首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new member of the human RNase A superfamily is reported. Identified in the human genome assembly as LOC 390443, this locus is located 128 kb telomeric to the established RNase A gene family cluster on chromosome 14q11.2. The amino acid sequence of this locus is sufficiently similar to the eight previously identified gene family members to warrant a designation as RNase 9. RNase 9 is expressed in a wide range of human tissues. In addition, a 30-amino acid sequence lying between a 26-amino acid putative signal peptide and the last 148 amino acids that align with the other RNases A is not seen in other members of the RNase A superfamily in any species. Nucleotide and amino acid sequences of RNase 9 in 13 nonhuman primate species were determined and indicate several conserved sites but, also, an excess of nonsynonymous substitutions, about one-third of which are radical substitutions. This suggests that RNase 9, similar to several other human RNases A, has been under diversifying selection in the primates. Data from the mouse and rat genomes indicate that RNase 9 is also present in rodents, thus making it older than most of the established members of the human RNase A superfamily. Many of the human RNases A have been shown to have antimicrobial, antiviral, or antiparasitic functions involved in host-defense mechanisms. The features of RNase 9 described here suggest that it, too, may be involved in host defense and that it, along with the rest of the superfamily, may prove to have played an important role in anthropoid evolution.  相似文献   

2.
We report the identification and characterization of the gene encoding the eighth and final human ribonuclease (RNase) of the highly diversified RNase A superfamily. The RNase 8 gene is linked to seven other RNase A superfamily genes on chromosome 14. It is expressed prominently in the placenta, but is not detected in any other tissues examined. Phylogenetic analysis suggests that RNase 7 is the closest relative of RNase 8 and that the pair likely resulted from a recent gene duplication event in primates. Further analysis reveals that the RNase 8 gene has incorporated non-silent mutations at an elevated rate (1.3 × 10–9 substitutions/site/year) and that orthologous RNase 8 genes from 6 of 10 primate species examined have been deactivated by frameshifting deletions or point mutations at crucial structural or catalytic residues. The ribonucleolytic activity of recombinant human RNase 8 is among the lowest of members of this superfamily and it exhibits neither antiviral nor antibacterial activities characteristic of some other RNase A ribonucleases. The rapid evolution, species-limited deactivation and tissue-specific expression of RNase 8 suggest a unique physiological function and reiterates the evolutionary plasticity of the RNase A superfamily.  相似文献   

3.
Genetic polymorphism of human serum ribonuclease I (RNase I).   总被引:1,自引:1,他引:0       下载免费PDF全文
One of the human urinary ribonucleases (RNases) was isolated and purified to homogeneity (SDS-PAGE) by means of a series of column chromatographies. The enzyme, designated RNase 1, is a glycoprotein with a molecular weight of approximately 16,000. Rabbit antibody to the purified RNase 1 reacted with human urine and sera, as well as with the purified RNase 1. The genetic polymorphism of serum RNase 1 was studied by polyacrylamide gel isoelectric focusing (IEF-PAGE) in a pH range of 5-8, followed by immunoblotting with antisera specific for RNase 1. Two common phenotypes, RNASE1 1 and RNASE1 1-2, were easily recognized. The homogeneous phenotype, RNASE1 1, consisted of four major bands with different pI values, and the heterogeneous phenotype, RNASE1 1-2, was presumed to represent a mixture of each of the homogeneous phenotypes 1 and 2; however, the other homogeneous phenotype, RNASE1 2, was not detected in our samples. Family studies are in agreement with an autosomal codominant transmission of the two alleles. Population studies indicate that the frequencies of the RNASE 1 and RNASE1 2 alleles are .988 and .012, respectively.  相似文献   

4.
5.
The mechanisms by which the region-specific expression patterns of clustered genes evolve are poorly understood. The epididymis is an ideal organ to examine this, as it is a highly segmented tissue that differs significantly in structure between closely related species. Here we examined this issue through analysis of the rapidly evolving X-linked reproductive homeobox (Rhox) gene cluster, the largest known homeobox gene cluster in metazoans. In the mouse, we found that most Rhox genes are expressed primarily in the caput region of the epididymis, a site where sperm mature and begin acquiring forward motility. This region-specific expression pattern depends, in part, on the founding member of the Rhox cluster--Rhox5--as targeted mutation of Rhox5 greatly diminishes the expression of several other family members in the caput region. In the rat, Rhox5 expression switches from the caput to the site of sperm storage: the cauda. All Rhox genes under the control of Rhox5 in the mouse epididymis display a concomitant change in their regional expression in the rat epididymis. Our results lead us to propose that widespread changes in the region-specific expression pattern of genes over evolutionary time can be the result of alterations of one or only a few master regulatory genes.  相似文献   

6.
RNase5是RNASE A基因超家族中的一个重要成员,是分子进化研究的理想模型之一。基于基因组水平,我们对啮齿目的3个进化枝10科17个物种开展RNase5的分子进化研究。利用TBlastN及BlastN方法鉴定每个基因组的RNase5基因,发现该基因在啮齿目的Ctenohystrica所有物种发生丢失,时间是在Ctenohystrica形成之后;邻接法和最大似然法构建的系统发育树均支持RNase5在“与小家鼠相关的进化枝”的小家鼠、褐家鼠和拉布拉多白足鼠发生三次独立基因复制事件;利用PAML软件的枝模型、位点模型及枝-位点模型计算选择压力,均检测到RNase5基因受到强烈的正选择作用。总之,我们的研究深入系统开展了RNase5在啮齿目中的分子进化,增加了该基因研究的多样性,为进一步系统认识该基因在动物的适应性进化遗传机制奠定了基础。  相似文献   

7.
In this study, we purified the first member of a new ribonuclease (RNase) A family from fluid of the proximal caput of the boar epididymis. This protein, named "Train A," is the most abundant compound secreted in the anterior part of the boar epididymis. After 2D electrophoresis, it is characterized by more than 10 isoforms ranging in size from 26 to 33 kDa and pI from 5 to 8.5. Several tryptic peptides were N-terminal sequenced, and an antiserum against one of these peptides was obtained. The protein was immunolocalized in the epididymal epithelium of the proximal caput, especially in the Golgi zone and the apical cytoplasm of the principal cells. In the lumen, spermatozoa were negative but droplets of reaction product were observed within the lumen. Full lengths of Train A cDNA were obtained from a lambdagt11 boar caput epididymis library and sequenced. The deduced protein is composed of 213 amino acids, including a 23-amino acid peptide signal and a potential N-glycosylation site. The mRNA of this protein has been retrieved and partially sequenced in the bull, horse, and ram, and homologous cDNA is found in databanks for the rat, mouse, and human. All the sequences are highly conserved between species. This protein and its mRNA are male-specific and exclusively expressed in the proximal caput of the epididymis, the only site where they have been found. Train A presents an RNase A family motif in its sequence. The RNase A family is a group of several short proteins (20-14 kDa) with greater and lesser degrees of ribonucleolytic activity and with supposed different roles in vivo. However, the presence of a long-conserved N-terminal specific sequence and the absence of RNase catalytic site for Train A indicate that Train A protein is a member of a new family of RNase A.  相似文献   

8.
Angiogenin (ANG) [also known as ribonuclease, RNase A family, 5 (RNASE5)], ribonuclease, RNase A family, 1 (pancreatic) (RNASE1) and ribonuclease, RNase A family, k6 (RNASE6) are three members of the RNase A superfamily. It has been suggested that these three genes play important roles in host defense. In this study, we obtained the whole open reading frame (ORF) of each gene and found the deduced proteins contain some similar structures harboring a catalytic triad and an invariant “CKXXNTF” signature motif. One single nucleotide polymorphism (SNP) was detected in each gene (g. 149G>T polymorphism in the porcine ANG gene, which resulted in an amino acid change from glycine to valine, g. 296A>G polymorphism in the porcine RNASE1 gene and g. 389C>T polymorphism in the porcine RNASE6 gene). Association analyses revealed the significant associations (P < 0.05) between the porcine ANG g. 149G>T polymorphism and mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean platelet volume (MPV) and platelet-large cell ratio (P-LCR) measured on 0-day-old pigs and MCV measured at 32 days after birth. The porcine RNASE6 g. 389C>T polymorphism was significantly associated (P < 0.05) with MCV, MCH and neutrophil percentage (NEI %) measured on 0-day-old pigs, respectively. Our current findings, if confirmed by other studies, might shed some light on the roles of the investigated genes in host defense.  相似文献   

9.
Three murine epididymal secretory proteins have been characterized by their site of synthesis, sperm association, and tissue localization by use of polyclonal antisera and immunochemistry. Mouse epididymal protein 7 (MEP 7) was localized initially within the supranuclear regions of some principal epithelial cells in the proximal corpus while other cells remained unstained. In the mid-proximal corpus, all principal cells and stereocilia were stained, and luminal staining increased from corpus to cauda. Some clear cells in the distal corpus and cauda also showed immunoperoxidase staining. Sequential extraction of caudal spermatozoa indicated that MEP 7 was predominantly loosely associated with spermatozoa and that only a small amount of MEP 7 required detergent to extract it from spermatozoa. Examination of other rodent caudal fluids revealed a related protein in rat caudal fluid of 32 kDa, and amino acid sequence analysis of MEP 7 showed a 68% sequence similarity with rat proteins AEG and D/E. MEP 9 immunolocalized within the cytoplasm of all principal cells of the distal caput. In a transition zone between the distal caput and the corpus, some principal cells were stained while others were not. Distal to the corpus, the principal cell staining gradually decreased. In the distal caput and proximal corpus, large heavily stained droplets associated with spermatozoa were seen in the lumen. The staining intensity of these droplets also decreased from corpus to cauda. The clear cells of the distal corpus and cauda did not stain with the antibody to MEP 9. Sequential extraction of caudal spermatozoa showed that some MEP 9 was extractable under low-salt conditions, whereas extraction with 0.1% Triton X-100 was required to remove all MEP 9, indicating it was firmly associated with spermatozoa. The antibody to MEP 9 cross-reacted with a 25-kDa protein present in rat caudal fluid. MEP 10 was localized within the cytoplasm of the principal cells, the stereocilia, and the lumen of the epididymis at the junction of the distal caput and corpus. In the distal corpus, a large number of clear cells were stained, but very few of these cells stained in the cauda. MEP 10 dissociated completely from caudal spermatozoa under low-salt conditions, indicating that it was not firmly bound to spermatozoa. The antiserum to MEP 10 cross-reacted with proteins present in rat and guinea pig caudal fluid. The related rat protein migrated at approximately 20 kDa. Amino acid sequence analysis of MEP 10 revealed an 86% sequence similarity with rat proteins B and C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
11.
郎大田  张亚平  于黎 《遗传》2014,36(4):316-326
核糖核酸酶基因(Ribonuclease A, RNASE A)超家族是进化生物学中研究新基因起源及新功能演变的重要模式系统之一。RNASE A超家族中的很多成员表现出基因复制的进化模式, 而且在适应性(正)选择的驱动下, 发生了功能分化。文章综述了RNASE A超家族成员在不同动物类群中进化模式的研究进展, 包括近年来越来越多在基因组水平上开展的相关研究, 显示该基因超家族可能具有比人们以往认识的更为复杂的基因进化模式。随着越来越多动物基因组数据的产生, 对更多动物代表类群进行RNASE A超家族研究, 将有望揭示新的进化机制和功能分化, 为系统认识动物适应进化的遗传机制奠定基础。  相似文献   

12.
The murine epididymis synthesizes and secretes a retinoic acid-binding protein (mE-RABP) that belongs to the lipocalin superfamily. The gene encoding mE-RABP is specifically expressed in the mouse mid/distal caput epididymidis under androgen control. In transgenic mice, a 5-kilobase pair (kb) promoter fragment, but not a 0.6-kb fragment, of the mE-RABP gene driving the chloramphenicol acetyltransferase (CAT) reporter gene restricted high level of transgene expression to the caput epididymidis. No transgene expression was detected in any other male or female tissues. Immunolocalization of the CAT protein and in situ hybridization of the corresponding CAT mRNA indicated that transgene expression occurred in the principal cells of the mid/distal caput epididymidis, thereby mimicking the spatial endogenous mE-RABP gene expression. Transgene and mE-RABP gene expression was detected from 30 days and progressively increased until 60 days of age. Castration, efferent duct ligation, and hormone replacement studies demonstrated that transgene expression was specifically regulated by androgen but not by any other testicular factors. Altogether, our results demonstrate that the 5-kb promoter fragment of the mE-RABP gene contains all of the information required for the hormonal regulation and the spatial and temporal expression of the mE-RABP gene in the epididymis.  相似文献   

13.
14.
Cho S  Beintema JJ  Zhang J 《Genomics》2005,85(2):208-220
The RNase A superfamily has been important in biochemical, structural, and evolutionary studies and is believed to be the sole vertebrate-specific enzyme family. To understand the origin and diversification of the superfamily, we here determine its entire repertoire in the sequenced genomes of human, mouse, rat, and chicken. We report a previously unnoticed gene cluster in mouse chromosome 10 and a number of new genes, including mammalian RNases 11-13, which are close relatives of the recently identified RNases 9 and 10. Gene expression data imply male-reproductive functions for RNases 9-13, although their sequences suggest the lack of ribonucleolytic activities. In contrast to the presence of 13-20 functional genes in mammals, chicken has only 3 RNase genes, which are evolutionarily close to mammalian RNase 5, like other nonmammalian RNases. This and other evidence suggests that the RNase A superfamily originated from an RNase 5-like gene and expanded in mammals. Together with the fact that multiple lineages of the superfamily, including RNases 2, 3, 5, and 7, have antipathogenic activities, we suggest that the superfamily started off as a host-defense mechanism in vertebrates. Consistent with this hypothesis, all members of the superfamily exhibit high rates of amino acid substitution as is commonly observed in immunity genes.  相似文献   

15.
Here we report on the expression and function of RNase 7, one of the final RNase A superfamily ribonucleases identified in the human genome sequence. The human RNase 7 gene is expressed in various somatic tissues including the liver, kidney, skeletal muscle and heart. Recombinant RNase 7 is ribonucleolytically active against yeast tRNA, as expected from the presence of eight conserved cysteines and the catalytic histidine–lysine– histidine triad which are signature motifs of this superfamily. The protein is atypically cationic with an isoelectric point (pI) of 10.5. Expression of recombinant RNase 7 in Escherichia coli completely inhibits the growth of the host bacteria, similar to what has been observed for the cationic RNase, eosinophil cationic protein (ECP/RNase 3, pI 11.4). An in vitro assay demonstrates dose-dependent cytotoxicity of RNase 7 against bacteria E.coli, Pseudomonas aeruginosa and Staphylococcus aureus. While RNase 7 and ECP/RNase 3 are both cationic and share this particular aspect of functional similarity, their protein sequence identity is only 40%. Of particular interest, ECP/RNase 3’s cationicity is based on an (over)abundance of arginine residues, whereas RNase 7 includes an excess of lysine. This difference, in conjunction with the independent origins and different expression patterns, suggests that RNase 7 and ECP/RNase 3 may have been recruited to target different pathogens in vivo, if their physiological functions are indeed host defenses.  相似文献   

16.
Cytosolic RNase inhibitor binds to and neutralizes most members of the pancreatic type RNase superfamily. However, there are a few exceptions, e.g. amphibian onconase and bovine seminal RNase, and these are endowed with cytotoxic activity. Also, RNase variants created by mutagenesis to partially evade the RNase inhibitor acquire cytotoxic activity. These findings have led to the proposal that the cytosolic inhibitor acts as a sentry to protect mammalian cells from foreign RNases. We silenced the expression of the gene encoding the cytosolic inhibitor in HeLa cells and found that the cells become more sensitive to foreign cytotoxic RNases. However foreign, non-cytotoxic RNases remain non-cytotoxic. These results indicate that the cytosolic inhibitor neutralizes those foreign RNases that are intrinsically cytotoxic and have access to the cytosol. However, its normal physiological role may not be to guard against foreign RNases in general.  相似文献   

17.
Eosinophil cationic protein (ECP/RNase 3) and the skin derived ribonuclease 7 (RNase 7) are members of the RNase A superfamily. RNase 3 is mainly expressed in eosinophils whereas RNase 7 is primarily secreted by keratinocytes. Both proteins present a broad-spectrum antimicrobial activity and their bactericidal mechanism is dependent on their membrane destabilizing capacities. Using phospholipid vesicles as membrane models, we have characterized the protein membrane association process. Confocal microscopy experiments using giant unilamellar vesicles illustrate the morphological changes of the liposome population. By labelling both lipid bilayers and proteins we have monitored the kinetic of the process. The differential protein ability to release the liposome aqueous content was evaluated together with the micellation and aggregation processes. A distinct morphology of the protein/lipid aggregates was visualized by transmission electron microscopy and the proteins overall secondary structure in a lipid microenvironment was assessed by FTIR. Interestingly, for both RNases the membrane interaction events take place in a different behaviour and timing: RNase 3 triggers first the vesicle aggregation, while RNase 7 induces leakage well before the aggregation step. Their distinct mechanism of action at the membrane level may reflect different in vivo antipathogen functions.  相似文献   

18.
Summary The ductus epididymidis of the marsupial mouse Antechinus stuartii was divided into caput, corpus, and caudal regions using several constant morphological landmarks. Tubule diameter and epithelial height increased gradually from caput to cauda. In contrast, the surface area of the lumen of the ductus epididymidis increased to a maximum in the distal caput region, but decreased markedly in the distal cauda in association with characteristic changes in lumen shape (from circular to slit-shaped) and epithelial height. Epithelial cells of the ductus epididymidis were generally similar in structure to those described in other mammalian species. Principal and basal cells were common throughout the epithelium. Clear and mitochondria-rich cells were also identified, but occurred less frequently. Regional variations in cell ultrastructure were observed only in principal cells. Numerous vesicular inclusions occurred in the apical cytoplasm of cells in caput segments, membrane-bounded, electron-dense bodies were common in distal corpus regions, and a brush border of microvilli characterized the luminal surface of principal cells in caudal segments. Sperm index increased in the proximal caput, declined to basal levels in the distal caput and proximal corpus, and then increased to a maximum in segment 9 of the distal corpus and remained at about this level throughout the cauda epididymidis. Nuclear rotation, loss of cytoplasmic droplets, and other sperm maturational changes were observed along the epididymis. Discarded cytoplasmic droplets collected in large masses interspersed between aggregates of spermatozoa throughout the distal regions of the duct. There was no evidence of phagocytosis by principal cells of cytoplasmic droplets. The epididymis of A. stuartii differs from that of other mammals. The unusual caudal region, which has little storage capacity for sperm, is an unusual adaptation in a species in which the male is known to be polygamous.  相似文献   

19.
20.
The three-dimensional structure of rat pancreatic RNase A expressed in Escherichia coli was determined. The backbone conformations of certain critical loops are significantly different in this enzyme compared to its bovine counterpart. However, the core structure of rat RNase A is similar to that of the other members of the pancreatic ribonuclease family. The structural variations within a loop bordering the active site can be correlated with the subtle differences in the enzymatic activities of bovine and rat ribonucleases for different substrates. The most significant difference in the backbone conformation was observed in the loop 15-25. This loop incorporates the subtilisin cleavage site which is responsible for RNase A to RNase S conversion in the bovine enzyme. The rat enzyme does not get cleaved under identical conditions. Molecular docking of this region of the rat enzyme in the active site of subtilisin shows steric incompatibility, although the bovine pancreatic ribonuclease A appropriately fits into this active site. It is therefore inferred that the local conformation of the substrate governs the specificity of subtilisin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号