首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 662 毫秒
1.
Oxidized halogen antimicrobials, such as hypochlorous and hypobromous acids, have been used extensively for microbial control in industrial systems. Recent discoveries have shown that acylated homoserine lactone cell-to-cell signaling molecules are important for biofilm formation in Pseudomonas aeruginosa, suggesting that biofouling can be controlled by interfering with bacterial cell-to-cell communication. This study was conducted to investigate the potential for oxidized halogens to react with acylated homoserine lactone-based signaling molecules. Acylated homoserine lactones containing a 3-oxo group were found to rapidly react with oxidized halogens, while acylated homoserine lactones lacking the 3-oxo functionality did not react. The Chromobacterium violaceum CV026 bioassay was used to determine the effects of such reactions on acylated homoserine lactone activity. The results demonstrated that 3-oxo acyl homoserine lactone activity was rapidly lost upon exposure to oxidized halogens; however, acylated homoserine lactones lacking the 3-oxo group retained activity. Experiments with the marine alga Laminaria digitata demonstrated that natural haloperoxidase systems are capable of mediating the deactivation of acylated homoserine lactones. This may illustrate a natural defense mechanism to prevent biofouling on the surface of this marine alga. The Chromobacterium violaceum activity assay illustrates that reactions between 3-oxo acylated homoserine lactone molecules and oxidized halogens do occur despite the presence of biofilm components at much greater concentrations. This work suggests that oxidized halogens may control biofilm not only via a cidal mechanism, but also by possibly interfering with 3-oxo acylated homoserine lactone-based cell signaling.  相似文献   

2.
Quorum sensing (QS) is a mechanism by which gram-negative bacteria regulate their gene expression by making use of cell density. QS is triggered by a small molecule known as an autoinducer. Typically, gram-negative bacteria such as Vibrio produce signaling molecules called acyl homoserine lactones (AHLs). However, their levels are very low, making them difficult to detect. We used thin layer chromatography (TLC) to examine AHLs in different Vibrio species, such as Vibrio alginolyticus, Vibrio parahemolyticus, and Vibrio cholerae, against a standard- Chromobacterium violaceum. Further, AHLs were characterised by high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC–MS). C4-HSL (N- butanoyl- L- homoserine lactone), C6-HSL (N- hexanoyl- L- homoserine lactone), 3-oxo-C8-HSL (N-(3-Oxooctanoyl)-DL-homoserine lactone), C8-HSL (N- octanoyl- L- homoserine lactone), C110-HSL (N- decanoyl- L- homoserine lactone), C12-HSL (N- dodecanoyl- L- homoserine lactone) and C14-HSL (N- tetradecanoyl- L- homoserine lactone) were identified from Vibrio. These results may provide a basis for blocking the AHL molecules of Vibrio, thereby reducing their pathogenicity and eliminating the need for antimicrobials.  相似文献   

3.
A method is reported for the quantification of 3-oxoacyl homoserine lactones (3-oxo AHLs), a major class of quorum-sensing signals found in Gram-negative bacteria. It is based on the conversion of 3-oxo AHLs to their pentafluorobenzyloxime derivatives followed by gas chromatography-mass spectrometry (electron capture-negative ion). The method used [13C16]-N-3-oxo-dodecanoyl homoserine lactone ([13C16]-OdDHL) as the internal standard, and its validity was tested by spiking the supernatant and cell fractions with three levels of 3-oxo AHLs, i.e. 1, 10 and 100 ng per sample. These showed the method to be both sensitive (S/N ratio >10:1 for 1 ng) and accurate. The assay was applied to the biofilm and effluent of a green fluorescent protein (GFP)-expressing strain of Pseudomonas aeruginosa (6294) culture grown in flow cells. Biofilm volume was determined for three replicate flow cells by confocal scanning laser microscopy. OdDHL was detected in the biofilm at 632 +/- 381 microM and the effluent at 14 +/- 3 nM. The biofilm concentration is the highest level so far reported for an AHL in a wild-type bacterial system. The next most abundant 3-oxo AHL in the biofilm and effluent was N-3-oxo-tetradecanoyl homoserine lactone (OtDHL) at 40 +/- 15 microM and 1.5 +/- 0.7 nM respectively. OtDHL is unreported for P. aeruginosa and has an activity equivalent to OdDHL in a lasR bioassay. Two other 3-oxo AHLs were detected at lower concentrations: N3-oxo-decanoyl homoserine lactone (ODHL) in the biofilm (3 +/- 2 microM) and effluent (1 +/- 0.1 nM); and N-3-oxo-octanoyl homoserine lactone (OOHL) in the effluent (0.1 +/- 0.1 nM).  相似文献   

4.
Some members of the moderately halophilic genus Halomonas, such as H. eurihalina, H. maura, H. ventosae and H. anticariensis, produce exopolysaccharides with applications in many industrial fields. We report here that these four species also produce autoinducer molecules that are involved in the cell-to-cell signaling process known as quorum sensing. By using the N-acyl homoserine lactone (AHL) indicator strains Agrobacterium tumefaciens NTL4 (pZRL4) and Chromobacterium violaceum CV026, we discovered that all the Halomonas strains examined synthesize detectable AHL signal molecules. The synthesis of these compounds was growth-phase dependent and maximal activity was reached during the late exponential to stationary phases. One of these AHLs seems to be synthesized only in the stationary phase. Some of the AHLs produced by H. anticariens FP35T were identified by gas chromatography/mass spectrometry and electrospray ionization tandem mass spectrometry as N-butanoyl homoserine lactone (C4-HL), N-hexanoyl homoserine lactone (C6-HL), N-octanoyl homoserine lactone (C8-HL) and N-dodecanoyl homoserine lactone (C12-HL). This study suggests that quorum sensing may also play an important role in extreme environments.  相似文献   

5.
Certain bacteria use cell-to-cell chemical communication to coordinate community-wide phenotypic expression, including swarming motility, antibiotic biosynthesis, and biofilm production. Here we present a marine gram-positive bacterium that secretes secondary metabolites capable of quenching quorum sensing-controlled behaviors in several gram-negative reporter strains. Isolate C42, a Halobacillus salinus strain obtained from a sea grass sample, inhibits bioluminescence production by Vibrio harveyi in cocultivation experiments. With the use of bioassay-guided fractionation, two phenethylamide metabolites were identified as the active agents. The compounds additionally inhibit quorum sensing-regulated violacein biosynthesis by Chromobacterium violaceum CV026 and green fluorescent protein production by Escherichia coli JB525. Bacterial growth was unaffected at concentrations below 200 μg/ml. Evidence is presented that these nontoxic metabolites may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding.  相似文献   

6.
Abtsract Comamonas strain D1 enzymatically inactivates quorum-sensing (QS) signal molecules of the N-acyl homoserine lactone (N-AHSL) family, and exhibits the broadest inactivation range of known bacteria. It degrades N-AHSL with acyl-side chains ranging from 4 to 16 carbons, with or without 3-oxo or 3-hydroxy substitutions. N-AHSL degradation yields HSL but not N-acyl homoserine: strain D1 therefore harbors an amidohydrolase activity. Strain D1 is the fifth bacterium species in which an N-AHSL amidohydrolase is described. Consistent with its N-AHSL degradation ability, strain D1 efficiently quenches various QS-dependent functions in other bacteria, such as violacein production by Chromobacterium violaceum and pathogenicity and antibiotic production in Pectobacterium.  相似文献   

7.

Background

Quorum sensing is a term that describes an environmental sensing system that allows bacteria to monitor their own population density which contributes significantly to the size and development of the biofilm. Many gram negative bacteria use N-acyl-homoserine lactones as quorum sensing signal molecules. In this study, we sought to find out if the biofilm formation among clinical isolates of Acinetobacter spp. is under the control of autoinducing quorum sensing molecules.

Methodology/Principal Findings

Biofilm formation among clinical isolates of Acinetobacter spp. was assessed and the production of signal molecules were detected with Chromobacterium violaceum CV026 biosensor system. Characterisation of autoinducers was carried out by mass spectrometric analysis. We have also reported the identification of an autoinducer synthase gene, abaΙ among the isolates that produce quorum sensing signal molecules and have reported that the mutation in the abaI gene influences their biofilm forming capabilities. Using a microtitre-plate assay it was shown that 60% of the 50 Acinetobacter spp. isolates significantly formed biofilms. Further detection with the biosensor strain showed that some of these isolates produced long chain signal molecules. Mass spectrometric analysis revealed that five of these isolates produced N-decanoyl homoserine lactone and two isolates produced acyl-homoserine lactone with a chain length equal to C12. The abaΙ gene was identified and a tetracycline mutant of the abaΙ gene was created and the inhibition in biofilm formation in the mutant was shown.

Conclusions/Significance

These data are of great significance as the signal molecules aid in biofilm formation which in turn confer various properties of pathogenicity to the clinical isolates including drug resistance. The use of quorum sensing signal blockers to attenuate bacterial pathogenicity is therefore highly attractive, particularly with respect to the emergence of multi antibiotic resistant bacteria.  相似文献   

8.
Quorum sensing (QS) is a cell-to-cell signaling communication system that controls the virulence behavior of a broad spectrum of bacterial pathogens, participating also in the development of biofilms, responsible of the antibiotic ineffectiveness in many infections. Therefore, QS system is an attractive target for antimicrobial therapy. In this study, we compare the effect of seven structurally related coumarins against bacterial growth, biofilm formation and elastase activity of Pseudomonas aeruginosa. In addition, the anti-pathogenic capacity of the seven coumarins was evaluated on the wild type and the biosensor strain of Chromobacterium violaceum.The comparative study of coumarins showed that molecules with hydroxyl groups on the aromatic ring displayed higher activity on the inhibition of biofilm formation of P. aeruginosa over coumarins with substituents in positions 3 and 4 or without the double 3,4-bond. These 3 or 4-hydroxylated positions caused a decrease in the anti-biofilm activity obtained for coumarin. However, the hydroxyl group in position 3 of the pyrone ring was important for the inhibition of C. violaceum QS and elastolytic activity of P. aeruginosa. The effects observed were active independently of any effect on growth. According to our results, coumarin and its hydroxylated derivatives represent an interesting group of compounds to use as anti-virulence agents against the human pathogen P. aeruginosa.  相似文献   

9.
Biofilms of a number of gram-positive and gram-negative bacteria (both environmental strains from the stratal waters of oil fields and collection strains) were found to exhibit higher resistance to extreme physicochemical factors (unfavorable temperature, pH, and salt concentration) than planktonic cultures. The extracellular polymers forming the structure of the biofilm matrix were shown to contribute significantly to this resistance, since suppression of matrix formation by subbacteriostatic concentrations of azithromycin (for Pseudomonas acephalitica) or mutation in the cvil gene encoding N-hexanoyl homoserine lactone synthetase (for Chromobacterium violaceum CV026) resulted in the resistance of biofilms being decreased almost to the level of planktonic cultures. The role of the biofilm matrix for bacterial survival under extreme conditions is discussed.  相似文献   

10.
Quorum sensing (QS) is an important regulatory mechanism in biofilm formation and differentiation. Interference with QS can affect biofilm development and antimicrobial susceptibility. This study evaluates the potential of selected phytochemical products to inhibit QS. Three isothiocyanates (allylisothiocyanate – AITC, benzylisothiocyanate – BITC and 2-phenylethylisothiocyanate – PEITC) and six phenolic products (gallic acid – GA, ferulic acid – FA, caffeic acid – CA, phloridzin – PHL, (?) epicatechin – EPI and oleuropein glucoside – OG) were tested. A disc diffusion assay based on pigment inhibition in Chromobacterium violaceum CV12472 was performed. In addition, the mechanisms of QS inhibition (QSI) based on the modulation of N-acyl homoserine lactone (AHLs) activity and synthesis by the phytochemicals were investigated. The cytotoxicity of each product was tested on a cell line of mouse lung fibroblasts. AITC, BITC and PEITC demonstrated a capacity for QSI by modulation of AHL activity and synthesis, interfering the with QS systems of C. violaceum CviI/CviR homologs of LuxI/LuxR systems. The cytotoxic assays demonstrated low effects on the metabolic viability of the fibroblast cell line only for FA, PHL and EPI.  相似文献   

11.
Vibrio anguillarum produces several interlinked acylated homoserine lactone (AHL) signal molecules which may influence expression of its virulence factors such as exoprotease production and biofilm formation. Using both thin layer chromatography and HPLC-high resolution mass spectrometry (HPLC-HRMS), we demonstrate in this study that the same types of AHLs are produced by many serotypes of V. anguillarum and that altering in vitro growth conditions (salinity, temperature and iron concentration) has little influence on the AHL-profile. Most strains produced N-(3-oxodecanoyl)-l-homoserine lactone (3-oxo-C10-HSL) and N-(3-hydroxy-hexanoyl)-l-homoserine lactone (3-hydroxy-C6-HSL) as the dominant molecules. Also, two spots with AHL activity appeared on TLC plates, which could not be identified as AHL structures. Trace amounts of N-(3-hydroxy-octanoyl)-l-homoserine lactone, N-(3-hydroxy-decanoyl)-l-homoserine lactone and N-(3-hydroxy-dodecanoyl)-l-homoserine lactone (3-hydroxy-C8-HSL, 3-hydroxy-C10-HSL and 3-oxo-C12-HSL, respectively) were also detected by HPLC-HRMS analysis from in vitro cultures. Most studies of quorum sensing (QS) systems have been conducted in vitro, the purpose of our study was to determine if the same acylated homoserine lactones were produced in vivo during infection. Extracts from infected fish were purified using several solid phase extraction strategies to allow chromatographic detection and separation by both TLC and HLPC-HRMS. 3-oxo-C10-HSL and 3-hydroxy-C6-HSL were detected in organs from fish dying from vibriosis, however, compared to in vitro culturing where 3-oxo-C10-HSL is the dominant molecule, 3-hydroxy-C6-HSL was prominent in the infected fish tissues. Hence, the balance between the QS systems may be different during infection compared to in vitro cultures. For future studies of QS systems and the possible specific interference with expression of virulence factors, in vitro cultures should be optimised to reflect the in vivo situation.  相似文献   

12.
Our study focused on a Mesorhizobium sp. that is phylogenetically affiliated by 16S rRNA gene sequence to other marine and saline bacteria of this genus. Liquid chromatography-mass spectrometry investigations of the extract obtained from solid-phase extraction of cultures of this bacterium indicated the presence of several N-acyl homoserine lactones (AHLs), with chain lengths of C10 to C16. Chromatographic separation of the active bacterial extract yielded extraordinarily large amounts of two unprecedented acylated homoserine lactones, 5-cis-3-oxo-C12-homoserine lactone (5-cis-3-oxo-C12-HSL) (compound 1) and 5-cis-C12-HSL (compound 2). Quorum-sensing activity of compounds 1 and 2 was shown in two different biosensor systems [Escherichia coli MT102(pSB403) and Pseudomonas putida F117(pKR-C12)]. Furthermore, it was shown that both compounds can restore protease and pyoverdin production of an AHL-deficient Pseudomonas aeruginosa PAO1 lasI rhlI double mutant, suggesting that these signal molecules maybe used for intergenus signaling. In conclusion, these data indicate that the quorum-sensing activity of compounds 1 and 2 is modulated by the chain length and functional groups of the acyl moiety. Additionally, compound 1 showed antibacterial and cytotoxic activities.  相似文献   

13.
Quorum sensing (QS), a cell-to-cell communication process, entails the production of signaling molecules that enable synchronized gene expression in microbial communities to regulate myriad microbial functions, including biofilm formation. QS disruption may constitute an innovative approach to the design of novel antifouling and anti-biofilm agents. To identify novel quorum sensing inhibitors (QSI), 2,500 environmental bacterial artificial chromosomes (BAC) from uncultured marine planktonic bacteria were screened for QSI activity using soft agar overlaid with wild type Chromobacterium violaceum as an indicator. Of the BAC library clones, 7% showed high QSI activity (>40%) against the indicator bacterium, suggesting that QSI is common in the marine environment. The most active compound, eluted from BAC clone 14-A5, disrupted QS signaling pathways and reduced biofilm formation in both Pseudomonas aeruginosa and Acinetobacter baumannii. The mass spectra of the active BAC clone (14-A5) that had been visualized by thin layer chromatography was dominated by a m/z peak of 362.1.  相似文献   

14.
Our study focused on a Mesorhizobium sp. that is phylogenetically affiliated by 16S rRNA gene sequence to other marine and saline bacteria of this genus. Liquid chromatography-mass spectrometry investigations of the extract obtained from solid-phase extraction of cultures of this bacterium indicated the presence of several N-acyl homoserine lactones (AHLs), with chain lengths of C(10) to C(16). Chromatographic separation of the active bacterial extract yielded extraordinarily large amounts of two unprecedented acylated homoserine lactones, 5-cis-3-oxo-C(12)-homoserine lactone (5-cis-3-oxo-C(12)-HSL) (compound 1) and 5-cis-C(12)-HSL (compound 2). Quorum-sensing activity of compounds 1 and 2 was shown in two different biosensor systems [Escherichia coli MT102(pSB403) and Pseudomonas putida F117(pKR-C12)]. Furthermore, it was shown that both compounds can restore protease and pyoverdin production of an AHL-deficient Pseudomonas aeruginosa PAO1 lasI rhlI double mutant, suggesting that these signal molecules maybe used for intergenus signaling. In conclusion, these data indicate that the quorum-sensing activity of compounds 1 and 2 is modulated by the chain length and functional groups of the acyl moiety. Additionally, compound 1 showed antibacterial and cytotoxic activities.  相似文献   

15.
The oxygen-limited autotrophic nitrification/denitrification (OLAND) process comprises one-stage partial nitritation and anammox, catalyzed by aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB), respectively. The goal of this study was to investigate whether quorum sensing influences anoxic ammonium oxidation in an OLAND biofilm, with AnAOB colonizing 13% of the biofilm, as determined with fluorescent in situ hybridization (FISH). At high biomass concentrations, the specific anoxic ammonium oxidation rate of the OLAND biofilm significantly increased with a factor of 1.5 ± 0.2 compared to low biomass concentrations. Supernatant obtained from the biofilm showed no ammonium-oxidizing activity on itself, but its addition to low OLAND biomass concentrations resulted in a significant activity increase of the biomass. In the biofilm supernatant, the presence of long-chain acylhomoserine lactones (AHLs) was shown using the reporter strain Chromobacterium violaceum CV026, and one specific AHL, N-dodecanoyl homoserine lactone (C12-HSL), was identified via LC-MS/MS. Furthermore, C12-HSL was detected in an AnAOB-enriched community, but not in an AerAOB-enriched community. Addition of C12-HSL to low OLAND biomass concentrations resulted in a significantly higher ammonium oxidation rate (p < 0.05). To our knowledge, this is the first report demonstrating that AHLs enhance the anoxic ammonium oxidation process. Future work should confirm which species are responsible for the in situ production of C12-HSL in AnAOB-based applications.  相似文献   

16.
【背景】近年来,群体感应淬灭(Quorum Quenching,QQ)技术在膜生物污堵防控中的应用研究受到了广泛关注。然而,目前已成功分离纯化的高效QQ菌有限,更多高效QQ菌资源亟待挖掘。【目的】从实际运行的膜生物反应器(MembraneBioreactor,MBR)活性污泥中采样,分离并富集高效QQ菌。【方法】以根瘤农杆菌(Agrobacterium tumefaciens) A136为报告菌株,使用指示琼脂平板法测定各菌株的N-辛酰基高丝氨酸内酯(N-Octanoyl-DL-Homoserine Lactone,C8-HSL)降解能力。以紫色色杆菌(Chromobacterium violaceum) VIR24为报告菌株,定量测定所得QQ菌降解N-己酰高丝氨酸内酯(N-Hexanoyl-DL-Homoserine Lactone,C6-HSL)信号分子的能力。通过微生物形态、生理生化及16SrRNA基因序列测定、构建系统发育树、扫描电子显微镜形态观测等方法对菌株进行分类学鉴定。用共培养法分析QQ菌对生物膜形成的抑制能力,通过聚乙烯醇和海藻酸钠包埋固定化QQ菌。【结果】筛选出了6株高效QQ菌,其中对C8-HSL分解能力最强的为杆状、革兰氏阴性戴尔福特菌属(Delftia sp.) JL5。定量分析结果表明菌株JL5能在10 h内完全降解C6-HSL。菌株JL5显著抑制铜绿假单胞菌(Pseudomonas aeruginosa) PAO1和菠萝泛菌(Pantoea ananatis) SK-1生物膜的形成。固定化后的JL5微球仍具有高效的C6-HSL和C8-HSL信号分子分解能力,而且分解速度较被广泛报道的红球菌(Rhodococcussp.)BH4更快。【结论】研究分离得到了高效的QQ菌,能够有效抑制N-酰基高丝氨酸内酯(N-Acyl-HomoserineLactones,AHL)型群体感应菌生物膜的形成,固定化后仍然具有强QQ活性,具备广泛的应用前景,为后续QQ膜生物污堵防控技术的实践应用奠定了基础。  相似文献   

17.

Background  

Cell to cell signaling systems in Gram-negative bacteria rely on small diffusible molecules such as the N-acylhomoserine lactones (AHL). These compounds are involved in the production of antibiotics, exoenzymes, virulence factors and biofilm formation. They belong to the class of furanone derivatives which are frequently found in nature as pheromones, flavor compounds or secondary metabolites. To obtain more information on the relation between molecular structure and quorum sensing, we tested a variety of natural and chemically synthesized furanones for their ability to interfere with the quorum sensing mechanism using a quantitative bioassay with Chromobacterium violaceum CV026 for antagonistic and agonistic action. We were looking at the following questions:  相似文献   

18.
Chromobacterium violaceum abounds in soil and water ecosystems in tropical and subtropical regions and occasionally causes severe and often fatal human and animal infections. The quorum sensing (QS) system and biofilm formation are essential for C. violaceum''s adaptability and pathogenicity, however, their interrelation is still unknown. C. violaceum''s cell and biofilm morphology were examined by atomic force microscopy (AFM) in comparison with growth rates, QS-dependent violacein biosynthesis and biofilm biomass quantification. To evaluate QS regulation of these processes, the wild-type strain C. violaceum ATCC 31532 and its mini-Tn5 mutant C. violaceum NCTC 13274, cultivated with and without the QS autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL), were used. We report for the first time the unusual morphological differentiation of C. violaceum cells, associated with biofilm development and directed by the QS autoinducer. AFM revealed numerous invaginations of the external cytoplasmic membrane of wild-type cells, which were repressed in the mutant strain and restored by exogenous C6-HSL. With increasing bacterial growth, polymer matrix extrusions formed in place of invaginations, whereas mutant cells were covered with a diffusely distributed extracellular substance. Thus, quorum sensing in C. violaceum involves a morphological differentiation that organises biofilm formation and leads to a highly differentiated matrix structure.  相似文献   

19.
Psidium guajava L., which has been used traditionally as a medicinal plant, was explored for anti‐quorum sensing (QS) activity. The anti‐QS activity of the flavonoid (FL) fraction of P. guajava leaves was determined using a biosensor bioassay with Chromobacterium violaceum CV026. Detailed investigation of the effects of the FL‐fraction on QS‐regulated violacein production in C. violaceum ATCC12472 and pyocyanin production, proteolytic, elastolytic activities, swarming motility and biofilm formation in Pseudomonas aeruginosa PAO1 was performed using standard methods. Possible mechanisms of QS‐inhibition were studied by assessing violacein production in response to N‐acyl homoserine lactone (AHL) synthesis in the presence of the FL‐fraction in C. violaceum ATCC31532 and by evaluating the induction of violacein in the mutant C. violaceum CV026 by AHL extracted from the culture supernatants of C. violaceum 31532. Active compounds in the FL‐fraction were identified by liquid chromatography–mass spectrometry (LC–MS). Inhibition of violacein production by the FL‐fraction in a C. violaceum CV026 biosensor bioassay indicated possible anti‐QS activity. The FL‐fraction showed concentration‐dependent decreases in violacein production in C. violaceum 12472 and inhibited pyocyanin production, proteolytic and elastolytic activities, swarming motility and biofilm formation in P. aeruginosa PAO1. Interestingly, the FL‐fraction did not inhibit AHL synthesis; AHL extracted from cultures of C. violaceum 31532 grown in the presence of the FL‐fraction induced violacein in the mutant C. violaceum CV026. LC–MS analysis revealed the presence of quercetin and quercetin‐3‐O‐arabinoside in the FL‐fraction. Both quercetin and quercetin‐3‐O‐arabinoside inhibited violacein production in C. violaceum 12472, at 50 and 100 μg/mL, respectively. Results of this study provide scope for further research to exploit these active molecules as anti‐QS agents.  相似文献   

20.
The effects of four alkylhydroxybenzene (AHB) homologs with different hydrocarbon chain lengths on the synthesis of violacein pigment induced by C6-homoserine lactone (HSL) and biofilm formation by Chromobacterium violaceum NCTC 13274 and on Escherichia coli pAL103 bioluminescence in the presence of C6-oxo-HSL were studied. Alkylhydroxybenzenes inhibit the growth of C. violaceum increased in the C5-AHB → C12-AHB series in the absence of this activity in C1-AHB. Subinhibitory AHB concentrations reduced violacein production and suppressed biofilm formation. These effects were presented as individual and group regression dependencies between the analysed parameters. Using the bioluminescent model, the regulatory effects of AHBs were not associated with their direct competition with HSL and that they develop as a result of changes in the sensitivity of bacterial cells to the respective quorum sensing inducer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号