首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blood and muscle pH after maximal exercise in man   总被引:13,自引:0,他引:13  
  相似文献   

2.
We set out to demonstrate whether changes in plasma volume, haematocrit and some important blood constituents occurred after swimming 100 m and 800 m, as well as monitoring the duration of these changes. We measured exercise-induced changes in concentration of plasma constituents in eight subjects, and determined the expected effects of haemoconcentration on these constituents. We also investigated the different biochemical responses occurring after maximal exercise (100 m), as compared to submaximal exercise (800 m). The haematocrit increased significantly after the 100 m swim and to a lesser extent after the 800-m swim, returning to basal levels within 30 min. The plasma volume decreased by 16% on completion of the 100 m and by 8% on completion of the 800 m. The blood lactate concentration increased 15-fold and 10-fold after the 100-m and 800-m swims respectively. The plasma potassium concentration increased significantly immediately on completion of the 100-m swim, then decreased significantly at 2 1/2 and 5 min post-exercise, returning to near-basal values at 30 min. The potassium concentration measured after the 800-m event did not differ significantly from basal levels, however the measured concentrations were significantly lower than the concentrations expected on the basis of haemoconcentration. The plasma sodium concentrations measured after both 100-m and 800-m swims were significantly increased. However, calculations correcting for haemoconcentration showed significant losses in total circulating sodium.  相似文献   

3.
The responses to brief maximal exercise of 10 male subjects have been studied. During 30 s of exercise on a non-motorized treadmill, the mean power output (mean +/- SD) was 424.8 +/- 41.9 W, peak power 653.3 +/- 103.0 W and the distance covered was 167.3 +/- 9.7 m. In response to the exercise blood lactate concentrations increased from 0.60 +/- 0.26 to 13.46 +/- 1.71 mmol.l-1 (p less than 0.001) and blood glucose concentrations from 4.25 +/- 0.45 to 5.59 +/- 0.67 mmol.l-1 (p less than 0.001). The severe nature of the exercise is indicated by the fall in blood pH from 7.38 +/- 0.02 to 7.16 +/- 0.07 (p less than 0.001) and the estimated decrease in plasma volume of 11.5 +/- 3.4% (p less than 0.001). The plasma catecholamine concentrations increased from 2.2 +/- 0.6 to 13.4 +/- 6.4 nmol.l-1 (p less than 0.001) and 0.2 +/- 0.2 to 1.4 +/- 0.6 nmol.l-1 (p less than 0.001) for noradrenaline (NA) and adrenaline (AD) respectively. The plasma concentration of the opioid beta-endorphin increased in response to the exercise from less than 5.0 to 10.2 +/- 3.9 p mol.l-1. The post-exercise AD concentrations correlated with those for lactate as well as with changes in pH and the decrease in plasma volume. Post-exercise beta-endorphin levels correlated with the peak speed attained during the sprint and the subjects peak power to weight ratio. These results suggest that the increases in plasma adrenaline are related to those factors that reflect the stress of the exercise and the contribution of anaerobic metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
The relationship between changes in the muscle total adenine nucleotide pool (TAN = ATP + ADP + AMP) and IMP during and after 30 s of sprint cycling was examined. Skeletal muscle samples were obtained from the vastus lateralis muscle of seven untrained men (23. 9 +/- 2.3 yr, 74.4 +/- 3.6 kg, and 55.0 +/- 2.9 ml. kg(-1). min(-1) peak oxygen consumption) before and immediately after exercise and after 5 and 10 min of passive recovery. The exercise-induced increase in muscle IMP was linearly related to the decrease in muscle TAN (r = -0.97, P < 0.01), and the slope of this relationship (-0.83) was not different from 1.0 (P > 0.05), indicating a 1:1 stoichiometric relationship. This interpretation must be treated cautiously, because all subjects displayed a greater decrease in TAN compared with the increase in IMP content, and the TAN + IMP + inosine + hypoxanthine content was lower (P < 0.05) immediately after exercise compared with during rest. During the first 5 min of recovery, the increase in TAN was not correlated with the decrease in IMP (r = -0.18, P > 0.05). In all subjects, the magnitude of TAN increase was higher than the magnitude of IMP decrease over this recovery period. In contrast, the increase in TAN was correlated with the decrease in IMP throughout the second 5 min of recovery (r = -0.80, P < 0.05), and it was a 1:1 stoichiometric relationship (slope = -1.12). These data indicate that a small proportion of the TAN pool was temporarily lost from the muscle purine stores during sprinting but was rapidly recovered after exercise.  相似文献   

6.
7.
The time course of heart rate (HR) and venous blood norepinephrine concentration [NE], as an expression of the sympathetic nervous activity (SNA), was studied in six sedentary young men during recovery from three periods of cycle ergometer exercise at 21% +/- 2.8%, 43% +/- 2.1% and 65% +/- 2.3% of VO2max respectively (mean +/- SE). The HR decreased mono-exponentially with tau values of 13.6 +/- 1.6 s, 32.7 +/- 5.6 s and 55.8 +/- 8.1 s respectively in the three periods of exercise. At the low exercise level no change in [NE] was found. At medium and high exercise intensity: (a) [NE] increased significantly at the 5th min of exercise (delta [NE] = 207.7 +/- 22.5 pg.ml-1 and 521.3 +/- 58.3 pg.ml-1 respectively); (b) after a time lag of 1 min [NE] decreased exponentially (tau = 87 s and 101 s respectively); (c) in the 1st min HR decreased about 35 beats.min-1; (d) from the 2nd to 5th min of recovery HR and [NE] were linearly related (100 pg.ml-1 delta [NE] congruent to 5 beats.min-1). In the 1st min of recovery, independent of the exercise intensity, the adjustment of HR appears to have been due mainly to the prompt restoration of vagal tone. The further decrease in HR toward the resting value could then be attributed to the return of SNA to the pre-exercise level.  相似文献   

8.
9.
10.
The hormonal responses to repetitive brief maximal exercise in humans   总被引:4,自引:0,他引:4  
The responses of nine men and nine women to brief repetitive maximal exercise have been studied. The exercise involved a 6-s sprint on a non-motorised treadmill repeated 10 times with 30 s recovery between each sprint. The total work done during the ten sprints was 37,693 +/- 3,956 J by the men and 26,555 +/- 4,589 J by the women (M greater than F, P less than 0.01). This difference in performance was not associated with higher blood lactate concentrations in the men (13.96 +/- 1.70 mmol.l-1) than the women (13.09 +/- 3.04 mmol.l-1). An 18-fold increase in plasma adrenaline (AD) occurred with the peak concentration observed after five sprints. The peak AD concentration in the men was larger than that seen in the women (9.2 +/- 7.3 and 3.7 +/- 2.4 nmol.l-1 respectively, P less than 0.05). The maximum noradrenaline (NA) concentration occurred after ten sprints in the men (31.6 +/- 10.9 nmol.l-1) and after five sprints in the women (27.4 +/- 20.8 nmol.l-1). Plasma cardiodilatin (CDN) and atrial natriuretic peptide (ANP) concentrations were elevated in response to the exercise. The peak ANP concentration occurred immediately post-exercise and the response of the women (10.8 +/- 4.5 pmol.l-1) was greater than that of the men (5.1 +/- 2.6 pmol.l-1, P less than 0.05). The peak CDN concentrations were 163 +/- 61 pmol.l-1 for the women and 135 +/- 61 pmol.l-1 for the men. No increases in calcitonin gene related peptide (CGRP) were detected in response to the exercise. These results indicate differences between men and women in performance and hormonal responses. There was no evidence for a role of CGRP in the control of the cardiovascular system after brief intermittent maximal exercise.  相似文献   

11.
During resting conditions plasma hydrogen ion concentration ([H+]P) is known to influence ventilation (VE), whereas the control of plasma potassium concentration ([K+]P) at rest and of both [K+]P and VE during exercise are controversial issues. To obtain more information about these variables during muscular work, eight trained men performed two successive intense continuous cycle-ergometer tests, the first (test I) during metabolic acidosis, the second (test II) with an alkalotic pH. No correlation was found between [H+]P and [K+]P or VE in the direction of change of these variables in test I. Furthermore, no correlation between [H+]P and [K+]P in test I and II was seen. Instead [K+]P and VE changed in relation to the exercise intensity. We suggest that the results confirm [K+]P as an indicator of muscular stress. In addition, the similar behaviour of relative values of [K+]P and VE changes in test I (r = 0.9, m = 1.0, where m is the slope of the regression curve) supports the hypothesis that extracellular potassium controls VE and thereby [H+]P also.  相似文献   

12.
13.
14.
A continuous method for recording changes in breathlessness (dyspnea) during exercise is introduced and compared with the traditional discrete method. In study 1, a category-rating scale was presented on a computer screen, and 14 healthy, young female subjects exercised on a cycle ergometer until exhaustion. Two approaches were used to obtain ratings of breathlessness: a discrete method, in which subjects gave single judgments every minute, and a continuous method, in which subjects throughout exercise moved the mouse so that a bar on the screen extended to the desired location along the scale. Psychophysical results relating measures of breathlessness and the variables of work, oxygen consumption, and minute ventilation were statistically indistinguishable with the two methods, and both methods were highly reliable across test sessions. In study 2, both measurement methods were employed, and the subjects were 14 healthy, young males. In each of two sessions (discrete or continuous method), subjects first rated their breathlessness during an incremental test in which the workload was increased over time and levels of work, and minute ventilation were recorded. Subjects then exercised for 10 min at 60% of the maximal oxygen consumption achieved during the incremental test. At two points during steady-state exercise, a respiratory load was introduced that lasted for 1 min. It was possible to determine the responsiveness of subjects to onset and offset of the respiratory load for the continuous method but not for the discrete method. In study 3, patients with chronic obstructive pulmonary disease employed both methods, and it was found that the continuous method was better at determining whether subjects showed a significant positive slope of the regression line between breathlessness ratings and physiological variables.  相似文献   

15.
The relationship between intramuscular pH and the frequency components of the surface electromyographic (EMG) power spectrum from the vastus lateralis muscle was studied in eight healthy male subjects during brief dynamic exercise. The studies were carried out in placebo control and metabolic alkalosis induced by oral administration of NaHCO3. At the onset of exercise, blood pH was 0.08 units higher in alkalosis compared with placebo. Muscle lactate accumulation during exercise was higher in alkalosis (32 +/- 5 mmol/kg wet wt) than in placebo (17 +/- 4 mmol/kg wet wt), but no difference in intramuscular pH was found between the two conditions. The EMG power spectrum was shifted toward lower frequencies during fatigue in the control condition (10.1 +/- 0.9%), and these spectral shifts, evaluated from changes in the mean power frequency (MPF) of the EMG power spectrum, were further accentuated in alkalosis (19 +/- 2%). Although the changes in frequency components of EMG correlated with muscle lactate accumulation (r = 0.68, P less than 0.01), no direct relationship with muscle pH was observed. We conclude that alkalosis results in a greater reduction in MPF associated with a higher muscle lactate accumulation. However, the good correlation observed between the two variables is not likely causative, and a dissociation between intramuscular pH and the increase in the low-frequency content of EMG power spectrum appears during muscle fatigue.  相似文献   

16.
Pulsatile properties of luteinizing hormone (LH) and growth hormone (GH) release were evaluated in 19 eumenorrheic untrained females [mean age 31.1 +/- 1.1 yr, height 165.2 +/- 1.4 cm, weight 64.8 +/- 2.1 kg, peak oxygen uptake (Vo2) 41.6 +/- 1.4 (SE) ml.kg-1.min-1] during the early follicular phase of the menstrual cycle (days 3-4 after the onset of menses). Each subject was studied during two consecutive menstrual cycles under each of two conditions in random order: 1) no formal exercise for 72 h (C) and 2) 12-24 h after two maximal exercise bouts (peak Vo2/lactate threshold treadmill evaluation and a 3,200-m time-trial run or a maximal Vo2 inclined treadmill test) performed on consecutive days (EX). Blood sampling was performed every 10 min for 12 h. LH and GH pulsatile parameters were identified and characterized by the Cluster pulse detection algorithm. No significant differences were noted in the number of peaks, peak amplitude, interpeak interval, peak increment, or 12-h integrated concentrations between C and EX for LH or GH. We conclude that maximal exercise protocols typically used for exercise evaluation do not have an effect on the pulsatile characteristics of LH or GH release in untrained women during the early follicular phase of the menstrual cycle if 12-24 h of recovery are allowed before evaluation of the pulsatile secretion of gonadotropins or GH.  相似文献   

17.
18.
19.
20.
Left ventricular dynamics during recovery were measured in dogs, 3 min after brief periods of mild, moderate, and severe treadmill exercise. As compared with resting values, stroke volume was unchanged, and the maximum first derivative of the left ventricular pressure was either unchanged or slightly elevated. Increases in heart rate of 20, 26, and 46 beats/min for mild, moderate, and severe exercise appear to be the major factor in augmenting cardiac output during recovery. With moderate and severe exercise, left ventricular end-diastolic diameter increased and continued to be elevated during recovery, whereas end-systolic diameter decreased during exercise but was elevated above resting values during recovery. Therefore, with strenuous exercise, a sympathetic-mediated increase in contractility recedes promptly during the postexercise period but the Frank-Starling mechanism continues to be a factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号