首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
MSH4 is a meiosis-specific MutS homolog. In yeast, it is required for reciprocal recombination and proper segregation of homologous chromosomes at meiosis I. MLH1 (MutL homolog 1) facilitates both mismatch repair and crossing over during meiosis in yeast. Germ-line mutations in the MLH1 human gene are responsible for hereditary nonpolyposis cancer, but the analysis of MLH1-deficient mice has revealed that MLH1 is also required for reciprocal recombination in mammals. Here we show that hMSH4 interacts with hMLH1. The two proteins are coimmunoprecipitated regardless of the presence of DNA or ATP, suggesting that the interaction does not require the binding of MSH4 to DNA. The domain of hMSH4 responsible for the interaction is in the amino-terminal part of the protein whereas the region that contains the ATP binding site and helix-turn-helix motif does not bind to hMLH1. Immunolocalization analysis shows that MSH4 is present at sites along the synaptonemal complex as soon as homologous chromosomes synapse. The number of MSH4 foci decreases gradually as pachynema progresses. During this transition, MLH1 foci begin to appear and colocalize with MSH4. These results suggest that MSH4 is first required for chromosome synapsis and that this MutS homologue is involved later with MLH1 in meiotic reciprocal recombination.  相似文献   

2.
In eukaryotes, homologs of the Escherichia coli MutS and MutL proteins are crucial for both meiotic recombination and post-replicative DNA mismatch repair. Both pathways require the formation of a MutS homolog complex which interacts with a second heterodimer, composed of two MutL homologs. During mammalian meiosis, it is likely that chromosome synapsis requires the presence of a MSH4-MSH5 heterodimer. PMS2, a MutL homolog, seems to play an important role in this process. A MSH4-MSH5 heterodimer is also likely present later with other MutL homologs (MLH1 and MLH3) and is involved in the crossing-over process. The phenotype of msh4-/- mutant mice and MSH4 immunolocalization on meiotic chromosomes suggest that MSH4 has an early function in mammalian meiotic recombination. Both MSH4 and PMS2 directly interact with the RAD51 DNA strand exchange protein. In addition, MSH4 and RAD51 proteins co-localize on mouse meiotic chromosome cores. These results suggest that MSH4 and its partners could act, just after strand exchange promoted by RAD51, to check the homology of DNA heteroduplexes.  相似文献   

3.
4.
Mammalian MutL homologues function in DNA mismatch repair (MMR) after replication errors and in meiotic recombination. Both functions are initiated by a heterodimer of MutS homologues specific to either MMR (MSH2-MSH3 or MSH2-MSH6) or crossing over (MSH4-MSH5). Mutations of three of the four MutL homologues (Mlh1, Mlh3, and Pms2) result in meiotic defects. We show herein that two distinct complexes involving MLH3 are formed during murine meiosis. The first is a stable association between MLH3 and MLH1 and is involved in promoting crossing over in conjunction with MSH4-MSH5. The second complex involves MLH3 together with MSH2-MSH3 and localizes to repetitive sequences at centromeres and the Y chromosome. This complex is up-regulated in Pms2-/- males, but not females, providing an explanation for the sexual dimorphism seen in Pms2-/- mice. The association of MLH3 with repetitive DNA sequences is coincident with MSH2-MSH3 and is decreased in Msh2-/- and Msh3-/- mice, suggesting a novel role for the MMR family in the maintenance of repeat unit integrity during mammalian meiosis.  相似文献   

5.
6.
Sia EA  Kirkpatrick DT 《DNA Repair》2005,4(2):253-261
Six strong homologs of the bacterial MutS DNA mismatch repair (MMR) gene have been identified in the yeast Saccharomyces cerevisiae. With the exception of the MSH1 gene, the involvement of each homolog in DNA repair and recombination during meiosis has been determined previously. Five of the homologs have been demonstrated to act in meiotic DNA repair (MSH2, MSH3, MSH6 and MSH4) and/or meiotic recombination (MSH4 and MSH5). Unfortunately the loss of mitochondrial function that results from deletion of MSH1 disrupts meiotic progression, precluding an analysis of MSH1 function in meiotic DNA repair and recombination. However, the recent identification of two separation-of-function alleles of MSH1 that interfere with protein function but still maintain functional mitochondria allow the meiotic activities of MSH1 to be determined. We show that the G776D and F105A alleles of MSH1 exhibit no defects in meiotic recombination, repair base-base mismatches and large loop mismatches efficiently during meiosis, and have high levels of spore viability. These data indicate that the MSH1 protein, unlike other MutS homologs in yeast, plays no role in DNA repair or recombination during meiosis.  相似文献   

7.
8.
Neurotrophin 3 (Ntf3) is expressed in Sertoli cells and acts as a chemo-attractant for cell migration from the mesonephros into the developing testis, a process critical to the early morphological events of testis cord formation. The male sex-determining gene Sry initiates the process of testicular development. Sox9 is a key regulator of male sex determination and is directly regulated by SRY. Information on other downstream target genes of SRY is limited. The current study demonstrates an interaction of SRY with the Ntf3 promoter both in vitro and in vivo. The Ntf3 promoter in both rat and mouse contains at least one putative SRY binding site in the -0.6 kb promoter region. In a luciferase reporter assay system, both SRY and SOX9 stimulated the Ntf3 promoter in vitro through an interaction with this SRY-binding motif. In an immunoprecipitation-based pull-down assay, recombinant SRY protein bound the Ntf3 promoter fragment containing an intact SRY binding site, whereas the same protein did not interact with the fragment containing a mutated SRY motif. Specific antibodies against SRY were used in a chromatin immunoprecipitation (ChIP) assay of embryonic testis and were found to precipitate the Ntf3 promoter region. The SRY ChIP assay confirmed the direct interaction between SRY and the Ntf3 promoter in vivo during male sex determination. Observations suggest that SRY physically interacts with the Ntf3 promoter during male sex determination to coordinate cell migration in the testis to form testis cords.  相似文献   

9.
10.
11.
DNA mismatch repair proteins play an essential role in maintaining genomic integrity during replication and genetic recombination. We successfully isolated a full length MSH2 and partial MSH7 cDNAs from tomato, based on sequence similarity between MutS and plant MSH homologues. Semi-quantitative RT-PCR reveals higher levels of mRNA expression of both genes in young leaves and floral buds. Genetic mapping placed MSH2 and MSH7 on chromosomes 6 and 7, respectively, and indicates that these genes exist as single copies in the tomato genome. Analysis of protein sequences and phylogeny of the plant MSH gene family show that these proteins are evolutionarily conserved, and follow the classical model of asymmetric protein evolution. Genetic manipulation of the expression of these MSH genes in tomato will provide a potentially useful tool for modifying genetic recombination and hybrid fertility between wide crosses.  相似文献   

12.
Sex determination in mammals is controlled by the SRY gene located on the Y chromosome. It encodes a protein containing a DNA-binding and DNA-bending domain. In spite of recent advances in the identification of the mechanisms that regulate male sex determination in mammals, the expression profile of the SRY protein in normal and sex-reversed human tissues is not well established. In order to localize the SRY protein and determine its cellular distribution and expression at different stages of development, we prepared monoclonal antibodies (mAb) against the recombinant SRY protein. One of these antibodies, LSRY1.1, recognizes a protein of 27 kDa in total lysates of HeLa SRYB3, a human cell line transfected with the SRY gene under the control of the SV40 promoter. Immunocytochemical analysis in the cell lines shows nuclear localization of the SRY protein. We have studied SRY protein expression in human tissues at different stage of fetal development until adult life and have demonstrated that the SRY protein is located in the nuclei of somatic cells and germ cells in the genital ridge during testis development. After testis determination, it can be detected until the adult stage in both germ cells and Sertoli cells. The presence of the SRY protein was also analyzed in biopsies of gonadal tissues of sex-reversal patients such as SRY-positive 46,XX males or SRY-positive 46,XX true hermaphrodites. SRY protein is detected in the nuclei of Sertoli cells of the testis and in the nuclei of granulosa cells in the ovotestis in these patients and in the nuclei of germ cells of both tissue types. These results suggest a common cellular origin for both Sertoli cells and granulosa cells.  相似文献   

13.
14.
15.
The role of mismatch repair proteins has been well studied in the context of DNA repair following DNA polymerase errors. Particularly in yeast, MSH2 and MSH6 have also been implicated in the regulation of genetic recombination, whereas MutL homologs appeared to be less important. So far, little is known about the role of the human MutL homolog hMLH1 in recombination, but recently described molecular interactions suggest an involvement. To identify activities of hMLH1 in this process, we applied an EGFP-based assay for the analysis of different mechanisms of DNA repair, initiated by a targeted double-stranded DNA break. We analysed 12 human cellular systems, differing in the hMLH1 and concomitantly in the hPMS1 and hPMS2 status via inducible protein expression, genetic reconstitution, or RNA interference. We demonstrate that hMLH1 and its complex partners hPMS1 and hPMS2 downregulate conservative homologous recombination (HR), particularly when involving DNA sequences with only short stretches of uninterrupted homology. Unexpectedly, hMSH2 is dispensable for this effect. Moreover, the damage-signaling kinase ATM and its substrates BLM and BACH1 are not strictly required, but the combined effect of ATM/ATR-signaling components may mediate the anti-recombinogenic effect. Our data indicate a protective role of hMutL-complexes in a process which may lead to detrimental genome rearrangements, in a manner which does not depend on mismatch repair.  相似文献   

16.
In mammals, testis determination is initiated when the SRY gene is expressed in pre-Sertoli cells of the undifferentiated genital ridge. SRY directs the differentiation of these cells into Sertoli cells and initiates the testis differentiation pathway via currently ill-defined mechanisms. Because Sertoli cells are the first somatic cells to differentiate within the developing testis, it is likely that the signals for orchestrating testis determination are expressed within pre-Sertoli cells. We have previously generated a transgenic mouse line that expresses green fluorescent protein under the control of the pig SRY promoter, thus marking pre-Sertoli cells via fluorescence. We have now used suppression-subtractive hybridization (SSH) to construct a normalized cDNA library derived from fluorescence-activated cell sorting (FACS) purified pre-Sertoli cells taken from 12.0 to 12.5 days postcoitum (dpc) fetal transgenic mouse testes. A total of 35 candidate cDNAs for known genes were identified. Detection of Sf1, a gene known for its role in sex determination as well as Vanin-1, Vcp1, Sparc, and Aldh3a1, four genes previously identified in differential screens as gene overexpressed in developing testis compared with ovary, support the biological validity of our experimental model. Whole-mount in situ hybridization was performed on the 35 candidate genes for qualitative differential expression between male and female genital ridges; six were upregulated in the testis and one was upregulated in the ovary. The expression pattern of two genes, Ppt1 and Brd3, were examined in further detail. We conclude that combining transgenically marked fluorescent cell populations with differential expression screening is useful for cell expression profiling in developmental systems such as sex determination and differentiation.  相似文献   

17.
18.
In mammals, a master gene located on the Y chromosome, the testis-determining gene SRY, controls sex determination. SRY protein is expressed in the genital ridge before testis determination, and in the testis it is expressed in Sertoli and germ cells. Completely sex-reversed patients are classified as either 46,XX males or 46,XY females. SRY mutations have been described in only 15% of patients with 46,XY complete or partial gonadal dysgenesis. However, although incomplete or partial sex-reversal affects 46,XX true hermaphrodites, 46,XY gonadal dysgenesis, and 46,XX/46,XY mosaicism, only 15% of the 46,XX true hermaphrodites analyzed have the SRY gene. Here, we demonstrate that the SRY protein is expressed in the tubules of streak gonads and rete testis, indicating that the SRY protein is normally expressed early during testis determination. Based on these results, we propose that some factors downstream from SRY may be mutated in these 46,XY sex-reversal patients. We have also analyzed SRY protein expression in the ovotestis from 46,XX true hermaphrodites and 46,XX/46,XY mosaicism, demonstrating SRY protein expression in both testicular and ovarian portions in these patients. This suggests that the SRY protein does not inhibit ovary development. These results confirm that other factors are needed for complete testis development, in particular, those downstream of the SRY protein.  相似文献   

19.
The breast and ovarian cancer susceptibility protein BRCA1 is evolutionarily conserved and functions in DNA double-strand break (DSB) repair through homologous recombination, but its role in meiosis is poorly understood. By using genetic analysis, we investigated the role of the Caenorhabditis elegans BRCA1 orthologue (brc-1) during meiotic prophase. The null mutant in the brc-1 gene is viable, fertile and shows the wild-type complement of six bivalents in most diakinetic nuclei, which is indicative of successful crossover recombination. However, brc-1 mutants show an abnormal increase in apoptosis and RAD-51 foci at pachytene that are abolished by loss of spo-11 function, suggesting a defect in meiosis rather than during premeiotic DNA replication. In genetic backgrounds in which chiasma formation is abrogated, such as him-14/MSH4 and syp-2, loss of brc-1 leads to chromosome fragmentation suggesting that brc-1 is dispensable for crossing over but essential for DSB repair through inter-sister recombination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号