首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stream fish are expected to be significantly influenced by climate change, as they are ectothermic animals whose dispersal is limited within hydrographic networks. Nonetheless, they are also controlled by other physical factors that may prevent them moving to new thermally suitable sites. Using presence–absence records in 655 sites widespread throughout nine French river units, we predicted the potential future distribution of 30 common stream fish species facing temperature warming and change in precipitation regime. We also assessed the potential impacts on fish assemblages' structure and diversity. Only cold-water species, whose diversity is very low in French streams, were predicted to experience a strong reduction in the number of suitable sites. In contrast, most cool-water and warm-water fish species were projected to colonize many newly suitable sites. Considering that cold headwater streams are the most numerous on the Earth's surface, our results suggested that headwater species would undergo a deleterious effect of climate change, whereas downstream species would expand their range by migrating to sites located in intermediate streams or upstream. As a result, local species richness was forecasted to increase greatly and high turnover rates indicated future fundamental changes in assemblages' structure. Changes in assemblage composition were also positively related to the intensity of warming. Overall, these results (1) stressed the importance of accounting for both climatic and topographic factors when assessing the future distribution of riverine fish species and (2) may be viewed as a first estimation of climate change impacts on European freshwater fish assemblages.  相似文献   

2.
Predation can disproportionately affect endangered prey populations when generalist predators are numerically linked to more abundant primary prey. Apparent competition, the term for this phenomenon, has been increasingly implicated in the declines of endangered prey populations. We examined the potential for apparent competition to limit the recovery of Sierra Nevada bighorn sheep (Ovis canadensis sierrae), an endangered subspecies under the US Endangered Species Act. Using a combination of location, demographic, and habitat data, we assessed whether cougar (Puma concolor) predation on endangered bighorn sheep was a consequence of their winter range overlap with abundant mule deer (Odocoileus hemionus). Consistent with the apparent competition hypothesis, bighorn sheep populations with higher spatial overlap with deer exhibited higher rates of cougar predation which had additive effects on adult survival. Bighorn sheep killed by cougars were primarily located within deer winter ranges, even though those areas constituted only a portion of the bighorn sheep winter ranges. We suspect that variation in sympatry between bighorn sheep and deer populations was largely driven by differences in habitat selection among bighorn sheep herds. Indeed, bighorn sheep herds that experienced the highest rates of predation and the greatest spatial overlap with deer also exhibited the strongest selection for low elevation habitat. Although predator-mediated apparent competition may limit some populations of bighorn sheep, it is not the primary factor limiting all populations, suggesting that the dynamics of different herds are highly idiosyncratic. Management plans for endangered species should consider the spatial distributions of key competitors and predators to reduce the potential for apparent competition to hijack conservation success.  相似文献   

3.
Climate change threatens European conservation areas   总被引:4,自引:0,他引:4  
Europe has the world's most extensive network of conservation areas. Conservation areas are selected without taking into account the effects of climate change. How effectively would such areas conserve biodiversity under climate change? We assess the effectiveness of protected areas and the Natura 2000 network in conserving a large proportion of European plant and terrestrial vertebrate species under climate change. We found that by 2080, 58?±?2.6% of the species would lose suitable climate in protected areas, whereas losses affected 63?±?2.1% of the species of European concern occurring in Natura 2000 areas. Protected areas are expected to retain climatic suitability for species better than unprotected areas (P?相似文献   

4.
The increase in length and severity of drought events predicted for South-Eastern Europe are expected to engender important changes to remaining native forests. To make informed management decisions promoting their conservation, it is important to better understand their responses to climate and environmental disturbances.In this study, we analyze growth responses over a network of 15 sites of Serbian spruce (Picea omorika), an endemic relict conifer species of the Balkan region — with a natural range restricted to the canyon of the Drina river at the border between Serbia and Bosnia Herzegovina — that has already shown signs of decline and dieback likely induced by increasing temperature and drought.Tree-ring analyses spanning the common period from 1974 to 2016 have shown a strong growth reduction and highlighted an increasing negative growth response to summer drought over the last 30–40 years. The strength of the response differed among individuals and sites, where younger trees and those growing at lower altitude suffered more from drought.Management practices oriented at reducing drought impact, such as thinning to reduce competition for water resources and enhance survival of seedlings, together with assisted natural regeneration and migration to more suitable habitats, are recommended for the conservation of this relict species. The measures are even more necessary considering that this species is more vulnerable than others due to its weak capacity to naturally regenerate and compete.  相似文献   

5.
6.
Camera traps are commonly used to study mammal ecology and they occasionally capture previously undocumented species interactions. The key deer (Odocoileus virginianus clavium) is an endangered endemic subspecies of the Florida Keys, where it exists with few predators. We obtained a camera trap sequence of 80 photos in which a key deer interacted with two northern raccoons (Procyon lotor). One of the raccoons groomed the deer’s face for ∼1 min. This interaction is peculiar and appears mutualistic because the deer was not concerned and willingly remained still throughout the physical contact. Although mutualistic relationships between deer and birds are common, we are unaware of any previously documented mesocarnivore-deer mutualisms. Key deer have evolved in the absence of mammalian predators and we hypothesize that they exhibit reduced vigilance or concern when encountering other species because of predator naivety. Key deer and raccoons are commonly associated with humans and urbanization and an alternative hypothesis is that the interactions are a consequence of heightened deer density, causing a greater probability of sustained interactions with the common mesocarnivores.  相似文献   

7.
Climate change represents a primary threat to species persistence and biodiversity at a global scale. Cold adapted alpine species are especially sensitive to climate change and can offer key “early warning signs” about deleterious effects of predicted change. Among mountain ungulates, survival, a key determinant of demographic performance, may be influenced by future climate in complex, and possibly opposing ways. Demographic data collected from 447 mountain goats in 10 coastal Alaska, USA, populations over a 37‐year time span indicated that survival is highest during low snowfall winters and cool summers. However, general circulation models (GCMs) predict future increase in summer temperature and decline in winter snowfall. To disentangle how these opposing climate‐driven effects influence mountain goat populations, we developed an age‐structured population model to project mountain goat population trajectories for 10 different GCM/emissions scenarios relevant for coastal Alaska. Projected increases in summer temperature had stronger negative effects on population trajectories than the positive demographic effects of reduced winter snowfall. In 5 of the 10 GCM/representative concentration pathway (RCP) scenarios, the net effect of projected climate change was extinction over a 70‐year time window (2015–2085); smaller initial populations were more likely to go extinct faster than larger populations. Using a resource selection modeling approach, we determined that distributional shifts to higher elevation (i.e., “thermoneutral”) summer range was unlikely to be a viable behavioral adaptation strategy; due to the conical shape of mountains, summer range was expected to decline by 17%–86% for 7 of the 10 GCM/RCP scenarios. Projected declines of mountain goat populations are driven by climate‐linked bottom‐up mechanisms and may have wide ranging implications for alpine ecosystems. These analyses elucidate how projected climate change can negatively alter population dynamics of a sentinel alpine species and provide insight into how demographic modeling can be used to assess risk to species persistence.  相似文献   

8.
Recent reviews of the conservation literature indicate that significant biases exist in the published literature regarding the regions, ecosystems and species that have been examined by researchers. Despite the global threat of climatic change, similar biases may be occurring within the sub-discipline of climate-change ecology. Here we hope to foster critical thought and discussion by considering the directions taken by conservation researchers when addressing climate change. To form a quantitative basis for our perspective, we assessed 248 papers from the climate change literature that considered the conservation management of biodiversity and ecosystems. We found that roughly half of the studies considered climate change in isolation from other threatening processes. We also found that the majority of surveyed scientific publications were conducted in the temperate forests of Europe and North America. Regions such as Latin America that are rich in biodiversity but may have low adaptive capacity to climate change were not well represented. We caution that such biases in research effort may be distracting our attention away from vulnerable regions, ecosystems and species. Specifically we suggest that the under-representation of research from regions low in adaptive capacity and rich in biodiversity requires international collaboration by those experienced in climate-change research, with researchers from less wealthy nations who are familiar with local issues, ecosystems and species. Furthermore, we caution that the propensity of ecologists to work in essentially unmodified ecosystems may fundamentally hamper our ability to make useful recommendations in a world that is experiencing significant global change.  相似文献   

9.
An ever-increasing number of species are suffering marked reductions in population size as a consequence of human activities. To understand the impact of these changes it is essential to assess how small population size affects individual fitness and the viability of populations. This issue acquires special relevance among endangered species in which numbers have decreased to such an extent that captive breeding must be established with a few founders. A major risk associated with small population size is inbreeding depression. The effects of inbreeding upon male reproductive traits are the subject of an ongoing controversy, since the evidence linking lack of genetic variability and poor ejaculate quality at the population level has been criticized recently by several authors. We report that among Gazella cuvieri males, inbreeding coefficient shows a strong inverse relationship with ejaculate quality. Furthermore, the degree of fluctuating asymmetry is positively related to the coefficient of inbreeding and negatively related to the proportion of normal sperm, suggesting that it is a reliable indicator of genetic stress and of ejaculate quality.  相似文献   

10.
We review the state of African ungulate taxonomy over the last 120 years, with an emphasis on the introduction of the polytypic species concept and the discipline's general neglect since the middle of the 20th century. We single out negative consequences of ‘orthodox’ taxonomy, highlighting numerous cases of neglect of threatened lineages, unsound translocations that led to lineage introgression, and cases of maladaptation to local conditions including parasitic infections. Additionally, several captive breeding programmes have been hampered by chromosome rearrangements caused by involuntary lineage mixing. We advocate that specimen‐based taxonomy should regain its keystone role in mammal research and conservation biology, with its scientific values augmented with genomic evidence. While integration with molecular biology, ecology and behaviour is needed for a full understanding of ungulate alpha diversity, we stress that morphological diversity has been neglected despite its tremendous practical importance for some groups of ‘utilizers’ such as trophy hunters, wildlife tourists and conservationists. We conclude that there is no evidence that purported ‘taxonomic inflation’ has adverse effects on ungulate conservation: rather, it is taxonomic inertia that has such adverse effects. We stress that sound science, founded on robust taxonomy, should underpin effective sustainable management (hunting, ranching, captive breeding and reintroduction programmes) of this unique African natural resource.  相似文献   

11.

Background

Conserving animal populations in places where human activity is increasing is an ongoing challenge in many parts of the world. We investigated how human activity interacted with maternal status and individual variation in behavior to affect reliability of spatially-explicit models intended to guide conservation of critical ungulate calving resources. We studied Rocky Mountain elk (Cervus elaphus) that occupy a region where 2900 natural gas wells have been drilled.

Methodology/Principal Findings

We present novel applications of generalized additive modeling to predict maternal status based on movement, and of random-effects resource selection models to provide population and individual-based inference on the effects of maternal status and human activity. We used a 2×2 factorial design (treatment vs. control) that included elk that were either parturient or non-parturient and in areas either with or without industrial development. Generalized additive models predicted maternal status (parturiency) correctly 93% of the time based on movement. Human activity played a larger role than maternal status in shaping resource use; elk showed strong spatiotemporal patterns of selection or avoidance and marked individual variation in developed areas, but no such pattern in undeveloped areas. This difference had direct consequences for landscape-level conservation planning. When relative probability of use was calculated across the study area, there was disparity throughout 72–88% of the landscape in terms of where conservation intervention should be prioritized depending on whether models were based on behavior in developed areas or undeveloped areas. Model validation showed that models based on behavior in developed areas had poor predictive accuracy, whereas the model based on behavior in undeveloped areas had high predictive accuracy.

Conclusions/Significance

By directly testing for differences between developed and undeveloped areas, and by modeling resource selection in a random-effects framework that provided individual-based inference, we conclude that: 1) amplified selection or avoidance behavior and individual variation, as responses to increasing human activity, complicate conservation planning in multiple-use landscapes, and 2) resource selection behavior in places where human activity is predictable or less dynamic may provide a more reliable basis from which to prioritize conservation action.  相似文献   

12.
13.
Understanding which factors influence offspring mortality rates is a major challenge since it influences population dynamics and may constrain the chances of recovery among endangered species. Most studies have focused on the effects of maternal and environmental factors, but little is known about paternal factors. Among most polygynous mammals, males only contribute the haploid genome to their offspring, but the possibility that sperm DNA integrity may influence offspring survival has not been explored. We examined several maternal, paternal and individual factors that may influence offspring survival in an endangered species (Gazella cuvieri). Levels of sperm DNA damage had the largest impact upon offspring mortality rates, followed by maternal parity. In addition, there was a significant interaction between these two variables, so that offspring born to primiparous mothers were more likely to die if their father had high levels of sperm DNA damage, but this was not the case among multiparous mothers. Thus, multiparous mothers seem to protect their offspring from the deleterious effects of sperm DNA damage. Since levels of sperm DNA damage seem to be higher among endangered species, more attention should be paid to the impact of this largely ignored factor among the viability of endangered species.  相似文献   

14.
Currently, more than 16,000 plant and animal species are imminently threatened by extinction, often as a direct consequence of anthropogenic influences. One of the measures to halt that process is genetic resource banking. This short review focuses on mammal sperm cryopreservation in combination with assisted reproduction techniques. It summarizes general problems, recent developments, and currently applied protocols and gives an overview of hitherto existing successes of assisted reproduction measures in wild animals in the light of conservation efforts.  相似文献   

15.
Aim Species loss has increased significantly over the last 1000 years and is ultimately attributed to the direct and indirect consequences of increased human population growth across the planet. A growing number of species are becoming endangered and require human intervention to prevent their local extirpation or complete extinction. Management strategies aimed at mitigating a species loss can benefit greatly from empirical approaches that indicate the rate of decline of a species providing objective information on the need for immediate conservation actions, e.g. captive breeding; however, this is rarely employed. The current study used a novel method to examine the distributional trends of a model endangered species, the freshwater pearl mussel, Margaritifera margaritifera (L.). Location United Kingdom and Republic of Ireland. Methods Using species presence data within 10‐km grid squares since records began three‐parameter logistic regression curves were fitted to extrapolate an estimated date of regional extinction. Results This study has shown that freshwater pearl mussel distribution has contracted since known historical records and outlier populations were lost first. Within the United Kingdom and Republic of Ireland, distribution loss has been greatest in Scotland, Northern Ireland, Wales and England, respectively, with the Republic of Ireland containing the highest relative proportion of M. margaritifera distribution, in 1998. Main conclusions This study provides empirical evidence that this species could become extinct throughout countries within the United Kingdom within 170 years under the current trends and emphasizes that regionally specific management strategies need to be implemented to prevent extirpation of this species.  相似文献   

16.
Mountain ungulates around the world have been threatened by illegal hunting, habitat modification, increased livestock grazing, disease and development. Mountain ungulates play an important functional role in grasslands as primary consumers and as prey for wild carnivores, and monitoring of their populations is important for conservation purposes. However, most of the several currently available methods of estimating wild ungulate abundance are either difficult to implement or too expensive for mountainous terrain. A rigorous method of sampling ungulate abundance in mountainous areas that can allow for some measure of sampling error is therefore much needed. To this end, we used a combination of field data and computer simulations to test the critical assumptions associated with double-observer technique based on capture-recapture theory. The technique was modified and adapted to estimate the populations of bharal (Pseudois nayaur) and ibex (Capra sibirica) at five different sites. Conducting the two double-observer surveys simultaneously led to underestimation of the population by 15%. We therefore recommend separating the surveys in space or time. The overall detection probability for the two observers was 0.74 and 0.79. Our surveys estimated mountain ungulate populations (± 95% confidence interval) of 735 (± 44), 580 (± 46), 509 (± 53), 184 (± 40) and 30 (± 14) individuals at the five sites, respectively. A detection probability of 0.75 was found to be sufficient to detect a change of 20% in populations of >420 individuals. Based on these results, we believe that this method is sufficiently precise for scientific and conservation purposes and therefore recommend the use of the double-observer approach (with the two surveys separated in time or space) for the estimation and monitoring of mountain ungulate populations.  相似文献   

17.
1.  The challenge of climate change forces us to re-examine the assumptions underlying conservation planning.
2.  Increasing 'connectivity' has emerged as the most favoured option for conservation in the face of climate change.
3.  We argue that the importance of connectivity is being overemphasized: quantifying the benefits of connectivity per se is plagued with uncertainty, and connectivity can be co-incidentally improved by targeting more concrete metrics: habitat area and habitat quality.
4.   Synthesis and applications . Before investing in connectivity projects, conservation practitioners should analyse the benefits expected to arise from increasing connectivity and compare them with alternative investments, to ensure as much biodiversity conservation and resilience to climate change as possible within their budget. Strategies that we expect to remain robust in the face of climate change include maintaining and increasing the area of high quality habitats, prioritizing areas that have high environmental heterogeneity and controlling other anthropogenic threatening processes.  相似文献   

18.
In conservation biogeography, the process of spatial conservation prioritization (SCP) aims to select areas that meet biodiversity targets at a minimum set coverage. Here, we propose a SCP scheme for the highly endemic and diverse anuran fauna of the Atlantic Forest (AF) and Cerrado (CER) South American hotspots under different climate change scenarios. Specifically, we make use of predicted anuran occurrences, built for baseline and future (2050 and 2070) time slices, and address biological and conservation metrics to identify potential priority regions for anuran conservation over time using the software MARXAN. Considering each time slice separately, the percentage area needed for total anuran representation varies at magnitudes of 9.8–10.66% for the AF and 6.4–8.8% for the CER. Pooling all time slices together in the selected conservation network, the identified spatial priorities account for 15.56% and 13.25% of the total AF and CER areas respectively. However, we identified opposing strategies for the anuran spatial conservation prioritization in the AF and CER over the different time periods; the increasing of priority cells across time considering the potential species redistribution under climate change in the AF, and the selection of fewer priority cells in the future than the identified for the baseline climate in the CER. The southeastern AF coast was identified as a priority area for amphibian conservation in this hotspot, as well as some other smaller areas in the northern and southern regions. Priority areas identified in the CER, although patchy distributed across the hotspot, are found in specific central-northern, western, and southeastern regions. The different conservation strategies identified in the present SCP emphasize the need for establishing different conservation efforts according to a sequential scheduling of priority areas that optimizes the long-term conservation goals.  相似文献   

19.
濒危药用植物桃儿七的生物学特性及其保育措施   总被引:5,自引:0,他引:5  
桃儿七为重要抗癌药物前体物来源物种,现正处在濒危状态,已被列为国家三级保护植物。本文全 面地综述了桃儿七的生物学特性,包括外部形态、地理分布、系统位置、生态学和群落学特性、发育生物学、繁 殖生物学、植物化学、细胞组织培养和内生真菌研究以及遗传学等研究。最后分析了引起桃儿七濒危的原因, 并提出了具体保育措施和研究展望。  相似文献   

20.
Climate change is expected to cause significant changes to the hydrology of lakes, reservoirs and other wetlands. In particular, there will be an increase in the level of disturbance produced by water-level fluctuations. This may have adverse consequences for biodiversity, water quality and human uses. Strategies to cope with these climate change impacts are currently poorly developed. This article proposes the use of Grime’s CSR theory as a framework to understand the potential impacts of climate change on shoreline vegetation. It is also used to recommend a series of practical management techniques that will contribute to the adaptation capacity of shoreline ecosystems. Four key areas are highlighted: hydrological controls, substrate conditions, shoreline topography and vegetation establishment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号