首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Hepatitis C virus (HCV) NS5B protein is the viral RNA-dependent RNA polymerase capable of directing RNA synthesis. In this study, an electrophoretic mobility shift assay demonstrated the interaction between a partially purified recombinant NS5B protein and a 3' viral genomic RNA with or without the conserved 98-nucleotide tail. The NS5B-RNA complexes were specifically competed away by the unlabeled homologous RNA but not by the viral 5' noncoding region and very poorly by the 3' conserved 98-nucleotide tail. A 3' coding region with conserved stem-loop structures rather than the 3' noncoding region of the HCV genome is critical for the specific binding of NS5B. Nevertheless, no direct interaction between the 3' coding region and the HCV NS5A protein was detected. Furthermore, two independent RNA-binding domains (RBDs) of NS5B were identified, RBD1, from amino acid residues 83 to 194, and RBD2, from residues 196 to 298. Interestingly, the conserved motifs of RNA-dependent RNA polymerase for putative RNA binding (220-DxxxxD-225) and template/primer position (282-S/TGxxxTxxxNS/T-292) are present in the RBD2. Nevertheless, the RNA-binding activity of RBD2 was abolished when it was linked to the carboxy-terminal half of the NS5B. These results provide some clues to understanding the initiation of HCV replication.  相似文献   

4.
Previous studies have shown that the 5' arm of the influenza A virus virion RNA promoter requires a hairpin loop structure for efficient endonuclease activity of influenza virus RNA polymerase, an activity that is required for the cap-snatching activity of primers from host pre-mRNA. Here we examine whether a hairpin loop is also required in the 3' arm of the viral RNA promoter. We study point mutations at each nucleotide position (1 to 12) within the 3' arm of the promoter as well as complementary "rescue" mutations which restored base pairing in the stem of a potential hairpin loop. Our results suggest that endonuclease activity is absolutely dependent on the presence of a 3' hairpin loop structure. This is the first direct evidence for RNA secondary structure within the 3' arm being required for a specific stage, i.e., endonuclease cleavage, in the influenza virus replicative cycle.  相似文献   

5.
6.
All four components of brome mosaic virus RNA have m(7)G(5') ppp (5')Gp as their 5' terminus. The m(7)G can be removed by beta-elimination, resulting in the conversion to pppGp.  相似文献   

7.
8.
9.
10.
Dengue virus (DENV) is an ~10.7-kb positive-sense RNA virus that circularizes via RNA-RNA interactions between sequences in the 5′ and 3′ terminal regions. Complementarity between the cyclization sequence (CS) and the upstream AUG region (UAR) has been shown to be necessary for viral replication. Here, we present the solution structure of the 5′ end of DENV type 2 in the presence and absence of the 3′ end. We demonstrate that hybridization between the 5′ and 3′ CSs is independent of the UAR while the 5′ UAR-3′ UAR hybridization is dependent upon the 5′ CS-3′ CS interaction.  相似文献   

11.
12.
Abstract

Polyadenylic acid (poly A) and polyguanylic acid (poly G) have been modified to give polymers containing and Gpm5C termini. Polymers containing methylated (Gpmf C) termini are inactive as templates for the RNA-dependent RNA polymerase of Influenza A virus.  相似文献   

13.
Sequences in the 5' and 3' termini of plus-strand RNA viruses harbor cis-acting elements important for efficient translation and replication. In case of the hepatitis C virus (HCV), a plus-strand RNA virus of the family Flaviviridae, a 341-nucleotide-long nontranslated region (NTR) is located at the 5' end of the genome. This sequence contains an internal ribosome entry site (IRES) that is located downstream of an about 40-nucleotide-long sequence of unknown function. By using our recently developed HCV replicon system, we mapped and characterized the sequences in the 5' NTR required for RNA replication. We show that deletions introduced into the 5' terminal 40 nucleotides abolished RNA replication but only moderately affected translation. By generating a series of replicons with HCV-poliovirus (PV) chimeric 5' NTRs, we could show that the first 125 nucleotides of the HCV genome are essential and sufficient for RNA replication. However, the efficiency could be tremendously increased upon the addition of the complete HCV 5' NTR. These data show that (i) sequences upstream of the HCV IRES are essential for RNA replication, (ii) the first 125 nucleotides of the HCV 5' NTR are sufficient for RNA replication, but such replicon molecules are severely impaired for multiplication, and (iii) high-level HCV replication requires sequences located within the IRES. These data provide the first identification of signals in the 5' NTR of HCV RNA essential for replication of this virus.  相似文献   

14.
15.
16.
Open reading frame 1 (ORF1) of potexviruses encodes a viral replicase comprising three functional domains: a capping enzyme at the N terminus, a putative helicase in the middle, and a polymerase at the C terminus. To verify the enzymatic activities associated with the putative helicase domain, the corresponding cDNA fragment from bamboo mosaic virus (BaMV) was cloned into vector pET32 and the protein was expressed in Escherichia coli and purified by metal affinity chromatography. An activity assay confirmed that the putative helicase domain has nucleoside triphosphatase activity. We found that it also possesses an RNA 5'-triphosphatase activity that specifically removes the gamma phosphate from the 5' end of RNA. Both enzymatic activities were abolished by the mutation of the nucleoside triphosphate-binding motif (GKS), suggesting that they have a common catalytic site. A typical m(7)GpppG cap structure was formed at the 5' end of the RNA substrate when the substrate was treated sequentially with the putative helicase domain and the N-terminal capping enzyme, indicating that the putative helicase domain is truly involved in the process of cap formation by exhibiting its RNA 5'-triphosphatase activity.  相似文献   

17.
18.
19.
Nuclei purified from chicken embryo fibroblast cells infected with influenza (fowl plague) virus contain an RNA-dependent RNA polymerase. The in vitro activity of this enzyme is insensitive to actinomycin D, and is completely destroyed by preincubation with ribonuclease. Enzyme induction is prevented if cells are treated with actinomycin D or cycloheximide at the time of infection. RNA-dependent RNA polymerase activity increases rapidly in cell nuclei from 1 h postinfection, reaches a maximum at 3 to 4 h, then declines; a similar RNA polymerase activity in the microsomal cell fraction increases from 2 h postinfection and reaches a maximum at 5 to 6 h. The characteristics of the nuclear and microsomal enzymes in vitro are similar with respect to pH and divalent cation requirements. The in vitro products of enzyme activity present in the nuclear and microsomal fractions of cells infected for 3 and 5 h were characterized by sucrose density gradient analysis, and annealing to virion RNA. The microsomal RNA polymerase product contained 67 and 93% RNA complementary to virion RNA at 3 and 5 h, respectively; for the nuclear RNA polymerase product these values were 40% in each case.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号