首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Follistatin‐like 1 (Fstl1) is a member of the secreted protein acidic rich in cysteins (SPARC) family and has been implicated in many different signaling pathways, including bone morphogenetic protein (BMP) signaling. In many different developmental processes like, dorso‐ventral axis establishment, skeletal, lung and ureter development, loss of function experiments have unveiled an important role for Fstl1. Fstl1 largely functions through inhibiting interactions with the BMP signaling pathway, although, in various disease models, different signaling pathways, like activation of pAKT, pAMPK, Na/K‐ATPase, or innate immune responses, are linked to Fstl1. How Fstl1 inhibits BMP signaling remains unclear, although it is known that Fstl1 does not function through a scavenging mechanism, like the other known extracellular BMP inhibitors such as noggin. It has been proposed that Fstl1 interferes with BMP receptor complex formation and as such inhibits propagation of the BMP signal into the cell. Future challenges will encompass the identification of the factors that determine the mechanisms that underlie the fact that Fstl1 acts by interfering with BMP signaling during development, but through other signaling pathways during disease. Birth Defects Research (Part C) 99:61–69, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Follistatin-like 1 (Fstl1) is a distantly related homolog of the Activin and Bone Morphogenetic Protein antagonist Follistatin. Interestingly, this molecule also has homology with the extracellular matrix modifying protein BM-40/SPARC/osteonectin. Previous studies in chick have identified Fstl1 as a regulator of early mesoderm patterning, somitogenesis, myogenesis and neural development. In this study, we determine the developmental expression pattern of Fstl1 in the mouse. We find that Fstl1 is ubiquitously expressed in the early embryo, and that expression becomes regionalized later during development. In the majority of tissues, Fstl1 is strongly expressed in the mesenchymal component and excluded from the epithelium. Notable exceptions include the central nervous system, in which Fstl1 expression is entirely absent with the exception of the choroid plexi and floor plate, the lung, in which Fstl1 expression can be seen in airway epithelia and the kidney, in which collecting ducts and nascent nephron epithelia express the highest levels of Fstl1.  相似文献   

3.
Xu J  Qi X  Gong J  Yu M  Zhang F  Sha H  Gao X 《PloS one》2012,7(4):e32554
Bone morphogenetic protein (BMP) signaling pathway plays important roles in urinary tract development although the detailed regulation of its activity in this process remains unclear. Here we report that follistatin-like 1 (Fstl1), encoding a secreted extracellular glycoprotein, is expressed in developing ureter and antagonizes BMP signaling activity. Mouse embryos carrying disrupted Fstl1 gene displayed prominent hydroureter arising from proximal segment and ureterovesical junction defects. These defects were associated with significant reduction in ureteric epithelial cell proliferation at E15.5 and E16.5 as well as absence of subepithelial ureteral mesenchymal cells in the urinary tract at E16.5 and E18.5. At the molecular level, increased BMP signaling was found in Fstl1 deficient ureters, indicated by elevated pSmad1/5/8 activity. In vitro study also indicated that Fstl1 can directly bind to ALK6 which is specifically expressed in ureteric epithelial cells in developing ureter. Furthermore, Sonic hedgehog (SHH) signaling, which is crucial for differentiation of ureteral subepithelial cell proliferation, was also impaired in Fstl1(-/-) ureter. Altogether, our data suggest that Fstl1 is essential in maintaining normal ureter development by antagonizing BMP signaling.  相似文献   

4.
Follistatin-like 1 (Fstl1), also named TSC-36 (TGF-β-stimulated clone 36), was first cloned from the mouse osteoblastic MC3T3-E1 cell line and can be up-regulated by TGF-β. To better study the function of Fstl1 during the development of the mouse central nervous system (CNS), we examined Fstl1 expression in the developing mouse CNS, in detail, by in situ hybridization. Our results show that Fstl1 is strongly expressed in the telencephalon, diencephalon, brainstem, limbic system and spinal cord. In the telencephalon, Fstl1 positive cells are mainly located in the ventricular zone (VZ) and the subventricular zone (SVZ); a relatively weak signal was observed in layers II and III of the neocortex at postnatal stages. Fstl1 expression is robust in the developing hippocampus and persists to P20. In the developing diencephalon and hindbrain, abundant Fstl1 signals were also detected in nuclei including the medial habenular nucleus, the medial dorsal nucleus, the cochlear nuclei and so on. In addition, a strong expression of Fstl1 was detected in the thalamencephalic signal center, as well as in the olfactory cortex from E14.5 to P0. Meanwhile, Fstl1 was expressed in the septal area and the cingulate gyrus of the limbic system after birth. A high level of expression was also observed in the ventral horn of the spinal cord. These results indicate that Fstl1 may play an important role during CNS development in the mouse.  相似文献   

5.
Transforming growth factor-β family cytokines have diverse actions in the maintenance of cardiac homeostasis. Follistatin-like 3 (Fstl3) is an extracellular regulator of certain TGF-β family members, including activin A. The aim of this study was to examine the role of Fstl3 in cardiac hypertrophy. Cardiac myocyte-specific Fstl3 knock-out (KO) mice and control mice were subjected to pressure overload induced by transverse aortic constriction (TAC). Cardiac hypertrophy was assessed by echocardiography and histological and biochemical methods. KO mice showed reduced cardiac hypertrophy, pulmonary congestion, concentric LV wall thickness, LV dilatation, and LV systolic dysfunction after TAC compared with control mice. KO mice displayed attenuated increases in cardiomyocyte cell surface area and interstitial fibrosis following pressure overload. Although activin A was similarly up-regulated in KO and control mice after TAC, a significant increase in Smad2 phosphorylation only occurred in KO mice. Knockdown of Fstl3 in cultured cardiomyocytes inhibited PE-induced cardiac hypertrophy. Conversely, adenovirus-mediated Fstl3 overexpression blocked the inhibitory action of activin A on hypertrophy and Smad2 activation. Transduction with Smad7, a negative regulator of Smad2 signaling, blocked the antihypertrophic actions of activin A stimulation or Fstl3 ablation. These findings identify Fstl3 as a stress-induced regulator of hypertrophy that controls myocyte size via regulation of Smad signaling.  相似文献   

6.
Follistatin like-1 (Fstl1) is a secreted glycoprotein and can be up-regulated by TGF-β1. To better study the function of Fstl1 in lung development, we examined Fstl1 expression in the developing lung, in a cell type specific manner, using a tamoxifen inducible Fstl1-reporter mouse strain. Our results show that Fstl1 is ubiquitously expressed at saccular stage in the developing lung. At E18.5, Fstl1 expression is robust in most type of mesenchymal cells, including airway smooth muscle cells surrounding airways, vascular smooth muscle cells, endothelial cells, and vascular pericytes from blood vessel, but not PDGFRα+ fibroblasts in the distal alveolar sacs. Meanwhile, relative weak and sporadic signals of Fstl1 expression are observed in epithelium, including a subgroup of club cells in proximal airways and a few type II alveolar epithelial cells in distal airways. Our data help to understand the critical role of Fstl1 in lung development and lung disease pathogenesis.  相似文献   

7.
BMP signaling and early embryonic patterning   总被引:3,自引:0,他引:3  
Bone morphogenetic proteins (BMPs) play pleiotropic roles during embryonic development as well as throughout life. Recent genetic approaches especially using the mouse gene knockout system revealed that BMP signaling is greatly involved in early embryonic patterning, which is a dynamic event to establish three-dimensional polarities. The purpose of this review is to describe the diverse function of BMPs through different receptor signaling systems during embryonic patterning including gastrulation and establishment of the left-right asymmetry.  相似文献   

8.
9.
Of the many models to study vascular biology the avian embryo remains an informative and powerful model system that has provided important insights into endothelial cell recruitment, assembly and remodeling during development of the circulatory system. This review highlights several discoveries in the avian system that show how arterial patterning is regulated using the model of dorsal aortae development along the embryo midline during gastrulation and neurulation. These discoveries were made possible through spatially and temporally controlled gain-of-function experiments that provided direct evidence that BMP signaling plays a pivotal role in vascular recruitment, patterning and remodeling and that Notch-signaling recruits vascular precursor cells to the dorsal aortae. Importantly, BMP ligands are broadly expressed throughout embryos but BMP signaling activation region is spatially defined by precisely regulated expression of BMP antagonists. These discoveries provide insight into how signaling, both positive and negative, regulate vascular patterning. This review also illustrates similarities of early arterial patterning along the embryonic midline in amniotes both avian and mammalians including human, evolutionarily specialized from non-amniotes such as fish and frog.  相似文献   

10.
Dickkopf1 (Dkk1) is a secreted protein that acts as a Wnt inhibitor and, together with BMP inhibitors, is able to induce the formation of ectopic heads in Xenopus. Here, we show that Dkk1 null mutant embryos lack head structures anterior of the midbrain. Analysis of chimeric embryos implicates the requirement of Dkk1 in anterior axial mesendoderm but not in anterior visceral endoderm for head induction. In addition, mutant embryos show duplications and fusions of limb digits. Characterization of the limb phenotype strongly suggests a role for Dkk1 both in cell proliferation and in programmed cell death. Our data provide direct genetic evidence for the requirement of secreted Wnt antagonists during embryonic patterning and implicate Dkk1 as an essential inducer during anterior specification as well as a regulator during distal limb patterning.  相似文献   

11.
During early vertebrate embryogenesis, bone morphogenetic proteins (BMPs) belonging to the transforming growth factor‐β (TGF‐β) family of growth factors play a central role in dorsal–ventral (DV) patterning of embryos, while other growth factors such as Wnt and fibroblast growth factor (FGF) family members regulate formation of the anterior–posterior (AP) axis. Although the establishment of body plan is thought to require coordinated formation of the DV and AP axes, the mechanistic details underlying this coordination are not well understood. Here, we show that a Xenopus homologue of zbtb14 plays an essential role in the regulation of both DV and AP patterning during early Xenopus development. We show that overexpression of Zbtb14 promotes neural induction and inhibits epidermal differentiation, thereby regulating DV patterning. In addition, Zbtb14 promotes the formation of posterior neural tissue and suppresses anterior neural development. Consistent with this, knock‐down experiments show that Zbtb14 is required for neural development, especially for the formation of posterior neural tissues. Mechanistically, Zbtb14 reduces the levels of phosphorylated Smad1/5/8 to suppress BMP signaling and induces an accumulation of β‐Catenin to promote Wnt signaling. Collectively, these results suggest that Zbtb14 plays a crucial role in the formation of DV and AP axes by regulating both the BMP and Wnt signaling pathways during early Xenopus embryogenesis.  相似文献   

12.
Lung alveolar development in late gestation is a process important to postnatal survival. Follistatin-like 1 (Fstl1) is a matricellular protein of the Bmp antagonist class, which is involved in the differentiation/maturation of alveolar epithelial cells during saccular stage of lung development. This study investigates the role of Fstl1 on elastin deposition in mesenchyme and subsequent secondary septation in the late gestation stage of terminal saccular formation. To this aim, we modified the renal capsule allograft model for lung organ culture by grafting diced E15.5 distal lung underneath the renal capsule of syngeneic host and cultured up to 7 days. The saccular development of the diced lung allografts, as indicated by the morphology, epithelial and vascular developments, occurred in a manner similar to that in utero. Fstl1 deficiency caused atelectatic phenotype companied by impaired epithelial differentiation in D3 Fstl1−/− lung allografts, which is similar to that of E18.5 Fstl1−/− lungs, supporting the role of Fstl1 during saccular stage. Inhibition of Bmp signaling by intraperitoneal injection of dorsomorphin in the host mice rescued the pulmonary atelectasis of D3 Fstl1−/− allografts. Furthermore, a marked reduction in elastin expression and deposition was observed in walls of air sacs of E18.5 Fstl1−/− lungs and at the tips of the developing alveolar septae of D7 Fstl1−/− allografts. Thus, in addition to its role on alveolar epithelium, Fstl1 is crucial for elastin expression and deposition in mesenchyme during lung alveologenesis. Our data demonstrates that the modified renal capsule allograft model for lung organ culture is a robust and efficient technique to increase our understanding of saccular stage of lung development.  相似文献   

13.
Left-right (LR) asymmetry is regulated by early asymmetric signals within the embryo. Even though the role of the bone morphogenetic protein (BMP) pathway in this process has been reported extensively in various model organisms, opposing models for the mechanism by which BMP signaling operates still prevail. Here we show that in zebrafish embryos there are two distinct phases during LR patterning in which BMP signaling is required. Using transgenic lines that ectopically express either noggin3 or bmp2b, we show a requirement for BMP signaling during early segmentation to repress southpaw expression in the right lateral plate mesoderm and regulate both visceral and heart laterality. A second phase was identified during late segmentation, when BMP signaling is required in the left lateral plate mesoderm to regulate left-sided gene expression and heart laterality. Using morpholino knock down experiments, we identified Bmp4 as the ligand responsible for both phases of BMP signaling. In addition, we detected bmp4 expression in Kupffer's vesicle and show that restricted knock down of bmp4 in this structure results in LR patterning defects. The identification of these two distinct and opposing activities of BMP signaling provides new insight into how BMP signaling can regulate LR patterning.  相似文献   

14.
In zebrafish, BMP signaling establishes cell identity along the dorsoventral (DV) axis during gastrulation. Owing to the early requirements of BMP activity in DV patterning, it has been difficult to assign later roles in cell fate specification to specific BMP ligands. In this study, we have taken advantage of two follistatin-like genes (fstl1 and fstl2), as well as a transgenic zebrafish line carrying an inducible truncated form of the BMP-type 1 receptor to study the role of Bmp4 outside of the context of DV specification. Characterization of fstl1/2 suggests that they exert a redundant role as BMP antagonists during late gastrulation, regulating BMP activity in axial mesoderm. Maintenance of appropriate levels of BMP signaling is crucial for the proper development of chordamesoderm, a subset of axial mesoderm that gives rise to the notochord, but not prechordal mesoderm, which gives rise to the prechordal plate. Bmp4 activity in particular is required during a crucial window beginning at late gastrulation and lasting through early somitogenesis to promote chordamesoderm proliferation. In the absence of Bmp4, the notochord precursor pool is depleted, and the notochord differentiates prematurely. Our results illustrate a role for Bmp4 in the proliferation and timely differentiation of axial tissue after DV axis specification.  相似文献   

15.
Bone morphogenetic protein (BMP) family members, including BMP2, BMP4, and BMP7, are expressed throughout limb development. BMPs have been implicated in early limb patterning as well as in the process of skeletogenesis. However, due to complications associated with early embryonic lethality, particularly for Bmp2 and Bmp4, and with functional redundancy among BMP molecules, it has been difficult to decipher the specific roles of these BMP molecules during different stages of limb development. To circumvent these issues, we have constructed a series of mouse strains lacking one or more of these BMPs, using conditional alleles in the case of Bmp2 and Bmp4 to remove them specifically from the limb bud mesenchyme. Contrary to earlier suggestions, our results indicate that BMPs neither act as secondary signals downstream of Sonic Hedghog (SHH) in patterning the anteroposterior axis nor as signals from the interdigital mesenchyme in specifying digit identity. We do find that a threshold level of BMP signaling is required for the onset of chondrogenesis, and hence some chondrogenic condensations fail to form in limbs deficient in both BMP2 and BMP4. However, in the condensations that do form, subsequent chondrogenic differentiation proceeds normally even in the absence of BMP2 and BMP7 or BMP2 and BMP4. In contrast, we find that the loss of both BMP2 and BMP4 results in a severe impairment of osteogenesis.  相似文献   

16.
17.
18.
Bone morphogenetic proteins (BMPs)/growth differentiation factors (GDFs), which belong to the TGF-beta superfamily, are pleiotropic factors that play a role in regulating the embryonic development and postnatal homeostasis of various organs and tissues by controlling cellular differentiation, proliferation and apoptosis. Conventional transgenic and knockout (KO) mouse approaches have provided only limited information regarding the in vivo functions of BMP signaling in adult animals due to the effects on prenatal development and the difficulty in manipulating multiligand signals simultaneously. We recently produced transgenic chimeric mice(Tg chimeras) in which the soluble IgG1-Fc fusion protein of three BMP type II receptors (ActRIIA, ActRIIB, BMPRII) was highly circulated (281-709 μg/ml), specifically in adult mouse blood. Since each BMP receptor can bind to multiple BMP ligands, these Tg chimeras should be useful to investigate the effects of trapping multiple BMP ligands. Remarkably, some phenotypes were unexpected based on previous studies, such as KO mouse analyses, presumably representing the effects of the multiple ligand trapping. These phenotypes included increased red blood cells (RBCs) and decreased viability in adults. In a further study, we focused on the phenotype of increased RBCs and found that extramedullary hematopoiesis in the spleen, not in the bone marrow, was increased using histological and flow cytometric analyses. Although it remains to be elucidated whether the transgene products affect the tissues directly or indirectly, our data provide novel and important insight into the biological functions of the soluble IgG1-Fc fusion protein of three BMP type II receptors in adults, and our approach should have broad applications to research on other ligand receptor families and studies involving mouse models.  相似文献   

19.
20.
Branching morphogenesis in the lung serves as a model for the complex patterning that is reiterated in multiple organs throughout development. Beta-catenin and Wnt signaling mediate critical functions in cell fate specification and differentiation, but specific functions during branching morphogenesis have remained unclear. Here, we show that Wnt/beta-catenin signaling regulates proximal-distal differentiation of airway epithelium. Inhibition of Wnt/beta-catenin signaling, either by expression of Dkk1 or by tissue-specific deletion of beta-catenin, results in disruption of distal airway development and expansion of proximal airways. Wnt/beta-catenin functions upstream of BMP4, FGF signaling, and N-myc. Moreover, we show that beta-catenin and LEF/TCF activate the promoters of BMP4 and N-myc. Thus, Wnt/beta-catenin signaling is a critical upstream regulator of proximal-distal patterning in the lung, in part, through regulation of N-myc, BMP4, and FGF signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号