首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 2-kb fragment from the 5'-flanking region of the RGS-28 gene,which encodes the cytosolic glutamine synthetase in Oryza sativaL., was fused to a ß-glucuronidase (GUS) reportergene and introduced into Nicotiana tabacum by Agrobacterium-mediatedtransformation. The promoter was predominantly active in theleaves of transgenic plants, as it is in authentic rice plants.The promoter also responded to externally applied ammonium ions.It is suggested that the cis-acting regulatory elements responsiblefor the recognition of the leaf as a site of synthesis and ofammonia, a substrate for glutamine synthetase, are located withina 2-kb region of the promoter. (Received October 15, 1990; Accepted January 11, 1991)  相似文献   

2.
3.
4.
The pedicel region of Zea mays kernels contains a unique formof maize glutamine synthetase (GS), GSpl. RNA blot analysisusing GS gene-specific probes revealed that the expression ofthe GS.2 gene was specific to the pedicel and that it increasedin the kernels during development. This pattern of the maizeGS.2 gene expression is consistent with the tissue specificityof the GSpl protein and suggests that it encodes the GSpl isoformof maize GS. (Received September 16, 1997; Accepted January 19, 1998)  相似文献   

5.
6.
7.
Glutamine synthetase (GS; EC.6.3.1.2.) occurs as cytosolic (GS1) and plastidic (GS2) polypeptides. This paper describes the expression of GS isoenzymes in coleoptile during the anaerobic germination of rice (Oryza sativa L.) and the influence of exogenous nitrate on this. By immunoprecipitation with anti-GS serum, two polypeptides of 41- and 44-kDa were detected of which the former was predominant. After fractionation by ion-exchange chromatography, the 41 and 44 kDa bands were identified as GS1 and GS2, respectively. Northern blot analysis with specific probes showed the presence of mRNA for cytosolic GS but not for the plastidic form. The presence of exogenous nitrate did not alter the activity and expression of GS in the coleoptile. The role of GS during the anaerobic germination of rice seems to induce the re-assimilation of ammonia rather than the assimilation of nitrate.Abbreviations GS glutamine synthetase - GS1 cytosolic glutamine synthetase - GS2 platidic glutamine synthetase We are grateful to Dr. Julie V. Cullimore for providing GS anti-serum and clones. The research was supported by the National Research Council of Italy, special project RAISA, sub-project N. 2 paper N. 1586.  相似文献   

8.
9.
Illumination of a colorless mutant of Chlorella vulgaris 1lh(M125) with blue light enhanced both the uptake of nitrate andthe release of ammonia. These effects were not observed underillumination with red light. The release of ammonia was alsoenhanced by the addition of methionine sulphoximine (MSX), aninhibitor of glutamine synthetase (GS). Addition of MSX to culturesin the dark increased the rate of breakdown of starch. Algal cells grown in nitrate-containing medium did not showthe aminating activity of glutamate dehydrogenase (GDH). Additionof large (millimolar) amounts of ammonia in the dark resultedin the induction of NADPH-GDH activity and, in addition, a decreasein GS activity. From these results it appears that GS catalyzesthe primary step in the assimilation of ammonia in algal cellsgrown in nitrate-containing medium. Two isoforms (GS1 and GS2)of GS have been separated by ion exchange chromatography. Theactivities of both isoforms were decreased upon the additionof ammonia. Illumination of the alga with blue light at intensities up to10,000 mW m–2 enhanced the measurable activity of GS invitro, while higher intensities were ineffective. In red lightno such effect was observed. The effects of blue light and ammonia on nitrogen metabolismin algal cells are discussed. (Received November 25, 1988; Accepted March 6, 1989)  相似文献   

10.
11.
12.
13.
The expression and promoter activity of genes for isozymes ofhorseradish peroxidase, namely, prxCla, prxClb, prxC2 and prxC3,were studied. Organ-specific expression of these genes in horseradishplants was examined by Northern blot analysis. The group ofprxCl genes was expressed mostly in stems, while prxC2 and prxC3were expressed to a greater extent in roots. Hardly any expressionof any of the genes was detected in leaves. In transient-expressionassays with tobacco protoplasts, about 500 bp of the 5'-noncodingregions of each of the genes, ligated to the gene for ß-glucuronidase(GUS), exhibited significant promoter activity. In particular,the fragments extending from the initiation codon of the prxC2gene to –529 bp and –1 kbp supported high levelsof GUS activity, which were 4.4 and 11.4 times respectively,the activity observed under control of the 35S promoter fromcauliflower mosaic virus (CaMV). Conserved enhancer sequencesof human genes were found in the 5'-flanking region of prxC2,and deletion of the regions that contained the enhancer sequencesreduced the GUS activity. High levels of GUS activity were observedin transgenic tobacco plants that contained 1 kbp of the 5'flanking region of prxC2 fused to the GUS gene. GUS activitywas diminished when deletion from the 5' end extended as faras the CAAT box. No significant organ-specific expression ofGUS was observed with any such deletion. (Received April 15, 1992; Accepted September 11, 1992)  相似文献   

14.
Nitrogen fixation and ammonia assimilation in nodules have beenthoroughly studied under stress conditions, but the behaviorof enzymes involved in ammonia assimilation to organic compoundsin plants of the Leguminosae family subjected to stress stillremains to be conclusively established. We found that understress conditions, C. ensiformis plants can switch from theirusual pathway of assimilation to an alternative one dependingon the nature of the stress and the tissue in which the processtakes place. In roots, it switches from the glutamate dehydrogenase(GDH) pathway to the glutamine synthetase (GS)/glutamate synthase(GOGAT) cycle under water stress but not under salt stress.However, in leaves under salt stress, GDH activity is maintainedbut GS activity markedly decreases (Received March 24, 1987; Accepted March 4, 1988)  相似文献   

15.
Anti-glutamine synthetase serum was raised in rabbits by injecting purified glutamine synthetase (GS) of the phototrophic bacterium Rhodopseudomonas capsulata E1F1. The antibodies were purified to monospecificity by immunoaffinity chromatography in GS-sepharose gel. These anti-GS antibodies were used to measure the antigen levels in crude extracts from bacteria, grown phototrophically with dinitrogen, nitrate, nitrite, ammonia, glutamate, glutamine or alanine as nitrogen sources. The amount of GS detected by rocket immunoelectrophoresis was proportional to Mn2+-dependent transferase activity measured in the crude extracts. Addition of GS inhibitor l-methionine-d,l-sulfoximine (MSX) to the actively growing cells promoted increased antigen levels, that were not found in the presence of glutamine or chloramphenicol. The ammonia-induced decrease in GS relative levels was reverted by MSX. GS levels remained constant when phototrophically growing cells were kept in the dark.Abbreviations GS glutamine synthetase - MOPS 2-(N-morpholine) propane sulfonate - MSX l-methionine-d,l-sulfoximine  相似文献   

16.
17.
Summary Localization of glutamine synthetase inSolanum tuberosum leaves was investigated by techniques of Western tissue printing and immunogold electron microscopy. Anti-GS antibodies used in immunolocalization recognize two peptides (45 kDa and 42 kDa) on Western blots. Antibody stained tissue prints on nitrocellulose membranes allowed low resolution localization of GS. Immunostaining was most evident in the adaxial phloem of the leaf midribs and petiole veins. High-resolution localization of glutamine synthetase by immunogold electron microscopy revealed that this enzyme occurs in both the chloroplasts and the cytosol ofS. tuberosum leaf cells. However, GS was specifically associated with the chloroplasts of mesophyll cells and with the cytoplasm of phloem companion cells. The evidence for cell-specific localization of chloroplast and cytosolic GS presented here agrees with the recently reported cell-specific pattern of expression of GUS reporter gene, directed by promoters for chloroplast and cytosolic GS form in tobacco transgenic plants. These data provide additional clues to the interpretation of the functional role of these different isoenzymes and its relationship with their specific localization.Abbreviations BSA bovine serum albumin - EM electron microscope - GOGAT glutamate synthase - GS glutamine synthetase - GUS -glucuronidase - IgG immunoglobulin - PBS phosphate buffer saline - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

18.
15N labelling was used to investigate the pathway of nitrogenassimilation in photorespiratory mutants of barley (Hordeumvulgare cv. Maris Mink), in which the leaves have low levelsof glutamine synthetase (GS) or glutamate synthase, key enzymesof ammonia assimilation. These plants grew normally when maintainedin high CO2, but the deletions were lethal when photorespirationwas initiated by transfer to air. Enzyme levels in roots weremuch less affected, compared to leaves, and assimilation oflabelled nitrate into amino acids of the root showed very littledifference between wild type and mutants. Organic nitrogen wasexported from roots in the xylem sap mainly as glutamine, levelsof which were somewhat reduced in the GS-deficient mutant andenhanced in the glutamate synthase deficient mutant. In theleaf, the major effect was seen in the glutamatesynthase mutant,which had an extremely limited capacity to utilize the importedglutamine and amino acid synthesis was greatlyrestricted. Thiswas confirmed by the supply of [15N]-glutamine directly to leaves.Leaves of the GS-deficient mutant assimilatedammonia at about75% the rate found for the wild type, and this was almost completelyeliminated by addition of the inhibitormethionine sulphoximine.Root enzymes, together with residual levels of the deleted enzymesin the leaves, have sufficient capacityfor ammonia assimilation,through the glutamate synthase cycle, to provide adequate inputof nitrogen for normal growth of themutants, if photorespiratoryammonia production is suppressed. Key words: Hordeum vulgare, 15N, glutamine synthetase, glutamate synthase, ammonia assimilation  相似文献   

19.
Higher plants assimilate nitrogen in the form of ammonia through the concerted activity of glutamine synthetase (GS) and glutamate synthase (GOGAT). The GS enzyme is either located in the cytoplasm (GS1) or in the chloroplast (GS2). To understand how modulation of GS activity affects plant performance, Lotus japonicus L. plants were transformed with an alfalfa GS1 gene driven by the CaMV 35S promoter. The transformants showed increased GS activity and an increase in GS1 polypeptide level in all the organs tested. GS was analyzed by non-denaturing gel electrophoresis and ion-exchange chromatography. The results showed the presence of multiple GS isoenzymes in the different organs and the presence of a novel isoform in the transgenic plants. The distribution of GS in the different organs was analyzed by immunohistochemical localization. GS was localized in the mesophyll cells of the leaves and in the vasculature of the stem and roots of the transformants. Our results consistently showed higher soluble protein concentration, higher chlorophyll content and a higher biomass accumulation in the transgenic plants. The total amino acid content in the leaves and stems of the transgenic plants was 22–24% more than in the tissues of the non-transformed plants. The relative abundance of individual amino acid was similar except for aspartate/asparagine and proline, which were higher in the transformants.Abbreviations GS Glutamine synthetase - UTR Untranslated region  相似文献   

20.
The arcA, a member of the G protein rß-subunit family,was isolated from tobacco BY-2 cells as an auxin-responsivegene. Characterization of arcA, which should help to elucidatethe function of the gene product in the plant cells, was performedwith emphasis on the mode of expression and the analysis ofits promoter. Accumulation of the arcA message was detectedonly after treatments with auxins and not after treatments withother phytohormones or CdCl2, implying that responsiveness ofarcA was exclusive to auxin. The putative arcA promoter regionwas fused to a reporter gene for rß-glucuronidase(GUS), and transient expression was analyzed in tobacco BY-2cells. Two series of arcA promoter/GUS chimeric genes were constructed.One consisted of a set of 5' nested deletions of the arcA promoterconnected to the gene for GUS and the other consisted of a varietyof the arcA promoter fragments fused to a minimal promoter-GUSconstruct. The results indicated that the promoter sequencecovering four sets of direct repeats (– 562 to –167)was necessary for the sufficient response of arcA promoter toauxin in BY-2 cells. Moreover, irrespective of auxin treatment,elevated activity of GUS driven by this promoter fragment wasdetected, a result that implies that this region behaves anenhancer in BY-2 cells. (Received September 30, 1995; Accepted March 1, 1996)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号