共查询到20条相似文献,搜索用时 0 毫秒
1.
Blood and muscle pH after maximal exercise in man 总被引:13,自引:0,他引:13
2.
C Goodman G G Rogers H Vermaak M R Goodman 《European journal of applied physiology and occupational physiology》1985,54(4):436-441
We set out to demonstrate whether changes in plasma volume, haematocrit and some important blood constituents occurred after swimming 100 m and 800 m, as well as monitoring the duration of these changes. We measured exercise-induced changes in concentration of plasma constituents in eight subjects, and determined the expected effects of haemoconcentration on these constituents. We also investigated the different biochemical responses occurring after maximal exercise (100 m), as compared to submaximal exercise (800 m). The haematocrit increased significantly after the 100 m swim and to a lesser extent after the 800-m swim, returning to basal levels within 30 min. The plasma volume decreased by 16% on completion of the 100 m and by 8% on completion of the 800 m. The blood lactate concentration increased 15-fold and 10-fold after the 100-m and 800-m swims respectively. The plasma potassium concentration increased significantly immediately on completion of the 100-m swim, then decreased significantly at 2 1/2 and 5 min post-exercise, returning to near-basal values at 30 min. The potassium concentration measured after the 800-m event did not differ significantly from basal levels, however the measured concentrations were significantly lower than the concentrations expected on the basis of haemoconcentration. The plasma sodium concentrations measured after both 100-m and 800-m swims were significantly increased. However, calculations correcting for haemoconcentration showed significant losses in total circulating sodium. 相似文献
3.
The responses of the catecholamines and beta-endorphin to brief maximal exercise in man 总被引:4,自引:0,他引:4
S Brooks J Burrin M E Cheetham G M Hall T Yeo C Williams 《European journal of applied physiology and occupational physiology》1988,57(2):230-234
The responses to brief maximal exercise of 10 male subjects have been studied. During 30 s of exercise on a non-motorized treadmill, the mean power output (mean +/- SD) was 424.8 +/- 41.9 W, peak power 653.3 +/- 103.0 W and the distance covered was 167.3 +/- 9.7 m. In response to the exercise blood lactate concentrations increased from 0.60 +/- 0.26 to 13.46 +/- 1.71 mmol.l-1 (p less than 0.001) and blood glucose concentrations from 4.25 +/- 0.45 to 5.59 +/- 0.67 mmol.l-1 (p less than 0.001). The severe nature of the exercise is indicated by the fall in blood pH from 7.38 +/- 0.02 to 7.16 +/- 0.07 (p less than 0.001) and the estimated decrease in plasma volume of 11.5 +/- 3.4% (p less than 0.001). The plasma catecholamine concentrations increased from 2.2 +/- 0.6 to 13.4 +/- 6.4 nmol.l-1 (p less than 0.001) and 0.2 +/- 0.2 to 1.4 +/- 0.6 nmol.l-1 (p less than 0.001) for noradrenaline (NA) and adrenaline (AD) respectively. The plasma concentration of the opioid beta-endorphin increased in response to the exercise from less than 5.0 to 10.2 +/- 3.9 p mol.l-1. The post-exercise AD concentrations correlated with those for lactate as well as with changes in pH and the decrease in plasma volume. Post-exercise beta-endorphin levels correlated with the peak speed attained during the sprint and the subjects peak power to weight ratio. These results suggest that the increases in plasma adrenaline are related to those factors that reflect the stress of the exercise and the contribution of anaerobic metabolism.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
Disturbance of heart rhythm during recovery from exercise in man 总被引:1,自引:0,他引:1
5.
Plasma norepinephrine and heart rate dynamics during recovery from submaximal exercise in man 总被引:6,自引:0,他引:6
R Perini C Orizio A Comandè M Castellano M Beschi A Veicsteinas 《European journal of applied physiology and occupational physiology》1989,58(8):879-883
The time course of heart rate (HR) and venous blood norepinephrine concentration [NE], as an expression of the sympathetic nervous activity (SNA), was studied in six sedentary young men during recovery from three periods of cycle ergometer exercise at 21% +/- 2.8%, 43% +/- 2.1% and 65% +/- 2.3% of VO2max respectively (mean +/- SE). The HR decreased mono-exponentially with tau values of 13.6 +/- 1.6 s, 32.7 +/- 5.6 s and 55.8 +/- 8.1 s respectively in the three periods of exercise. At the low exercise level no change in [NE] was found. At medium and high exercise intensity: (a) [NE] increased significantly at the 5th min of exercise (delta [NE] = 207.7 +/- 22.5 pg.ml-1 and 521.3 +/- 58.3 pg.ml-1 respectively); (b) after a time lag of 1 min [NE] decreased exponentially (tau = 87 s and 101 s respectively); (c) in the 1st min HR decreased about 35 beats.min-1; (d) from the 2nd to 5th min of recovery HR and [NE] were linearly related (100 pg.ml-1 delta [NE] congruent to 5 beats.min-1). In the 1st min of recovery, independent of the exercise intensity, the adjustment of HR appears to have been due mainly to the prompt restoration of vagal tone. The further decrease in HR toward the resting value could then be attributed to the return of SNA to the pre-exercise level. 相似文献
6.
7.
S Brooks M E Nevill L Meleagros H K Lakomy G M Hall S R Bloom C Williams 《European journal of applied physiology and occupational physiology》1990,60(2):144-148
The responses of nine men and nine women to brief repetitive maximal exercise have been studied. The exercise involved a 6-s sprint on a non-motorised treadmill repeated 10 times with 30 s recovery between each sprint. The total work done during the ten sprints was 37,693 +/- 3,956 J by the men and 26,555 +/- 4,589 J by the women (M greater than F, P less than 0.01). This difference in performance was not associated with higher blood lactate concentrations in the men (13.96 +/- 1.70 mmol.l-1) than the women (13.09 +/- 3.04 mmol.l-1). An 18-fold increase in plasma adrenaline (AD) occurred with the peak concentration observed after five sprints. The peak AD concentration in the men was larger than that seen in the women (9.2 +/- 7.3 and 3.7 +/- 2.4 nmol.l-1 respectively, P less than 0.05). The maximum noradrenaline (NA) concentration occurred after ten sprints in the men (31.6 +/- 10.9 nmol.l-1) and after five sprints in the women (27.4 +/- 20.8 nmol.l-1). Plasma cardiodilatin (CDN) and atrial natriuretic peptide (ANP) concentrations were elevated in response to the exercise. The peak ANP concentration occurred immediately post-exercise and the response of the women (10.8 +/- 4.5 pmol.l-1) was greater than that of the men (5.1 +/- 2.6 pmol.l-1, P less than 0.05). The peak CDN concentrations were 163 +/- 61 pmol.l-1 for the women and 135 +/- 61 pmol.l-1 for the men. No increases in calcitonin gene related peptide (CGRP) were detected in response to the exercise. These results indicate differences between men and women in performance and hormonal responses. There was no evidence for a role of CGRP in the control of the cardiovascular system after brief intermittent maximal exercise. 相似文献
8.
Interrelationship between pH, plasma potassium concentration and ventilation during intense continuous exercise in man 总被引:1,自引:0,他引:1
M W Busse N Maassen H Konrad D B?ning 《European journal of applied physiology and occupational physiology》1989,59(4):256-261
During resting conditions plasma hydrogen ion concentration ([H+]P) is known to influence ventilation (VE), whereas the control of plasma potassium concentration ([K+]P) at rest and of both [K+]P and VE during exercise are controversial issues. To obtain more information about these variables during muscular work, eight trained men performed two successive intense continuous cycle-ergometer tests, the first (test I) during metabolic acidosis, the second (test II) with an alkalotic pH. No correlation was found between [H+]P and [K+]P or VE in the direction of change of these variables in test I. Furthermore, no correlation between [H+]P and [K+]P in test I and II was seen. Instead [K+]P and VE changed in relation to the exercise intensity. We suggest that the results confirm [K+]P as an indicator of muscular stress. In addition, the similar behaviour of relative values of [K+]P and VE changes in test I (r = 0.9, m = 1.0, where m is the slope of the regression curve) supports the hypothesis that extracellular potassium controls VE and thereby [H+]P also. 相似文献
9.
Stroke volume during recovery from supine bicycle exercise 总被引:1,自引:0,他引:1
G R Cumming 《Journal of applied physiology》1972,32(5):575-578
10.
The aim of this study was to compare serum (SERc) and salivary cortisol (SALc) responses during recovery from two different exhaustive exercises to determine peak cortisol sampling time and the agreement between SERc and SALc levels. Twelve healthy men underwent a maximal treadmill graded exercise to exhaustion (MEx) and a prolonged, submaximal cycle exercise in the heat for 90 min (PEx) while SERc and SALc samples were taken in parallel at baseline, end of exercise, and 15 min intervals over one hour of recovery. MEx and PEx significantly increased SERc and SALc levels (p < 0.01) while absolute SERc levels were approximately 7-10 folds higher than SALc. SERc and SALc showed highly positive correlation (R = 0.667-0.910, p < 0.05) at most sampling times and only a few individual values were out of 95% limit of agreement when analyzed by Bland-Altman plots. However, peak SERc levels (MEx: 784.0±147, PEx: 705.5±212.0 nmol · L−1) occurred at 15 min of recovery, whereas peak SALc levels (MEx: 102.7±46.4, PEx: 95.7±40.9 nmol · L−1) were achieved at the end of exercise in MEx and PEx. The recovery trend of SERc and SALc also differed following MEx and PEx. Activity of 11β-hydroxysteroid dehydrogenase type 2 enzymes may be suppressed following MEx compared to PEx. In conclusion, sampling for peak SERc and SALc levels should take into account their evolution and clearance characteristics as well as type of exercise performed, whereas SALc appeared to be a more sensitive marker than SERc for the measurement of cortisol responses during exercise recovery. 相似文献
11.
Peter W. Hochachka Rudolph H. Dressendorfer 《European journal of applied physiology and occupational physiology》1976,35(4):235-242
It has been demonstrated in several diving vertebrates that succinate, a component of the Krebs cycle, accumulates in blood during breath-hold dives. The production of succinate is thought to result from amino acid catabolism. Our purpose was to determine whether succinate accumulation occurs in man during muscular activity requiring anaerobic energy contribution. Experiments using an endurance athlete included apneic work on an underwater ergometer and treadmill running to exhaustion. During 1 min breath-hold [(V)dot]dot VO2max, venous succinate increased from 42 [(V)dot]dot VO2max and increased succinate from a similar resting value to 93 M×10–6. Increases in alanine, lactate, and pyruvate were observed for both types of exercise. The findings confirm that succinate accumulation also occurs in man. It was suggested that amino acid catabolism may provide a source of anaerobic energy production in addition to glycolysis. However, the importance of the proposed energy pathway remains to be quantified. 相似文献
12.
A M Zagrebin V M Chuchkov A V Isaev I A Isaeva 《Arkhiv anatomii, gistologii i émbriologii》1985,89(9):35-37
Myelinization of the neural cell processes begins on the third month. At 4-5 months mesaxons appear. Then, together with increasing diameter of the neural fibers, formation of new myelin transmitters is going on. 相似文献
13.
G. J. Kemp C. H. Thompson D. J. Taylor G. K. Radda 《European journal of applied physiology and occupational physiology》1997,76(5):462-471
In recovery from exercise, phosphocreatine resynthesis results in the net generation of protons, while the net efflux of
protons restores pH to resting values. Because proton efflux rate declines as pH increases, it appears to have an approximately
linear pH-dependence. We set out to examine this in detail using recovery data from human calf muscle. Proton efflux rates
were calculated from changes in pH and phosphocreatine concentration, measured by 31P magnetic resonance spectroscopy, after incremental dynamic exercise to exhaustion. Results were collected post hoc into
five groups on the basis of end-exercise pH. Proton efflux rates declined approximately exponentially with time. These were
rather similar in all groups, even when pH changes were small, so that the apparent rate constant (the ratio of efflux rate
to pH change) varied widely. However, all groups showed a consistent pattern of decrease with time; the halftimes of both
proton efflux rate and the apparent rate constant were longer at lower pH. At each time-point, proton efflux rates showed
a significant pH-dependence [slope 17 (3) mmol · l−1 · min−1 · pH unit−1 at the start of recovery, mean (SEM)], but also a significant intercept at resting pH [16 (3) mmol · l−1 · min−1 at the start of recovery]. The intercept and the slope both decreased with time, with halftimes of 0.37 (0.06) and 1.4 (0.4) min,
respectively. We conclude that over a wide range of end-exercise pH, net proton efflux during recovery comprises pH-dependent
and pH-independent components, both of which decline with time. Comparison with other data in the literature suggests that
lactate/proton cotransport can be only a small component of this initial recovery proton efflux.
Accepted: 5 May 1997 相似文献
14.
Continuous measurement of the cytoplasmic pH in Lactococcus lactis with a fluorescent pH indicator 总被引:10,自引:0,他引:10
The cytoplasmic pH of Lactococcus lactis was studied with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5 (and-6)-carboxyfluorescein (BCECF). A novel method was applied for loading bacterial cells with BCECF, which consists of briefly treating a dense cell suspension with acid in the presence of the probe. This results in a pH gradient, which drives accumulation of the probe in the cytoplasm. After neutralization the probe was well retained in cells stored on ice. BCECF-loaded cells were metabolically active, and were able to generate a pH gradient upon energization. The probe leaks out slowly at elevated temperatures. Efflux is stimulated upon energization of the cells, and is most likely catalyzed by an active transport system. It is a first-order process, and the rate constant could be deduced from the decrease of the fluorescence signal in periods of constant intracellular pH. This allowed a correction of the fluorescence signal for efflux of the probe. After calibration the cytoplasmic pH could be calculated from efflux-corrected fluorescence traces. 相似文献
15.
James C. Aitken William M. Bennet James Thompson 《European journal of applied physiology and occupational physiology》1989,58(7):717-721
The response of respiratory gas exchanges to a 6 week high intensity training program was examined in 5 healthy males during fixed term maximal incremental treadmill exercise. Training was performed 3 d.wk-1 and consisted of a progressive series of repeated 15 sec and 30 sec maximal runs, and weight training exercises for the leg extensor muscles. Respiratory gases during the tests were continuously monitored using an on-line system. Muscle biopsy samples were obtained from the m. vastus lateralis before and after training for histochemical determination of fibre distribution based on myosin ATP-ase activity, and fibre cross-sectional area based on NADH-Tetrazolium Reductase activity. Training significantly increased the proportion of type IIa fibres (+5.9 +/- 2.0%, p less than 0.001) and decreased type I fibres (-6.3 +/- 2.0%, p less than 0.001), the distribution of type IIb fibres remained unchanged (+0.4 +/- 0.9%). Muscle cross-sectional area also showed a significant increase after training in type I (+318 +/- 215 microns 2, p less than 0.05), IIa (+652 +/- 207 microns 2, p less than 0.001) and IIb (+773 +/- 196 microns 2, p less than 0.001) fibres. During fixed term maximal incremental exercise the mean carbon dioxide output (VCO2) and mean respiratory exchange ratio (R = VCO2/VO2) were significantly increased (p less than 0.01) after training. The R-time relationship was at all times shifted to the left after training, being significantly (p less than 0.01) so over the final five min of exercise. No changes in mean exercise oxygen uptake (VO2), maximum oxygen uptake (VO2max) and maximum heart rate (FHRmax) were observed between tests.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
16.
Takayoshi Yoshida Hiroshi Watari 《European journal of applied physiology and occupational physiology》1993,67(3):274-278
The rates of change in intracellular pH during repeated exercise sessions with rest periods was determined by 31 phosphorus-nuclear magnetic resonance spectroscopy (31P-MRS). Five long-distance runners and six healthy male subjects as controls performed a 2-min femoral flexion at 20 kg · m · min–1 in a 2.1 T superconducting magnet with a 67-cm bore and repeated this exercise four times with 2-min rest periods intervening. In all cases during exercise the inorganic phosphate (Pi) peak split into two, the earlier increased rapidly (high-pH Pi) and the later (low-pH Pi) increased more slowly. The Pi peaks were separated by a fitting procedure using the least square mean method. The high-pH Pi area during exercise decreased as the number of repeated exercise periods increased, while the low-pH Pi area gradually increased. Although the total Pi area decreased exponentially during the recovery period, the high-pH Pi area decreased first and then the low-pH Pi area reduced gradually. The pH values were estimated from the chemical shift between the phosphocreatine peak and each split peak in the Pi. The high-pH in pooled data ranged from 6.6 to 7.0 during exercise and recovery, while the low pH decreased to 6.2 during exercise. As the number of exercise periods increased, each pH value gradually became less acidic, although there was a tendency to more acidity in the control subjects than in the long-distance runners. In conclusion, it was possible to obtain by non-invasive, continuous31P-MRS, a split pattern of Pi peaks during exercise and there were at least tow different intracellular pH values during exercise, suggesting that each Pi peak might be attributed to the types of muscle fibre recruited. 相似文献
17.
Muscle temperature during submaximal exercise in man 总被引:5,自引:0,他引:5
18.
Yano T Yunoki T Matsuura R Arimitsu T Kimura T 《Physiological research / Academia Scientiarum Bohemoslovaca》2007,56(6):721-725
The aim of this study was to determine whether excessive oxygen uptake (Vo2) occurs not only during exercise but also during recovery after heavy exercise. After previous exercise at zero watts for 4 min, the main exercise was performed for 10 min. Then recovery exercise at zero watts was performed for 10 min. The main exercises were moderate and heavy exercises at exercise intensities of 40 % and 70 % of peak Vo2, respectively. Vo2 kinetics above zero watts was obtained by subtracting Vo2 at zero watts of previous exercise (DeltaVo2). Delta Vo2 in moderate exercise was multiplied by the ratio of power output performed in moderate and heavy exercises so as to estimate the Delta Vo2 applicable to heavy exercise. The difference between Delta Vo2 in heavy exercise and Delta Vo2 estimated from the value of moderate exercise was obtained. The obtained Vo2 was defined as excessive Vo2. The time constant of excessive Vo2 during exercise (1.88+/-0.70 min) was significantly shorter than that during recovery (9.61+/-6.92 min). Thus, there was excessive Vo2 during recovery from heavy exercise, suggesting that O2/ATP ratio becomes high after a time delay in heavy exercise and the high ratio continues until recovery. 相似文献
19.
The turnover of plasma free fatty acid (FFA) was studied during the recovery from exercise with the aid of a continuous infusion of 14C-labeled oleic acid. Arterial FFA reached a maximum of twice the exercise value after 6 min of recovery and was still 75% above the basal level after 20 min. Within 2 min after exercise, plasma radioactivity had increased and the specific activity of plasma oleic acid had fallen. The rate of uptake of FFA from the plasma pool rsoe by 40% during the first minutes after exercise. The rate of release of FFA to the plasma pool showed a peak 2 min after exercise and was thereafter about 40 mumol/min lower than the rate of uptake. The fractional turnover of FFA decreased to resting levels within 5-10 min after exercise. It is concluded that the postexercise peak in arterial FFA is a consequence of augmented release of FFA into the plasma pool above the level during exercise, possibly related to the release of sympathetic vasoconstrictor tone. As a consequence, the rate of removal of FFA rises at the end of exercise and remains augmented above the basal level for as long as the arterial concentration is increased. 相似文献
20.
Hyperthermia was induced in nine subjects on two separate occasions by a progressive treadmill run, which resulted in an average esophageal temperature (Tes) of 39.77 +/- 0.07 degree C after 30-57 min. Fanning the face during exercise to simulate conditions during running (wind at 3.75 m X s-1) maintained a tympanic temperature (Tty) that was lower than Tes; the difference was 1.5 degrees C at the end of exercise. In one session, face fanning was interrupted at the end of running, whereas in the other it was maintained for 15 min after exercise stopped. Face fanning had no significant influence on the fall of Tes during recovery, but it markedly influenced the course of Tty during this period. When face fanning was stopped at the end of the run, Tty rose by nearly 0.5 degree C, peaked after 4.5 min, and thereafter decreased slowly to a value close to Tes. In contrast, when face fanning was maintained throughout the recovery period, Tty rose only slightly (0.1 degree C) and remained significantly lower than Tes at all times. The results suggest that following hyperthermic exercise, face fanning could be helpful in preventing acute cerebral hyperthermia. 相似文献