPA germination (12, 13), GerKA and/or GerKC is required for Ca-DPA germination (16). The partial requirement for GerKA and/or GerKC in C. perfringens spore germination by KCl and AK suggests that the upstream gene product, GerKB, might also have some role in KCl and AK germination of C. perfringens spores. Therefore, in this study we have investigated the role of GerKB in the germination and outgrowth of C. perfringens spores.Open in a separate windowFIG. 1.Arrangement and expression of gerKB in C. perfringens SM101. (A) The arrangement of the gerK locus in C. perfringens SM101 is shown, and the locations of the primers used to amplify the upstream regions of the gerKB gene and the putative promoters of gerKB and gerKA are indicated. The gerKB promoter was predicted to be within the intergenic regions between gerKB and the gerK operon. (B) GUS specific activities from the gerKB-gusA fusion in strain SM101(pDP84) grown in TGY vegetative (filled squares) and DS sporulation (open squares) media were determined as described in the text. Data represent averages from three independent experiments with the error bars representing standard deviations, and time zero denotes the time of inoculation of cells into either TGY or DS medium.To determine if gerKB is expressed during sporulation, 485 bp upstream of the gerKB coding sequence, including DNA between gerKB and gerKA, was PCR amplified with primer pair CPP389/CPP391, which had SalI and PstI cleavage sites, respectively (see Table S2 in the supplemental material). The PCR fragment was cloned between SalI and PstI cleavage sites in plasmid pMRS127 (17) to create a gerKB-gusA fusion in plasmid pDP84 (see Table S1 in the supplemental material). This plasmid was introduced into C. perfringens SM101 by electroporation (3), and Emr transformants were selected. The SM101 transformant carrying plasmid pDP84 was grown in TGY vegetative growth medium (3% Trypticase soy, 2% glucose, 1% yeast extract, 0.1% l-cysteine) (7) and in Duncan-Strong (DS) (4) sporulation medium and assayed for β-glucuronidase (GUS) activity as described previously (23). Vegetative cultures of strain SM101 carrying plasmid pMRS127 (empty vector) or pDP84 (gerKB-gusA) exhibited no significant GUS activity, and strain SM101 grown in DS medium also exhibited no significant GUS activity (Fig. (Fig.1B1B and data not shown). However, GUS activity was observed in sporulating cultures of SM101(pDP84) (Fig. (Fig.1B),1B), indicating that a sporulation-specific promoter is located upstream of gerKB. The expression of the gerKB-gusA fusion began ∼3 h after induction of sporulation and reached a maximum after ∼6 h of sporulation (Fig. (Fig.1B).1B). The decrease in GUS activity observed after ∼6 h is consistent with the GerKB-GusA protein being packaged into the dormant spore where it cannot be easily assayed and thus with gerKB being expressed in the forespore compartment of the sporulating cell (8). These results confirm that, as with the gerKA-gerKC operon (16), gerKB is also expressed only during sporulation.To investigate the role of GerKB in C. perfringens spore germination, we constructed a gerKB mutant strain (DPS108) as described previously (14-16). A 2,203-bp DNA fragment carrying 2,080 bp upstream of and 123 bp from the N-terminal coding region of gerKB was PCR amplified using primers CPP369 and CPP367, which had XhoI and BamHI cleavage sites at the 5′ ends of the forward and reverse primers, respectively (see Table S2 in the supplemental material). A 1,329-bp fragment carrying 134 bp from the C-terminal and 1,195 bp downstream of the coding region of gerKB was PCR amplified using primers CPP371 and CPP370, which had BamHI and KpnI cleavage sites at the 5′ ends of the forward and reverse primers, respectively (see Table S2 in the supplemental material). These PCR fragments were cloned into plasmid pCR-XL-TOPO, giving plasmids pDP67 and pDP69, respectively (see Table S1 in the supplemental material). An ∼2.2-kb BamHI-XhoI fragment from pDP67 was cloned into pDP1 (pCR-XL-TOPO carrying an internal fragment of gerAA), giving plasmid pDP68, and an ∼1.4-kb KpnI-BamHI fragment from pDP69 was cloned in pDP68, giving pDP73 (see Table S1 in the supplemental material). The latter plasmid was digested with BamHI, the ends were filled, and an ∼1.3-kb NaeI-SmaI fragment carrying catP from pJIR418 (1) was inserted, giving plasmid pDP74. Finally, an ∼4.8-kb KpnI-XhoI fragment from pDP74 (see Table S1 in the supplemental material) was cloned between the KpnI and SalI sites of pMRS104, giving pDP75, which cannot replicate in C. perfringens. Plasmid pDP75 was introduced into C. perfringens SM101 by electroporation (3), and the gerKB deletion strain DPS108 was isolated as described previously (18). The presence of the gerKB deletion in strain DPS108 was confirmed by PCR and Southern blot analyses (data not shown). Strain DPS108 gave ∼70% sporulating cells in DS sporulation medium, similar to results with the wild-type strain, SM101 (data not shown).Having obtained evidence for successful construction of the gerKB mutant, we compared the germinations of heat-activated (80°C; 10 min) gerKB and wild-type spores as previously described (16). Both the gerKB and wild-type spores germinated identically and nearly completely in 60 min at 40°C in brain heart infusion (BHI) broth as determined by the fall in optical density at 600 nm (OD600) of germinating cultures and phase-contrast microscopy (data not shown). This result suggests that GerKB plays no essential role in spore germination in rich medium. The role of GerKB in C. perfringens spore germination was also assessed with individual germinants identified previously (16). Heat-activated wild-type and gerKB spores germinated similarly with high (100 mM) concentrations of KCl, l-asparagine, and AK, all in 25 mM sodium phosphate (pH 7.0), and in 50 mM Ca-DPA adjusted to pH 8.0 with Tris base (Fig. 2A to D). These results were also confirmed by phase-contrast microscopy (data not shown). However, with lower (10 to 20 mM) concentrations of KCl, l-asparagine, and AK, gerKB spore germination was very slightly (Fig. (Fig.2A)2A) to significantly (Fig. 2B and C) slower than that of wild-type spores. These results suggest that while GerKB is not essential for germination with high concentrations of KCl, l-asparagine, or AK, it plays a significant role in germination with low l-asparagine and AK concentrations and, further, that GerKB is not required for Ca-DPA germination. This latter finding is similar to the situation with B. subtilis spores where germinant receptors play no role in Ca-DPA germination (19, 20). However, in C. perfringens spores, GerKA and/or GerKC do play a significant role in Ca-DPA germination (16).Open in a separate windowFIG. 2.Germination of spores of C. perfringens strains with various germinants. Heat-activated spores of strains SM101 (wild type) (filled symbols) and DPS108 (gerKB) (open symbols) were incubated at an OD600 of 1 at 40°C with high (squares) and low (triangles) germinant concentrations of 100 and 10 mM KCl (A), 100 and 20 mM l-asparagine (B), 100 and 10 mM AK (C), and 50 mM Ca-DPA (D) as described in the text, and at various times the OD600 was measured. No significant germination was observed when heat-activated spores of SM101 and DPS108 were incubated for 60 min at 40°C in 25 mM sodium phosphate buffer (pH 7.0) (data not shown). The data shown are averages from duplicate determinations with two different spore preparations, and error bars represent standard deviations.Bacterial spores can also germinate with dodecylamine, a cationic surfactant (19). In B. subtilis spores, dodecylamine induces germination most likely by opening channels composed, at least in part, of SpoVA proteins (22), allowing release of the spores'' Ca-DPA (19). Spores of B. subtilis lacking all three functional germinant receptors release DPA, as do wild-type spores, upon incubation with dodecylamine (19), while C. perfringens spores lacking GerKA-GerKC incubated with dodecylamine release DPA slower than wild-type spores (16). However, when C. perfringens gerKB spores at an OD600 of 1.5 were incubated with 1 mM dodecylamine in Tris-HCl (pH 7.4) at 60°C (2, 16), gerKB spores released their DPA slightly faster than wild-type spores (Fig. (Fig.3)3) when DPA release was measured as described previously (16). These results suggest that GerKB has no role in dodecylamine germination.Open in a separate windowFIG. 3.Germination of spores of C. perfringens strains with dodecylamine. Spores of strains SM101 (wild type) (filled squares) and DPS108 (gerKB) (open squares) were germinated with dodecylamine, and germination was monitored by measuring DPA release as described in the text. There was no significant DPA release in 60 min by spores incubated similarly but without dodecylamine (data not shown). Error bars represent standard deviations.Previous work (16) found that C. perfringens spores lacking GerKA-GerKC had lower viability than wild-type spores on rich medium plates, and it was thus of interest to determine gerKB spore viability, which was measured as previously described (14, 16). Strikingly, the colony-forming ability of gerKB spores was ∼7-fold lower (P < 0.01) than that of wild-type spores after 24 h on BHI plates (Table (Table1),1), and no additional colonies appeared when plates were incubated for up to 3 days (data not shown). The colony-forming ability of spores lacking GerKA and GerKC determined in parallel was ∼12-fold lower than that of wild-type spores (Table (Table1).1). Phase-contrast microscopy of C. perfringens spores incubated in BHI broth for 24 h under aerobic conditions to prevent vegetative cell growth indicated that >90% of wild-type spores not only had germinated but had also released the nascent vegetative cell, while >85% of gerKA gerKC and gerKB spores remained as only phase-dark germinated spores with no evidence of nascent cell release (data not shown), as found previously with gerKA gerKC spores (16). The fact that >85% of gerKB spores germinated in BHI medium in 24 h but most of these germinated spores did not progress further in development strongly suggests that GerKB is needed for normal spore outgrowth (and see below) as well as for normal spore germination.

TABLE 1.

Colony formation by spores of C. perfringens strainsa
Strain (genotype)Spore titer (CFU/ml/OD600)b
BHIBHI + Ca-DPAcBHI + Lyzd
SM101 (wild type)3.1 × 1073.3 × 1073.9 × 107
DPS101 (gerKA gerKC)2.6 × 1063.5 × 1062.0 × 106
DPS108 (gerKB)4.4 × 1064.2 × 1068.6 × 106
Open in a separate windowaHeat-activated spores of various strains were plated on BHI agar, and colonies were counted after anaerobic incubation at 37°C for 24 h.bTiters are the average number of CFU/ml/OD600 determined in three experiments, and the variance was less than 15%.cHeat-activated spores were preincubated with Ca-DPA as described in the text and plated on BHI plates.dSpores were decoated, heat activated, and plated on BHI agar containing lysozyme (Lyz), and colonies were counted after anaerobic incubation at 37°C for 24 h.To evaluate whether preincubation with Ca-DPA could rescue apparently inviable gerKB spores via activation of GerKA and/or GerKC (16), C. perfringens spores of the wild-type and various gerK strains were heat activated, cooled, and incubated in 50 mM Ca-DPA (made to pH 8.0 with Tris base) for 20 min at 40°C, plated on BHI medium agar plates with or without lysozyme, and counted after anaerobic incubation at 37°C for 24 h. The preincubation of mutant spores with Ca-DPA gave no significant increase in colony-forming efficiency (Table (Table1).1). To test whether spores with a lesion in either gerKB or the gerKA-gerKC operon could be recovered by digestion of the spore''s peptidoglycan cortex, spores of various strains were decoated in 1 ml of 0.1 M sodium borate (pH 10)-2% 2-mercaptoethanol for 60 min at 37°C, washed at least nine times with sterile distilled water (14), and plated on BHI plates containing lysozyme (1 μg/ml). While the viability of gerKA gerKC spores remained ∼12-fold lower than that of wild-type spores, gerKB spores'' viability increased slightly but was still ∼5-fold lower than that of wild-type spores (Table (Table11).The results given above suggest that GerKB is essential not only for normal spore germination but also for normal spore viability and outgrowth. To further examine if GerKB is involved in spore outgrowth, heat-activated spores of DPS108 (gerKB) and SM101 (wild-type) strains were inoculated into 10 ml TGY broth to a final OD600 of 0.110 and 0.015 (one-seventh that of the gerKB spores), respectively, and incubated anaerobically at 37°C, and at various times the OD600 was measured. Although the initial wild-type spores were diluted to one-seventh the OD600 of gerKB spores to correct for the gerKB spores'' lower viability, the wild-type spores'' outgrowth was much faster than that of the gerKB spores (Fig. (Fig.4),4), suggesting that GerKB is essential not only for normal spore germination and viability but also for normal spore outgrowth, since the growth rates of wild-type and gerKB cells are identical (data not shown). The difference in rates of outgrowth of wild-type and gerKB spores was even greater when the initial spores were at the same starting OD600 (data not shown).Open in a separate windowFIG. 4.Outgrowth of spores of C. perfringens strains. Heat-activated spores of strains DPS108 (gerKB) (filled squares) and SM101 (wild type) (open squares) were incubated anaerobically in TGY broth at an initial OD600 of 0.110 and 0.015, respectively, and the OD600 of the cultures was measured. Error bars represent standard deviations.The lack of effect of lysozyme on the viability of decoated gerKB (or gerKA gerKC) spores indicates that the defect in these spores is not the inability to degrade cortex peptidoglycan, since exogenous lysozyme restores viability to decoated C. perfringens spores that lack the essential cortex-lytic enzyme SleC (15). Indeed, gerKB spores degraded cortex peptidoglycan normally during spore germination with KCl (data not shown). The loss of GerKB (and perhaps GerKA and/or GerKC [16]) also slowed spore outgrowth noticeably. Some of this effect may be due to the low viability of the mutant spores, as the viability defect in these spores could manifest itself in spore outgrowth (and see below). However, when differences in spore viability were corrected for, gerKB spores still went through spore outgrowth more slowly than wild-type spores. The latter two findings are again different than the situation with B. subtilis spores, as while B. subtilis spores lacking known germinant receptors show low apparent viability on nutrient plates, the viability of these spores can be restored to almost that of wild-type spores by preincubation with Ca-DPA (12, 13).The more novel conclusions from this work concern the role of GerKB in spore germination. GerKB is the only evident C. perfringens homolog of B proteins encoded by gerA operon homologs, and in B. subtilis, loss of the B protein from a GerA-type receptor eliminates the function of that receptor (20). One would therefore predict, based on the B. subtilis model, that loss of GerKB would largely eliminate C. perfringens spore germination. However, this was certainly not the case. There appear to be a number of possible explanations for the marked difference in the germination behaviors of spores of these two genera. First, the various GerA family proteins in C. perfringens spores may be able to function independently of each other, as opposed to the situation with B. subtilis spores. Second, it is possible that there are additional gerA family genes in the C. perfringens genome that encode proteins sufficiently different in sequence such that they are not detected by sequence alignment programs. However, use of the C. perfringens gerA family genes as query sequences also does not detect additional gerA family members (data not shown). Third, perhaps there is a radically different mechanism than activation of germinant receptors for triggering germination of C. perfringens spores. There is of course no evidence for this. However, recent work has identified a novel mechanism for triggering germination of spores of Bacillus species that does not involve the germinant receptors (21), and perhaps C. perfringens has a novel germination mechanism as well. At present we cannot decide definitively between these possible explanations. However, deletion of all known gerA family genes from C. perfringens and examination of the germination of these multiply deficient spores would certainly help in deciding between these possibilities.  相似文献   

11.
Clostridium perfringens type A isolates carrying a chromosomal copy of the enterotoxin (cpe) gene are involved in the majority of food poisoning (FP) outbreaks, while type A isolates carrying a plasmid-borne cpe gene are involved in C. perfringens-associated non-food-borne (NFB) gastrointestinal diseases. To cause diseases, C. perfringens spores must germinate and return to active growth. Previously, we showed that only spores of FP isolates were able to germinate with K+ ions. We now found that the spores of the majority of FP isolates, but none of the NFB isolates, germinated with the cogerminants Na+ and inorganic phosphate (NaPi) at a pH of ∼6.0. Spores of gerKA-KC and gerAA mutants germinated to a lesser extent and released less dipicolinic acid (DPA) than did wild-type spores with NaPi. Although gerKB spores germinated to a similar extent as wild-type spores with NaPi, their rate of germination was lower. Similarly, gerO and gerO gerQ mutant spores germinated slower and released less DPA than did wild-type spores with NaPi. In contrast, gerQ spores germinated to a slightly lesser extent than wild-type spores but released all of their DPA during NaPi germination. In sum, this study identified NaPi as a novel nutrient germinant for spores of most FP isolates and provided evidence that proteins encoded by the gerKA-KC operon, gerAA, and gerO are required for NaPi-induced spore germination.Clostridium perfringens is a gram-positive, anaerobic, spore-forming, pathogenic bacterium that causes a wide array of gastrointestinal (GI) diseases in both animals and humans (14, 15). However, Clostridium perfringens type A food poisoning (FP) is the most common C. perfringens-associated illness among humans and is currently ranked as the third most commonly reported food-borne disease (14). Mostly type A isolates that produce the C. perfringens enterotoxin have been associated with C. perfringens-related GI illnesses (14). C. perfringens cpe-positive isolates can carry the cpe gene on either the chromosome or a plasmid (3, 4). Interestingly, the majority of C. perfringens type A FP isolates carry a chromosomal copy of the cpe gene, while all non-food-borne (NFB) GI disease isolates carry a plasmid copy of cpe (3, 4, 11, 29). The genetic differences involved in the pathogenesis differences between C. perfringens FP and NFB isolates seem to involve more factors than the simple location of the cpe gene. For example, spores of FP isolates are strikingly more resistant than spores of NFB isolates to heat (100°C) (27), cold (4°C), and freezing (−20°C) temperatures (12) and to chemicals used in food industry settings (13), making FP spores more suited for FP environments. Under favorable environmental conditions, these dormant spores germinate to return to active growth, proliferate to high numbers, and then produce toxins to cause disease (14).Bacterial spores germinate when they sense the presence of nutrients (termed germinants) in the environment through their cognate receptors located in the spore inner membrane (18). For C. perfringens, some nutrients that initiate germination include l-asparagine, KCl, a mixture of l-asparagine and KCl, and a 1:1 chelate of Ca2+ and dipicolinic acid (DPA) (Ca-DPA) (20). The main receptor(s) involved in sensing these compounds is the GerKA and/or GerKC receptor(s), which is required for l-asparagine and Ca-DPA and only partially required for KCl and an l-asparagine-KCl mixture (20, 21). Upon binding of the germinant to its cognate receptor, a variety of biophysical events take place, including the release of monovalent ions (i.e., Na+, K+, and Li+) followed by the release of the spore''s large depot of Ca-DPA (28). In Bacillus subtilis, release of Ca-DPA acts as a signal for activation of the cortex-lytic enzyme CwlJ (17). In contrast, Ca-DPA release from the spore core has no role in triggering cortex hydrolysis during C. perfringens spore germination (19, 22, 23); instead, Ca-DPA induces germination via the GerKA and/or GerKC receptor(s) (20, 21). Degradation of the cortex in both species leads to hydration of the spore core up to levels found in growing bacteria, allowing resumption of enzymatic activity and metabolism, and consequently outgrowth (22, 28).The ability of bacterial spores to sense different nutrients appears to be tightly regulated by their adaptation to different environmental niches. For example, spores of FP isolates, but not NFB isolates, are capable of germinating with KCl (20), an intrinsic mineral of meats that are most commonly associated with FP, suggesting an adaptation of FP isolates to FP environments. In addition, the level of inorganic phosphate (Pi) is also significant in meat products (42 to 60 mM) (USDA [http://fnic.nal.usda.gov/nal_display/index.php?info_center=4&tax_level=1&tax_subject=242]). Similarly, sodium ions are also present in meats (∼30 mM), especially in processed meat products (∼300 to 400 mM) (USDA). Consequently, in this study we found that Na+ and Pi at ∼100 mM and pH 6.0 are unique cogerminants for spores of C. perfringens type A FP isolates, act through the GerKA and/or GerKC and GerAA receptors, and also require the presence of the putative Na+/K+-H+ antiporter, GerO, for normal germination.  相似文献   

12.
Spores of Bacillus subtilis lacking all germinant receptors germinate >500-fold slower than wild-type spores in nutrients and were not induced to germinate by a pressure of 100 MPa. However, a pressure of 550 MPa induced germination of spores lacking all germinant receptors as well as of receptorless spores lacking either of the two lytic enzymes essential for cortex hydrolysis during germination. Complete germination of spores either lacking both cortex-lytic enzymes or with a cortex not attacked by these enzymes was not induced by a pressure of 550 MPa, but treatment of these mutant spores with this pressure caused the release of dipicolinic acid. These data suggest the following conclusions: (i) a pressure of 100 MPa induces spore germination by activating the germinant receptors; and (ii) a pressure of 550 MPa opens channels for release of dipicolinic acid from the spore core, which leads to the later steps in spore germination.  相似文献   

13.
Pilobolus longipes spores were activated by either glucose or 6-deoxyglucose. Glucose-induced spore activation was previously shown to follow an increase in intracellular cyclic AMP. Concurrent with glucose-induced spore activation, were shifts in 6-deoxyglucose transport kinetics towards higher V max and K m values. Cyclic AMP derivatives also caused spore activation and similar changes in the kinetic parameters of 6-deoxyglucose transport. The time course of activation was paralleled by changes in transport activity. Inhibition of phosphodiesterase alone did not cause activation or induce changes in transport activity, but in combination with sub-optimal levels of either 6-deoxyglucose or cAMP derivatives, it amplified the germination signals to produce large increases in both spore activation and 6-deoxyglucose transport activity. These results support the conclusion that glucose transport in germinating spores is regulated by cAMP.Abbreviations IBMX 3-isobutyl-1-methylxanthine; monobutyryl cyclic AMP - N6 monobutyryladenosine 3:5-cyclic monophosphate - 8-bromo cyclic AMP 8-bromoadenosine 3:5-cyclic monophosphate  相似文献   

14.

Background

Stereotypic behaviours, i.e. repetitive behaviours induced by frustration, repeated attempts to cope and/or brain dysfunction, are intriguing as they occur in a variety of domestic and captive species without any clear adaptive function. Among the different hypotheses, the coping hypothesis predicts that stereotypic behaviours provide a way for animals in unfavourable environmental conditions to adjust. As such, they are expected to have a lower physiological stress level (glucocorticoids) than non-stereotypic animals. Attempts to link stereotypic behaviours with glucocorticoids however have yielded contradictory results. Here we investigated correlates of oral and motor stereotypic behaviours and glucocorticoid levels in two large samples of domestic horses (N Study1 = 55, N Study2 = 58), kept in sub-optimal conditions (e.g. confinement, social isolation), and already known to experience poor welfare states. Each horse was observed in its box using focal sampling (study 1) and instantaneous scan sampling (study 2). Plasma samples (collected in study 1) but also non-invasive faecal samples (collected in both studies) were retrieved in order to assess cortisol levels.

Results

Results showed that 1) plasma cortisol and faecal cortisol metabolites concentrations did not differ between horses displaying stereotypic behaviours and non-stereotypic horses and 2) both oral and motor stereotypic behaviour levels did not predict plasma cortisol or faecal cortisol metabolites concentrations.

Conclusions

Cortisol measures, collected in two large samples of horses using both plasma sampling as well as faecal sampling (the latter method minimizing bias due to a non-invasive sampling procedure), therefore do not indicate that stereotypic horses cope better, at least in terms of adrenocortical activity.  相似文献   

15.
Berberine, an alkaloid originally extracted from the plant Coptis chinensis and other herb plants, has been used as a pharmacological substance for many years. The therapeutic effect of berberine has been attributed to its interaction with nucleic acids and blocking cell division. However, levels of berberine entering individual microbial cells minimal for growth inhibition and its effects on bacterial spores have not been determined. In this work the kinetics and levels of berberine accumulation by individual dormant and germinated spores were measured by laser tweezers Raman spectroscopy and differential interference and fluorescence microscopy, and effects of berberine on spore germination and outgrowth and spore and growing cell viability were determined. The major conclusions from this work are that: (1) colony formation from B. subtilis spores was blocked ~ 99% by 25 μg/mL berberine plus 20 μg/mL INF55 (a multidrug resistance pump inhibitor); (2) 200 μg/mL berberine had no effect on B. subtilis spore germination with L-valine, but spore outgrowth was completely blocked; (3) berberine levels accumulated in single spores germinating with ≥ 25 μg/mL berberine were > 10 mg/mL; (4) fluorescence microscopy showed that germinated spores accumulated high-levels of berberine primarily in the spore core, while dormant spores accumulated very low berberine levels primarily in spore coats; and (5) during germination, uptake of berberine began at the time of commitment (T1) and reached a maximum after the completion of CaDPA release (Trelease) and spore cortex lysis (Tlysis).  相似文献   

16.

Background

The first step of the bacterial lifecycle is the germination of bacterial spores into their vegetative form, which requires the presence of specific nutrients. In contrast to closely related Bacillus anthracis spores, Bacillus cereus spores germinate in the presence of a single germinant, inosine, yet with a significant lag period.

Methods and Findings

We found that the initial lag period of inosine-treated germination of B. cereus spores disappeared in the presence of supernatants derived from already germinated spores. The lag period also dissipated when inosine was supplemented with the co-germinator alanine. In fact, HPLC-based analysis revealed the presence of amino acids in the supernatant of germinated B. cereus spores. The released amino acids included alanine in concentrations sufficient to promote rapid germination of inosine-treated spores. The alanine racemase inhibitor D-cycloserine enhanced germination of B. cereus spores, presumably by increasing the L-alanine concentration in the supernatant. Moreover, we found that B. cereus spores lacking the germination receptors gerI and gerQ did not germinate and release amino acids in the presence of inosine. These mutant spores, however, germinated efficiently when inosine was supplemented with alanine. Finally, removal of released amino acids in a washout experiment abrogated inosine-mediated germination of B. cereus spores.

Conclusions

We found that the single germinant inosine is able to trigger a two-tier mechanism for inosine-mediated germination of B. cereus spores: Inosine mediates the release of alanine, an essential step to complete the germination process. Therefore, B. cereus spores appear to have developed a unique quorum-sensing feedback mechanism to monitor spore density and to coordinate germination.  相似文献   

17.

Background

Clostridium difficile is an anaerobic, spore-forming bacterium that is the most common cause of healthcare-associated diarrhea in developed countries. Control of C. difficile is challenging because the spores are resistant to killing by alcohol-based hand hygiene products, antimicrobial soaps, and most disinfectants. Although initiation of germination has been shown to increase susceptibility of spores of other bacterial species to radiation and heat, it was not known if triggering of germination could be a useful strategy to increase susceptibility of C. difficile spores to radiation or other stressors.

Principal Findings

Here, we demonstrated that exposure of dormant C. difficile spores to a germination solution containing amino acids, minerals, and taurocholic acid resulted in initiation of germination in room air. Germination of spores in room air resulted in significantly enhanced killing by ultraviolet-C (UV-C) radiation and heat. On surfaces in hospital rooms, application of germination solution resulted in enhanced eradication of spores by UV-C administered by an automated room decontamination device. Initiation of germination under anaerobic, but not aerobic, conditions resulted in increased susceptibility to killing by ethanol, suggesting that exposure to oxygen might prevent spores from progressing fully to outgrowth. Stimulation of germination also resulted in reduced survival of spores on surfaces in room air, possibly due to increased susceptibility to stressors such as oxygen and desiccation.

Conclusions

Taken together, these data demonstrate that stimulation of germination could represent a novel method to enhance killing of spores by UV-C, and suggest the possible application of this strategy as a means to enhance killing by other agents.  相似文献   

18.
Germination of Bacillus anthracis spores occurs when nutrients such as amino acids or purine nucleosides stimulate specific germinant receptors located in the spore inner membrane. The gerPABCDEF operon has been suggested to play a role in facilitating the interaction between germinants and their receptors in spores of Bacillus subtilis and Bacillus cereus. B. anthracis mutants containing deletions in each of the six genes belonging to the orthologue of the gerPABCDEF operon, or deletion of the entire operon, were tested for their ability to germinate. Deletion of the entire gerP operon resulted in a significant delay in germination in response to nutrient germinants. These spores eventually germinated to levels equivalent to wild-type, suggesting that an additional entry point for nutrient germinants may exist. Deletions of each individual gene resulted in a similar phenotype, with the exception of ΔgerPF, which showed no obvious defect. The removal of two additional gerPF-like orthologues was necessary to achieve the germination defect observed for the other mutants. Upon physical removal of the spore coat, the mutant lacking the full gerP operon no longer exhibited a germination defect, suggesting that the GerP proteins play a role in spore coat permeability. Additionally, each of the gerP mutants exhibited a severe defect in calcium-dipicolinic acid (Ca-DPA)–dependent germination, suggesting a role for the GerP proteins in this process. Collectively, these data implicate all GerP proteins in the early stages of spore germination.  相似文献   

19.
20.

Aims

The aim of this study was investigation of the response of R. leguminosarum bv. trifolii wild-type and its two rosR and pssA mutant strains impaired in exopolysaccharide (EPS) synthesis to oxidative stress conditions caused by two prooxidants: a superoxide anion generator- menadione (MQ) and hydrogen peroxide (H2O2).

Methods

The levels of enzymatic (catalase, superoxide dismutase, pectinase and β-glucosidase) and non-enzymatic (superoxide anion generator, formaldehyde, phenolic compounds) biomarkers were monitored using biochemical methods in both the supernatants and rhizobial cells after treatment with 0.3?mM MQ and 1.5?mM H2O2. The viability of bacterial cells was estimated using fluorescent dyes and confocal laser scanning microscopy. In addition, the effect of prooxidants on symbiosis of the R. leguminosarum bv. trifolii strains with clover was established.

Results

The tested stress factors significantly changed enzymatic patterns of the rhizobial strains, and the wild-type strain proved to be more resistant to these prooxidants than both pssA and rosR mutants. Significantly higher activities of both catalase and superoxide dismutase have been detected in these mutants in comparison to the wild-type strain. H2O2 and MQ also increased the levels of pectinase and β-glucosidase activities in the tested strains. Moreover, pre-incubation of R. leguminosarum bv. trifolii strains with the prooxidants negatively affected the viability of bacterial cells and the number of nodules elicited on clover plants.

Conclusions

EPS produced in large amounts by R. leguminosarum bv. trifolii plays a significant protective role as a barrier against oxidative stress factors and during symbiotic interactions with clover plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号