首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Maturation to adulthood and successful reproduction in the Antarctic fairy shrimp, Branchinecta gaini, must be completed within a physiologically challenging temporal window of ca. 2.5 months in the southern Antarctic Peninsula. Although adults show considerable metabolic opportunism at positive temperatures, little is known of their tolerance of two physiological insults potentially typical to pool life in the maritime Antarctic: sub-zero temperatures and salinity. B. gaini are freeze-avoiding crustaceans with temperatures of crystallisation (T cs) of −5°C. No antifreeze proteins were detected in the haemolymph. Adults osmoregulate in relation to temperature, but rapid mortality in saline solutions of even low concentration, indicate they cannot osmoregulate in relation to salinity. Survival of ice encasement at temperatures above their T c was found to be pressure but not time dependent: at severe inoculative ice pressures, there was little immediate survival and none survived after 48 h below −2°C; at mild inoculative ice pressures, immediate survival was ca. 100% at −3°C, but <20% after 48 h. There was no significant difference in survival after 1 and 6 h encasement at −3°C. Observations of ventilation suggest that it is not low temperature per se, but ice that represents the primary cryo-stress, with ventilatory appendages physically handcuffed below the freezing point of pool water. Both sub-zero temperatures and salinity represent real physiological constraints on adult fairy shrimp.  相似文献   

2.
Isolated rock pools in the US desert southwest often develop dense populations of a lithophilic species of the rotifer Hexarthra. I hypothesized that rotifers persist in these isolated ponds due to the absence of either competition with or predation by potentially sympatric crustaceans, especially anostracans. I tested the latter idea with laboratory and field experiments, in each case exposing rotifers to adult fairy shrimp (Branchinecta mackini, the dominant anostracan in this region in winter ponds) in 200 ml microcosms. In␣most cases individual female fairy shrimp had distinct negative effects on rotifer suspensions due to direct predatory consumption of the smaller animals. Estimated effective water processing rates ranged from ca. 50 to over 300 ml ind−1 h−1 and rotifer consumption rates by female B. mackini were between 280 and > 600 Hexarthra consumed per individual predator per hour. Male B. mackini never significantly reduced rotifer numbers in either laboratory or field microcosms. The results indicate that, while perhaps not the sole determinant of rotifer distribution in these ephemeral pools, fairy shrimp predation can have a strong negative influence on natural Hexarthra populations.  相似文献   

3.
Summary During unusually wet years the salinity of the Great Salt Lake (Utah) decreased from above 100 g/L to 50 g/L. This allowed the predaceous insect Trichocorixa verticalis to invade the pelagic region of the lake and reach a mean summer density of 52/m3. Concurrent changes in the pelagic ecosystem were: a decrease in the dry biomass of the previously dominant filter-feeding brine shrimp Artemia franciscana from 720 to 2 mg/m3, the invasion of three other zooplankton taxa, a 10 × decrease in community filtration rate, a 20 × increase in chlorophyll a concentration, a 4 × decrease in water clarity and perhaps a decrease in soluble nutrients. Trichocorixa abundance was also inversely correlated with the abundance of Artemia along a salinity gradient in the lake's estuary. In a 9-d microcosm experiment Trichocorixa preyed on nauplii and decreased the total density of Artemia from 103 to 6/L. The reduction in Artemia allowed protozoans to increase 10–100 ×. Changes in chlorophyll and clarity were consistent with those observed in the lake. These results suggest that invertebrate predation may be an important factor structuring simple food webs such as those found in moderately saline lakes.  相似文献   

4.
Oxygen consumption rates of nauplii of the brine shrimp Artemia franciscana Kellogg 1906 were determined over a range of salinities from 10 to 110 ppm, in temperatures from 0 to 30°C, using a multi-factorial design. The oxygen micro-sensors employed have a fast response time and are capable of accurately measuring oxygen concentrations at temperatures well below 0°C. Oxygen uptake rate ranged from 0.03 to 0.66 μmol O2 mg−1 h−1 and was sensitive to changes in both salinity and temperature. Temperature was the dominant factor affecting oxygen consumption rates, which showed a significant increase with increasing temperature. A slight decrease was measured in oxygen consumption with increasing salinity related to differential solubility of oxygen in waters of different salinities. Thermal sensitivity of oxygen consumption determined from calculations of Q 10, indicated physiological adaptation of Artemia nauplii to the ranges of temperatures tested. Handling editor: A. van Kerchove  相似文献   

5.
During a survey of a north-western Mediterranean coastal lagoon, (the Etang de Thau, and at a nearby marine station, 1994–1998), six species of the genus Synchaetawere identified. The systematics of this illoricate genus is difficult and identification is virtually impossible in preserved material, although some indication may be obtained from an examination of the trophi after treatment with sodium hypochlorite. In this study, taxonomic characters (mastax, body morphology and egg size) were obtained from living material prior to preservation. We add some ecological observations: distribution of species (neither temperature nor salinity were found to be determining factors), co-existence (up to five species can co-occur) and consideration of trophic links (competition with tintinnids, copepod nauplii and cirripedes).  相似文献   

6.
In the shallow and eutrophic subtropical aquatic ecosystems, which it generally inhabits, the omnivorous copepod Mesocyclops thermocyclopoides encounters a wide variety of animal prey types including ciliates, rotifers, and cladocerans. We studied prey selectivity in laboratory-reared adult females of this species given a choice of (i) prey types belonging to different taxa (ciliates, rotifers, cladocerans, and cyclopoid nauplii), and (ii) different prey species within a taxonomic group differing in body size, morphology or behaviour. We also tested the effect of different proportions of prey species on its selectivity. Prey type proportion had no significant effect on selectivity of the copepod, nor was there any evidence of switching based on the relative abundance of prey. Among the ciliate prey species tested, the largest species, Stylonychia mytilus was positively selected regardless of its relative abundance, while the smallest, S. notophora was selected only when its density was higher. Offered a choice of three species of a brachionid rotifer differing in size, the copepod selected the largest of them, Brachionus calyciflorus, and avoided the smallest B. angularis. The evasive rotifer Hexarthra mira was also avoided. When prey choice included three cladoceran species Daphnia similoides, Moina macrocopa and Ceriodaphnia cornuta, the copepod selected the intermediate-sized M. macrocopa regardless of the abundance of the other two species. Although it fed on Mesocyclops nauplii when there was no choice, M. thermocyclopoides avoided them when alternative food was available. In a multispecies prey choice test, the copepod selected predominantly the rotifer B. calyciflorus and the cladoceran M. macrocopa. We suggest that the prey selectivity patterns shown by M. thermocyclopoides are adaptive in that they lead to ingestion of the most profitable prey.  相似文献   

7.
The copepod Boeckella poppei is a major species in high latitude lakes of the Southern Hemisphere. In such lakes the reduced diversity of metazoans contrasts with a rich microbial assemblage, making these systems amenable to the study of predation controls on the microbial food web. However, the diet of B. poppei is subject to conflicting reports, with little information on feeding rates. We incubated this species in water from Sombre Lake, a much-studied maritime Antarctic Lake on the South Orkney Islands, in order to quantify its feeding rates and potential impact on the microbial assemblage. Overall, clearance rates were similar across 4 experiments spanning November 1999–March 2000, but increased with prey size over the range of 2.7–18 μm equivalent spherical diameter (esd). B. poppei fed omnivorously, although small phototrophic flagellates comprised the bulk of the diet because of their overwhelming dominance in the incubation water. Larger motile preys—heterotrophic ciliates of ~18 μm esd—were cleared fastest (mean 555 ml mg−1 dry mass day−1) and at equivalent rates to those found for freshwater and marine copepods of similar size and at similar temperatures. Estimated predation impact on the microbial food web varied with the abundance of copepods; these were ~30-fold greater in March than in December. In March even the relatively abundant B. poppei (1.7 adults l−1) had a negligible impact on nanoflagellates, due to the low clearance rate on these small cells. However, in March, B. poppei adults were estimated to clear 24% of the lake water of ciliates daily. Given the generation time of ciliates (1.6 days measured in a previous summer study), and the fact that other larval stages of B. poppei were not assessed, this species has the potential to control this part of the microbial assemblage in Sombre Lake.  相似文献   

8.
The generation time of the predatory cyclopoid copepod Acanthocyclops robustus was estimated on 11 occasions during the years 1980 to 1982 in Alderfen Broad. In a multiple regression model, generation time was found to be uncorrelated with temperature, positively correlated (p < 0.05) with the densities of Bosmina longirostris and rotifers, and negatively correlated (p < 0.001) with the density of nauplii of the calanoid copepod Eudiaptomus gracilis. It is suggested that generation time was determined largely by the availability of calanoid nauplii as prey, even though these constituted only 2% of zooplankton standing biomass.  相似文献   

9.
Prorocentrum lima is a toxic alga that produces both intra-cellular and extra-cellular toxins, including okadaic acid (OA) and dinophysistoxins (DTXs). Nauplii of the brine shrimp Artemia salina were exposed to both the cell and cell-free culture medium of P. lima in order to test the hypotheses that the extra-cellular medium is toxic to brine shrimp and that the P. lima cell is palatable but fatal to it. Artemia cysts incubated in the cell-free medium hatched, but mortalities were recorded for nauplii that hatched in, and metanuaplii exposed to, test solutions (autoclaved filtered seawater + cell-free medium) that contained at least 50% of the cell-free medium. Animals exposed to cells of P. lima readily fed on the cells. Some, especially among the Day 1 nauplii, ingested only one cell before dying, while others ingested more than one cell, up to six cells in the case of Day 3 nauplii, before dying. Day 3 nauplii were readily and heavily impacted by the P. lima cells. Survival analysis was used to evaluate survivorship of Day 1 to Day 3 nauplii exposed to cells of P. lima. Estimates were made of tD50s for the different age groups. Comparisons of the tD50s showed that the tD50s for Day 1 and Day 2 nauplii did not vary significantly, but they each varied significantly from the tD50 for the Day 3 nauplii. The possible ecological implications of the findings are discussed.  相似文献   

10.
Deborah M. Dexter 《Hydrobiologia》1993,267(1-3):203-209
The copepod Apocyclops dengizicus is a key item in the food chain of the Salton Sea where the salinity is currently 45 g 1–1. The salinity of the Salton Sea may reach 90 g 1 –1 within the next 20 years. This study examined the salinity tolerance of this copepod.Large copepodite and adult A. dengizicus were introduced into various salinities with and without acclimation. The 96 h LC50 without acclimation was 101 g 1–1. Mortality (at 96 h) without acclimation was low at salinities of 90 g 1 –1 or less.Copepod cultures were maintained, with successful reproduction of at least one new generation, at salinities of from 0.5 to 68 g 1 –1 for at least 120 days. Copepods maintained at higher salinities, up to 79 g 1 –1, remained alive up to 90 days, but a new generation was not produced. In laboratory studies of larval production and survivorship, few nauplii were released at salinities of 68 g 1 –1 or higher, and none survived to the copepodite stage.  相似文献   

11.
The dynamics of metazooplankton populations were studied over 3 years at the saline (43 g l–1) Salton Sea, California's largest lake. Total abundance was highest in summer following late winter/early spring phytoplankton blooms. At this time, metazooplankton consisted mostly of the copepod, Apocyclops dengizicus, and the rotifer, Brachionus rotundiformis. In August or September, severe crashes in the metazooplankton populations occurred each year in mid-lake due to strong wind events which increased mixing and caused low oxygen and high sulfide concentrations throughout the water column. Larvae of the polychaete worm, Neanthes succinea and the barnacle, Balanus amphitrite were present mostly in late winter and spring. Their scarcity in summer is due in part to persistent anoxic bottom conditions that decrease adult populations and in part to predation by tilapia, an omnivorous fish that has become abundant in the lake since the 1960s. Two Synchaeta species, rotifers not previously reported from the Sea, were abundant in winter and spring and predation on these may have permitted the copepod to persist at low levels through the winter. There were two major changes in metazooplankton dynamics since 1954–1956 in addition to the appearance of the two synchaetid rotifers in the fauna. First, there are now much lower densities of barnacle and polychaete larvae in the fall, probably due to the invasion of the zooplanktivorous fish, tilapia. Second the precipitous crashes now seen in metazooplankton densities, especially the copepod, in late summer-early fall did not occur in the 1950s possibly because fall overturn events did not result in such high sulfide levels.  相似文献   

12.
Short term experiments on calanoid-cyclopoid-phytoplankton interactions   总被引:1,自引:1,他引:0  
To investigate their potential effects on each other in nature, calanoid (Diaptomus clavipes and D. siciloides) and cyclopoid (Acanthocyclops vernalis and Mesocyclops edax) copepod populations were manipulated in 5 liter aquaria in laboratory experiments of 20–60 days duration. Diaptomus generally had a strongly negative effect on both cyclopoid species. The cyclopoids established populations more successfully when introduced to aquaria before calanoids than they did when calanoids were already present. On the other hand, whether introduced earlier or later than the cyclopoids, Diaptomus populations were unaffected by Acanthocyclops and were strongly depressed by Mesocyclops. Diaptomus effects on the phytoplankton were often strong but varied markedly among experiments. They included reduction of populations of edible algae, such as Chlamydomonas, which are essential for both calanoid and cyclopoid nauplii, and large increases in inedible algae, such as Kirchneriella. Feeding experiments revealed that under conditions of food scarcity Acanthocyclops nauplii survived less well than did Diaptomus nauplii. Competition for edible phytoplankton seemed to be a key factor in the calanoid-cyclopoid interactions, since the survival of herbivorous cyclopoid larvae determined the abundance of the predaceous adults. This indicates that the competitive effects of calanoids on cyclopoids often may exceed the predative effects of cyclopoids on calanoids.  相似文献   

13.
We examined diet-dependent plasticity in head shape in larvae of the eastern long-toed salamander, Ambystoma macrodactylum columbianum. Larvae in some populations of this species exhibit trophic polymorphism, with some individuals possessing exaggerated trophic features characteristic of a cannibalistic morphology in larval Ambystoma; e.g. a disproportionately broad head and hypertrophied vomerine teeth. We hypothesized that 1) head shape variation results from feeding upon different types of prey and that 2) cannibal morphs are induced by consumption of conspecifics. To induce variation, we fed three groups of larvae different diets: 1) brine shrimp nauplii only; 2) nauplii plus anuran tadpoles; 3) nauplii, tadpoles and conspecific larval salamanders. Comparisons of size (mass)-adjusted means revealed that this manipulation of diet induced significant variation in six measures of head shape, but not in the area of the vomerine tooth patch. For five of the six head traits, larvae that ate tadpoles and brine shrimp nauplii developed significantly broader, longer and deeper heads than did larvae that only ate brine shrimp nauplii. The ingestion of conspecifics, in addition to nauplii and tadpoles, significantly altered two head traits (interocular-width and head depth), compared to larvae only fed nauplii and tadpoles. Canonical discriminant function analysis detected two statistically reliable canonical variables: head depth was most highly associated with the first canonical variable, whereas three measures of head width (at the jaws, gills and eyes) and interocular width were most highly associated with the second canonical variable. Despite this diet-enhanced morphological variation, there was no indication that any of the three types of diet (including conspecific prey) induced the exaggerated trophic features of the cannibal morph in this species. These results illustrate that ingestion of different types of prey contributes to plasticity in head shape, but that some other proximate cue(s), either alone or in combination with diet variation, is essential to induce the extremes of trophic polymorphism in this species.  相似文献   

14.
Seasonal changes in vertical distribution of Daphnia galeata and other zooplankters were monitored in lake Lombola (69° 07&prime; N). Depth-habitat use, availability of edible algae and zooplankton densities were recorded to examine seasonal changes in intensity of competition between Daphnia and the other herbivores in the lake. Early in July, the exephippial generation of Daphnia aggregated near the surface, independently of body-size. In late July, when fish planktivory was expected to increase, the daphnids moved down during the day. In August, as intraspecific competition for food intensified, small and large Daphnia partitioned the water column, with larger individuals staying deeper. In September, Daphnia became dominated by large individuals, edible phytoplankton reached the seasonal minimum, and the vertical distribution of Daphnia gradually stretched out towards the surface. The observations on food availability and zooplankton densities suggest that interspecific competition intensified by the end of July. Species and stages that were most exposed to exploitative and interference competition by Daphnia were those staying deeper, because their vertical distribution overlapped more with the larger, competitively superior daphnids. These susceptible competitors included Keratella cochlearis and Synchaeta, among the rotifers, and nauplii and early copepodite stages of Cyclops scutifer. Depth-habitat use is discussed in relation to copepod development, zooplankton dynamics and predator-mediated coexistence.  相似文献   

15.
A new species of poecilostomatoid copepod, Hemicyclops tanakai n. sp. was collected from burrows of the mud shrimp Upogebia major in an estuarine mud-flat in Tokyo Bay. The new species can be distinguished from its congeners by combination of the following characteristics: setation of the antennule, the segmentation of the antennule, the length–width ratio of the caudal ramus, the ornamentation on the third segment of antenna and the shape of the genital double somite.  相似文献   

16.
Colonisation of Lake Fletcher, a hypersaline, meromictic lake in the Vestfold Hills, Antarctica, by the calanoid copepod Drepanopus bispinosus, the cyclopoid copepod Oncea curvata and an undescribed cydippid ctenophore is discussed. In 1978, salinity directly under the ice was 66‰ and repeated net hauls found no zooplankton. In 1983, adults of D. bispinosus were found, and in 1984, a reproductively active population of this species. Surface water salinity in 1984 was 56‰. During winter 1986, surface salinity was 54‰ and three zooplankton species (D. bispinosus, O. curvata and an undescribed cydippid ctenophore) had established populations in the lake. In 1986/87, high tides caused nearby Taynaya Bay to flood into the lake, and three further species (the calanoid, Paralabidocera antarctica, and two harpacticoids, Harpacticus furcatus and Idomene sp.) were found in the lake. It appears that periodic flooding after 1978 caused a salinity decrease in the lake from 66 to 54‰, and this enabled some invertebrate species to maintain year-round populations, whereas others require marine incursions to re-establish summer only populations.  相似文献   

17.
Shrimp are an important component of the San Francisco Bay biota, both as predators on benthic fauna, and as a food source for predatory fish. Of three common species in the bay, Crangon franciscorum is the most abundant. The bay is predominantly a nursery area for maturing shrimp of this species. During the main reproductive period in the early spring, ovigerous females and planktonic larvae are in most years centered outside the bay in the nearshore ocean, although both are also present in the bay. Juveniles move into both the southern reach and the northern reach shortly after settling, and landward-flowing bottom currents are possibly instrumental in this migration. The seasonal cycle of shrimp abundance in the bay, dominated by this spring immigration of newly settled juveniles, is characterized by a progressive migration of the growing shrimp up the estuary coincident with upstream penetration of higher salinity water during summer. Differences in abundance and distribution between the years 1980, 1981, and 1982 suggest that the level of river discharge and accompanying salinity regime are important controlling factors in the distribution, recruitment levels, and subsequent survival and growth of C. franciscorum in the San Francisco Bay.  相似文献   

18.
Gaudy  R.  Verriopoulos  G.  Cervetto  G. 《Hydrobiologia》1995,300(1):219-236
In the Berre lagoon, a large brackish and swallow area near Marseille, the environmental factors (temperature, salinity, oxygen, suspended particulate matter and chlorophyll) generally display strong space and time variations. The rotifer Brachionus plicatilis and the copepod Acartia tonsa constitute the bulk of the zooplankton population during all the year. Their space and time distributions were studied in 23 stations distributed all over the lagoon, during four seasonal cruises (February, June, October, November), at surface and bottom layers. There is no marked difference in the horizontal and vertical distribution of the two species, (except in November when rotifers were prevailing in surface and copepods at depth) and in their time occurence. When the four series of data are pooled, correlation analysis show that A.tonsa is positively correlated with temperature, salinity and seston and negatively to oxygen and chlorophyll. B. plicatilis is positively correlated with temperature and seston, but also with chlorophyll, while salinity has a negative effect. The specific eggs number of both species is chlorophyll dependent. Considering seasonal cruises separately, some differences appear in the sense or the significance of these different correlations. The respective distribution of the two species is only partly dependent on the variation of the environmental factors: most of the variance remains unexplained, as indicated by the result of a stepwise multiple regression analysis using the most significant factors (temperature, salinity and oxygen explain 33 to 42% of the variance in Acartia, while temperature and salinity explain 27 to 28% of the variance in Brachionus). Thus, internal behavioral factors could also play a role in the distribution of organisms, particularly in some cases of aggregations of organisms observed during this study. As the two species occupied the same space habitat most of the year, they are potentially in competition for food. A way to optimize the food utilization could be the time separation of their feeding activity, nocturnal in Acartia and diurnal in Brachionus. Another way could be selective feeding upon food particles depending on their size (Brachionus being able to use finer particles than Acartia) or their quality (Brachionus being more herbivorous than Acartia) as demonstrated in some grazing experiments carried out in parallel.  相似文献   

19.
Horn  Wolfgang 《Hydrobiologia》2003,491(1-3):185-192
The rates of development and food intake of the copepod Temora longicornis (Müller) were studied using artificial blooms of Phaeocystis globosa Scherffel under different conditions of nutrient limitation. Mesocosms with 800 l of natural seawater were manipulated by inoculation with cultured P. globosa and by addition of nitrogen and/or phosphorus, to obtain N- or P-limited blooms of P. globosa. During development and ageing of these blooms, water from the mesocosms was used as medium for incubation of nauplii of T. longicornis. Only moderate rates of naupliar development as well as high rates of mortality were observed, irrespective of major differences of nutrient conditions and density of P. globosa. Grazing by the nauplii on P. globosa seemed to be low, suggesting a low food quality of this alga at all physiological conditions studied. The results of this study indicate a low capability of T. longicornis nauplii for control of nuisance algal blooms caused by P. globosa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号