首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
C-reactive protein (CRP) is associated with cardiovascular disease. However, its biological functions for the vascular system are largely unknown. The objective of this study was to determine whether CRP could affect endothelial cell proliferation and expression of VEGF receptors (VEGFRs) and/or neuropilins. Human coronary artery endothelial cells (HCAECs) treated with CRP showed a significant reduction of mRNA levels of VEGFR-2, VEGFR-3, NRP-1, and NRP-2 by 34%, 63%, 41%, and 43%, respectively, as compared to untreated control cells (p < 0.05) by real-time PCR analysis. In addition, VEGF165-induced cell proliferation was determined by [3H]thymidine incorporation and MTS assay as well as capillary-like tube formation on Matrigel. HCAECs pretreated with CRP significantly decreased VEGF165-induced [3H]thymidine incorporation by 73%, MTS absorbance by 44%, and capillary-like tube formation by 54% as compared to CRP-untreated cells (p < 0.05). These data demonstrate that CRP significantly attenuates VEGF165-induced HCAEC proliferation and capillary-like tube formation through downregulation of expression of VEGFRs and NRPs. This study suggests a new molecular mechanism underlying the adverse effect of CRP on the vascular system.  相似文献   

2.
3.
Cao QZ  Lin ZB 《Life sciences》2006,78(13):1457-1463
Ganoderma lucidum Polysaccharide Peptide (Gl-PP) has shown some effects as anti-tumors in mice and potential anti-angiogenesis. In this study, we elucidated the possible mechanism of Gl-PP action on anti-angiogenesis of tumor. Our research indicated that the proliferation of HUVECs was inhibited by Gl-PP in a dose-dependent fashion, but not because of cytotoxicity. Flow cytometric studies revealed that Gl-PP treatment of HUVECs could induce cell apoptosis directly. Moreover, addition of Gl-PP also led to a reduction of Bcl-2 anti-apoptotic protein expression and an increase of Bax pro-apoptotic protein expression of HUVECs. Therefore, inducing cell apoptosis by Gl-PP might be the mechanism of inhibiting HUVEC proliferation. Human lung carcinoma cells PG when exposed to high dose of Gl-PP in hypoxia for 18 h resulted in a decrease in the secreted VEGF. Taken together, these findings support the hypothesis that the key attribute of the anti-angiogenic potential of Gl-PP is that it may directly inhibit vascular endothelial cell proliferation or indirectly decrease growth factor expression of tumor cells.  相似文献   

4.
The human endothelial cell in tissue culture   总被引:7,自引:0,他引:7  
  相似文献   

5.
Urotensin-II (U-II) is an endogenous peptide recently characterized as a "nonclassic" pro-angiogenic cytokine. In fact, human vascular endothelial cells express the U-II receptor and exhibit a strong in vitro angiogenic response to the peptide, which was specifically triggered by the binding of U-II to its receptor and involved the activation of ERK1/2 and PI3K/Akt signaling pathways. Moreover, available studies, designed to investigate the pro-angiogenic effect quite shortly following U-II stimulation, suggested that the angiogenic action of the peptide was direct and not associated with an increased expression of vascular endothelial growth factor (VEGF) and/or its receptors. In the present study, the expression of three pro-angiogenic factors, namely VEGF, endothelin-1, and adrenomedullin, was studied in human umbilical vein endothelial cells (HUVEC) for longer times of U-II stimulation. RT-PCR and Western blot indicated that in HUVEC, exposed for at least 24h to U-II, the expression of the three angiogenic molecules was significantly increased at both mRNA and protein level, opening the possibility that U-II, not only could exert a direct stimulation of an angiogenic phenotype in endothelial cells quite shortly following exposure to the peptide, but could also further enhance the process indirectly by inducing in the cells a delayed production of other pro-angiogenic factors. Interestingly, a preliminary analysis of the time course of the in vitro capillary-like pattern formation was consistent with this view, suggesting a two phase temporal dynamics of the process.  相似文献   

6.
The formation of new blood vessels from pre-existing ones is required for the growth of solid tumors and for metastasis. Interaction of tumor-secreted vascular endothelial growth factor (VEGF) with its receptor(s) on endothelial cells triggers endothelial cell proliferation and migration, which facilitate tumor angiogenesis. Butyric acid (BuA), a fermentation product of dietary fibers in the colon, is shown to alter gene expression and is postulated to be anticarcinogenic. The results presented in this paper indicate that BuA can be antiangiogenic in vivo by inhibiting angiogenesis in chorioallantoic membrane assay. BuA was not cytotoxic to endothelial cells but was a potent antiproliferative agent besides being proapoptotic to endothelial cells as verified by FACS analysis. Conditioned media from BuA-treated Ehrlich ascites tumor cells showed a 30% decrease in VEGF concentration when compared with untreated cells. The decrease in VEGF mRNA and its receptor, KDR mRNA levels in EAT and endothelial cells respectively, suggests that the VEGF-KDR system of angiogenesis is the molecular target for the antiangiogenic action of BuA.  相似文献   

7.
8.
目的探讨人表皮生长因子显性负性突变体(dominant negative epidermal growth factor receptor,DNEGFR))对胃癌细胞促血管形成能力的影响及其分子机制,并检测其对裸鼠皮下移植瘤生长的影响。方法选用2株人胃癌细胞,分为如下6组:SGC-7901及NCI-N87细胞未转染组(US组,UN组),SGC-7901及NCI-N87细胞pEGFP-N1质粒转染组(ES组,EN组),SGC-7901及NCI-N87细胞pEGFPN1-DNEGFR质粒转染组(DS组,DN组)。采用人脐静脉内皮细胞(humanumbilical vein endothelial cell,HUVEC)管腔结构形成实验检测体外促血管形成能力,采用酶联免疫吸附测定法(enzyme-linked immunosorbent assay,ELISA)测定细胞培养液中血管内皮生长因子(vascular endothelial growth factor,VEGF)的水平,建立人胃癌细胞裸鼠移植瘤模型,标本微血管密度(microvessel density,MVD)检测体内促血管形成能力,标本体积检测其对裸鼠皮下移植瘤生长的影响。结果转染pEGFPN1-DNEGFR质粒的人胃癌细胞株出现HUVEC管腔结构形成抑制,培养液中VEGF水平降低,MVD计数降低,裸鼠皮下移植瘤体积变小。结论 DNEGFR可能通过下调VEGF分泌抑制胃癌细胞体外及裸鼠体内促血管形成能力,最终抑制裸鼠皮下移植瘤生长。  相似文献   

9.
Type V collagen selectively inhibits human endothelial cell proliferation   总被引:3,自引:0,他引:3  
Type V collagen from human placenta remarkably inhibited human umbilical vein endothelial cell (HUVEC) proliferation in a dose-dependent manner when coated on the culture dishes. Other types of collagen (I, III, IV) and fibronectin enhanced HUVEC proliferation under the same conditions. The inhibitory activity of type V collagen was seen not only when it was coated on the dishes, but also when it was directly added into cell culture. The attachment effect of type V collagen did not differ from that of type I collagen. The inhibitory activity is a phenomenon selective for endothelial cells, since type V collagen did not affect the proliferation of human umbilical vein smooth muscle cells, aortic smooth muscle cells, or nasal mucosa fibroblasts.  相似文献   

10.
Despite its known biological effect on epithelial cells, 13- CIS-retinoic acid shows low binding affinity to either cellular retinoic acid-binding proteins or nuclear retinoid receptors compared to its isomer all- TRANS-retinoic acid. We have postulated a prodrug-drug relation with 13- CIS-retinoic acid which isomerizes to all- TRANS-retinoic acid. On the other hand, the biological effects of these two compounds can differ in the widely used cell culture models of HaCaT and normal primary keratinocytes. In this study, we seeded HaCaT and normal keratinocytes at high densities leading to early confluence in order to imitate high keratinocyte proliferation, such as in acne and psoriasis, while to model decreased keratinocyte proliferation, as in aged and steroid-damaged skin, cells were seeded at a low density. High performance liquid chromatography was administered to examine retinoid uptake and metabolism in monolayer HaCaT and normal keratinocyte cultures and the 4-methylumbelliferyl heptanoate assay to estimate cell growth at different cell densities. Major qualitative and quantitative differences were detected in the two cell types regarding intracellular 13- CIS-retinoic acid isomerization to all- TRANS-retinoic acid. On the other hand, the two retinoic acid isomers showed similar effects on cell growth of both cell types tested with increasing proliferation at low cell densities, but being rather inactive at high ones in normal keratinocytes and exhibiting an antiproliferative effect in HaCaT keratinocytes. The missing effect of retinoids on cell proliferation in high seeding densities of normal keratinocytes may indicate that the normalizing activity of retinoids on hyperkeratotic diseases, such as acne or psoriasis, is likely to be carried out by modulation of cell differentiation than cell growth. On the other hand, induced keratinocyte proliferation in low seeding densities may provide an explanation for the acanthosis induced by topical retinoids in aged and steroid-damaged skin.  相似文献   

11.
Human umbilical endothelial cells in culture retain differentiated morphological and functional characterization in primary culture and even in the early subcultures, after which they begin to degenerate. We have studied the morphological and biochemical characterization (ability to produce prostacyclin, prostaglandin E2 and thromboxane A2 in culture) of endothelial cells in the first seven subcultures. In addition the influence of serum and endothelial cell growth factor added to the culture medium have been evaluated. With 20% normal human serum, cell proliferation is faster than with the same concentration of human fetal or bovine fetal serum.After the 3rd passage, morphological and growth alterations become observable in the endothelial cells. However, prostacyclin, prostaglandin E2 and thromboxane A2 production showed no variations during the study.  相似文献   

12.
Three-dimensional (3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover, these models bridge the gap between traditional two-dimensional (2D) monolayer cultures and animal models. 3D culture systems have significantly advanced basic cell science and tissue engineering, especially in the fields of cell biology and physiology, stem cell research, regenerative medicine, cancer research, drug discovery, and gene and protein expression studies. In addition, 3D models can provide unique insight into bacteriology, virology, parasitology and host-pathogen interactions. This review summarizes and analyzes recent progress in human virological research with 3D cell culture models. We discuss viral growth, replication, proliferation, infection, virus-host interactions and antiviral drugs in 3D culture models.
  相似文献   

13.
Members of the vascular endothelial growth factor (VEGF) family of proteins are critical regulators of angiogenesis. VEGF concentration gradients are important for activation and chemotactic guidance of capillary sprouting, but measurement of these gradients in vivo is not currently possible. We have constructed a biophysically and molecularly detailed computational model to study microenvironmental transport of two isoforms of VEGF in rat extensor digitorum longus skeletal muscle under in vivo conditions. Using parameters based on experimental measurements, the model includes: VEGF secretion from muscle fibers; binding to the extracellular matrix; binding to and activation of endothelial cell surface VEGF receptors; and internalization. For 2-D cross sections of tissue, we analyzed predicted VEGF distributions, gradients, and receptor binding. Significant VEGF gradients (up to 12% change in VEGF concentration over 10 μm) were predicted in resting skeletal muscle with uniform VEGF secretion, due to non-uniform capillary distribution. These relative VEGF gradients were not sensitive to extracellular matrix composition, or to the overall VEGF expression level, but were dependent on VEGF receptor density and affinity, and internalization rate parameters. VEGF upregulation in a subset of fibers increased VEGF gradients, simulating transplantation of pro-angiogenic myoblasts, a possible therapy for ischemic diseases. The number and relative position of overexpressing fibers determined the VEGF gradients and distribution of VEGF receptor activation. With total VEGF expression level in the tissue unchanged, concentrating overexpression into a small number of adjacent fibers can increase the number of capillaries activated. The VEGF concentration gradients predicted for resting muscle (average 3% VEGF/10 μm) is sufficient for cellular sensing; the tip cell of a vessel sprout is approximately 50 μm long. The VEGF gradients also result in heterogeneity in the activation of blood vessel VEGF receptors. This first model of VEGF tissue transport and heterogeneity provides a platform for the design and evaluation of therapeutic approaches.  相似文献   

14.
Carbohydrate moieties serve as important sites of interaction for many lymphocyte activities. The potential role of saccharides in the cellular interactions involved in mitogen-, antigen-, and alloantigen-induced proliferation was investigated. Eight different monosaccharides were tested for their inhibitory potential when added to uni- and bidirectional mixed-lymphocyte culture (MLC) reaction as well as to mitogen (Con A, PHA, PWM)-stimulated cultures. Only alpha-L-fucose blocked the MLC reaction in a dose-dependent fashion while having no effect on mitogen stimulation, although antigen-specific stimulation was also blocked by fucose. Similarly alpha-L-fucose specifically inhibited the MLC-induced generation of suppressor cells. Pretreatment of the MLC responder cells with fucose dehydrogenase abolished the MLC reaction while stimulator cell pretreatment had no effect, suggesting that the recognition site of the former contained alpha-L-fucose. The generation and the effector phase of Con A-induced suppressor cells was not affected by fucose, indicating that different receptors are involved in the latter. Apparent competitive inhibition by exogenous fucose of the cell-cell interaction required for the MLC reaction suggested that this monosaccharide is an essential constituent of allogeneic recognition sites.  相似文献   

15.
ADAMTS1 is a metalloprotease previously shown to inhibit angiogenesis in a variety of in vitro and in vivo assays. In the present study, we demonstrate that ADAMTS1 significantly blocks VEGFR2 phosphorylation with consequent suppression of endothelial cell proliferation. The effect on VEGFR2 function was due to direct binding and sequestration of VEGF165 by ADAMTS1. Binding was confirmed by co-immunoprecipitation and cross-linking analysis. Inhibition of VEGF function was reversible, as active VEGF could be recovered from the complex. The interaction required the heparin-binding domain of the growth factor, because VEGF121 failed to bind to ADAMTS1. Structure/function analysis with independent ADAMTS1 domains indicated that binding to VEGF165 was mediated by the carboxyl-terminal (CT) region. ADAMTS1 and VEGF165 were also found in association in tumor extracts. These findings provide a mechanism for the anti-angiogenic activity of ADAMTS1 and describe a novel modulator of VEGF bioavailability.  相似文献   

16.
Cell to cell interaction is one of the key processes effecting angiogenesis and endothelial cell function. There are many factors which can mediate this interaction including Wnt-signaling-related molecules. Wnt signaling is involved in many developmental processes and cellular functions. There is increasing evidence suggesting that Wnt signaling has a role in regulating endothelial cell growth although the precise mechanism is unclear. In this study, we established a coculture system to examine how Wnt-1 signaling regulates human umbilical vein endothelial cell (HUVEC) growth and behavior. We found that Wnt-1 signals inhibited BrdU incorporation in HUVECs and the number of labeled cells also decreased in proportion to the number of Wnt-1-expressing cells present (P < 0.05). Moreover, HUVECs cocultured with Wnt-1-expressing C57MG cells clumped together rather than remaining scattered throughout the culture. These effects were dependent on cell contact. Treatment of HUVEC with LiCl, which inhibits the activity of GSK-3β and mimicked Wnt-1 signaling, also inhibited the BrdU incorporation in endothelial cells. Our results suggest that Wnt signaling has a role in endothelial cell growth control and this is mediated through cell–cell contact. They also suggest that Wnt signaling might participate in angiogenesis by regulating endothelial cell growth and function.  相似文献   

17.
The quinazoline-derived alpha1-adrenoceptor antagonists, doxazosin and terazosin have been recently shown to induce an anoikis effect in human prostate cancer cells and to suppress prostate tumor vascularity in clinical specimens [Keledjian and Kyprianou, 2003]. This study sought to examine the ability of doxazosin to affect the growth of human vascular endothelial cells and to modulate vascular endothelial growth factor (VEGF)-mediated angiogenesis. Human umbilical vein endothelial cells (HUVECs) were used as an in vitro model to determine the effect of doxazosin on cell growth, apoptosis, adhesion, migration, and angiogenic response of endothelial cells. The effect of doxazosin on cell viability and apoptosis induction of human endothelial cells, was evaluated on the basis of trypan blue and Hoechst 33342 staining, respectively. Doxazosin antagonized the VEGF-mediated angiogenic response of HUVEC cells, by abrogating cell adhesion to fibronectin and collagen-coated surfaces and inhibiting cell migration, via a potential downregulation of VEGF expression. Furthermore there was a significant suppression of in vitro angiogenesis by doxazosin on the basis of VEGF-mediated endothelial tube formation (P < 0.01). Fibroblast growth factor-2 (FGF-2) significantly enhanced HUVEC cell tube formation (P < 0.01) and this effect was suppressed by doxazosin. These findings provide new insight into the ability of doxazosin to suppress the growth and angiogenic response of human endothelial cells by interfering with VEGF and FGF-2 action. This evidence may have potential therapeutic significance in using this quinazoline-based compound as an antiangiogenic agent for the treatment of advanced prostate cancer.  相似文献   

18.
Platelets are anucleate cytoplasmic fragments derived from bone marrow megakaryocytes, and endothelial cells constitute the barrier between bloodstream and adjacent tissues. Although platelets are thought to regulate the biological functions of endothelial cells, the molecular mechanisms involved are poorly understood. With human umbilical vein endothelial cells and freshly isolated platelets, we established an in vitro model of platelet-induced endothelial cell proliferation. Platelets stimulated endothelial cell proliferation in a dose-dependent manner and transwell experiments with semi-permeable membranes suggested that direct cell-to-cell contacts were required. We developed mAbs against platelets and selected a mAb that blocks their proliferative effect. We purified the antigen by immunoprecipitation and identified it by Q-TOF MS analysis as the tetraspanin CD9. Since both platelets and endothelial cells expressed CD9 strongly on their surfaces we carried out a pre-treatment experiment that showed that CD9 molecules on the endothelial cells participate in the mitogenic effect of the platelets. The inhibitory effect of our mAb was comparable to that of a well-known functional anti-CD9 mAb. These results suggest that the tetraspanin CD9 plays an important role in endothelial regeneration.  相似文献   

19.
Primary isolates of chick leg muscle myoblasts cultured on hyaluronic acid substrates have been examined by transmission electron microscopy for evidence of myoblast fusion and subsequent differentiation. Even though these cells form close contacts, no evidence of multinucleated myotubes is found in these cultures. Two-dimensional SDS-polyacrylamide gel electrophoresis shows that the muscle macromolecular biosynthetic program is not initiated in these hyaluronic acid fusion-blocked cells. Further, these fusion-blocked myoblasts continue replicating while cultured on hyaluronic acid surfaces. The inhibition of both fusion and the myogenic expressional program is reversed by replating these myoblasts onto a denatured collagen (gelatin) substrate; both the synthesis of muscle-specific proteins and the formation of multinucleated myotubes are observed when these subcultured cells are introduced onto gelatin substrates. These observations indicate that the hyaluronic acid inhibition of fusion is not permanent and is manifested in a way different from other fusion blockers in that hyaluronic acid inhibits both fusion and the myogenic expressional program.  相似文献   

20.
Tissue inhibitor of metalloproteinase-2 (TIMP-2), a protease inhibitor that binds to the latent and active forms of 72 kDa type IV collagenase (gelatinase A), was found to inhibit the in vitro proliferation of human microvascular endothelial (HME) cells stimulated with bFGF and 5% serum. The maximal inhibitory effect of TIMP-2 on incorporation of 3H-thymidine was evident 24 hours after bFGF stimulation of these cells and ranged between 45 and 60%. The half-maximal effective concentration of TIMP-2 was 107 ± 12 nM (S.D.). In contrast, TIMP-1 was not found to slow the growth of HME cells. The inhibition of cell proliferation observed with TIMP-2 was not mimicked by addition to the culture medium of BB94, a general matrix metalloproteinase inhibitor, nor antibodies to the 72 kDa type IV collagenase. In addition to growth, two other cell functions associated with the angiogenic process were tested for sensitivity to TIMP-2. Cell adhesion to tissue culture platic was slightly stimulated by TIMP-2, and cell migration was inhibited with short-term exposure to TIMP-2, but neither process was affected by longer-term exposure. The ability of TIMP-2 to inhibit cultured endothelial cell proliferation independent of protease inhibitory activity suggests that TIMP-2 may have additional actions which may limit neovascularization associated with solid tumor growth and metastasis in vivo. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号