首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Aspirin and indomethacin do interact with the same site on cyclo-oxygenase. This suggestion is based on studies on ram seminal vesicles and drug interaction studies on rat platelets. The purpose of the present study was to ascertain whether the same interaction also occurred after administration of both drugs to human volunteers.Platelet aggregation induced by sodium arachidonate or by collagen, and formation of platelet MDA and TxB2 were measured before, two and 48 hours after ingestion of either indomethacin (50 mg) or aspirin (500 mg) or of both drugs (30 minutes apart).While the inhibitory effect of indomethacin on these parameters was short lasting, that of aspirin persisted for at least 48 hours. However, when both drugs were given concurrently, the long-lasting effect of aspirin was no longer detectable. Since competition at levels other than platelets was unlikely, this study indicates that indomethacin and aspirin inhibit human platelet cyclo-oxygenase by the same basic mechanism. Acetylation of the enzyme appears to be a secondary mechanism which makes the inhibitory effect of aspirin persistent.  相似文献   

2.
The non-steroidal anti-inflammatory drugs aspirin, indomethacin and meclofenamic acid were compared for their potency and duration of inhibition of prostaglandin biosynthesis in rabbit kidney medulla. Indomethacin and meclofenamic acid showed equal potency of inhibition in-vitro (IC50 0.88 micron and 0.85 micron respectively) while aspiring was a much weaker inhibitor (IC50 120 micron). In-vivo, indomethacin was the most powerful inhibitor (ID50 0.034 mg/kg) followed by meclofenamic acid (0.45 mg/kg) and aspirin (2.35 mg/kg). Studies on the duration of in-vivo inhibition by these compounds showed the effect of indomethacin and meclofenamic acid to be completely reversed within 4-6 hours. In contrast, return of kidney prostaglandin biosynthetic activity following aspirin inhibition is very slow and significant inhibition is still present 48 hours after a single aspiring injection. The inhibitory effect of aspirin in-vivo could be blocked by pretreatment with indomethacin, indicating that both drugs interact with related sites on the cyclo-oxygenase enzyme. The irreversible inhibition of the cyclo-oxygenase by aspirin as demonstrated in studies of other investigators suggests that the return of kidney prostaglandin synthetase activity after aspirin inhibition represents synthesis of new cyclo-oxygenase protein.  相似文献   

3.
Non-steroidal anti-inflammatory drugs inhibit platelet cylco-oxygenase activity. This study shows that salicylate, diflunisal, sulphinpyrazone and indomethacine prevent in vivo aspirin inhibitory effect of cyclo-oxygenase activity as measured by the formation of malondialdehyde and thromboxane B2, two products of platelet arachidonic acid metabolism. Salicylate also prevents the inhibitory effect of indomethacin. All these drugs therefore appear to interact with the same site on platelet cyclo-oxygenase. Since salicylate is inactive by itself on this platelet enzyme and diflunisal and sulphinpyrazone were used at ineffective doses, it is suggested that their interaction with aspirin (or indomethacin) occurs at the level of a supplementary site is necessary but not sufficient for the efficacy of these drugs as cyclo-oxygenase inhibitors. Acetylation by aspirin of the active site appears to be a phenomenon secondary to the binding of salicylate moiety to the supplementary site.  相似文献   

4.
The non-steroidal anti-inflammatory drugs aspirin, indomethacin and meclofenamic acid were compared for their potency and duration of inhibition of prostaglandin biosynthesis in rabbit kidney medulla. Indomethacin and meclofenamic acid showed equal potency of inhibition (IC50 0.88 μM and 0.85 μM respectively) while aspirin was a much weaker inhibitor (IC50 120 μM). , indomethacin was the most powerful inhibitor (ID50 0.034 mg/kg) followed by meclofenamic acid (0.45 mg/kg) and aspirin (2.35 mg/kg).Studies on the duration of inhibition by these compounds showed the effect of indomethacin and meclofenamic acid to be completely reversed within 4–6 hours. In contrast, return of kidney prostaglandin biosynthetic activity following aspirin inhibition is very slow and significant inhibition is still present 48 hours after a single aspirin injection. The inhibitory effect of aspirin could be blocked by pretreatment with indomethacin, indicating that both drugs interact with related sites on the cyclo-oxygenase enzyme. The irreversible inhibition of the cyclo-oxygenase by aspirin as demonstrated in studies of other investigators suggests that the return of kidney prostaglandin synthetase activity after aspirin inhibition represents synthesis of new cyclo-oxygenase protein.  相似文献   

5.
Sodium salicylate is inactive both on cyclo-oxygenase and lipoxygenase prepared from human platelets. It prevents the inhibition of cyclo-oxygenase induced by aspirin, but does not counteract the inhibitory effect of 5,8,11,14-eicosatetraynoic acid on both enzymes. It also fails to interfere with the inhibitory activity of nordihydroguaiaretic acid on lipoxygenase. These data indicate that, unlike eicosatetraynoic acid, non-steroidal anti-inflammatory drugs interact with a site on cyclo-oxygenase distinct from the catalytic site, although related to it. Such a supplementary binding site is lacking on lipoxygenase.  相似文献   

6.
Antiplatelet effect of butylidenephthalide   总被引:1,自引:0,他引:1  
Butylidenephthalide inhibited, in a dose-dependent manner, the aggregation and release reaction of washed rabbit platelets induced by collagen and arachidonic acid. Butylidenephthalide also inhibited slightly the platelet aggregation induced by PAF and ADP, but not that by thrombin or ionophore A23187. Thromboxane B2 formation caused by collagen, arachidonic acid, thrombin and ionophore A23187 was in each case markedly inhibited by butylidenephthalide. Butylidenephthalide inhibited the aggregation of ADP-refractory platelets, thrombin-degranulated platelets, chymotrypsin-treated platelets and platelets in the presence of creatine phosphate/creatine phosphokinase. Its inhibition of collagen-induced aggregation was more marked at lower Ca2+ concentrations in the medium. The aggregability of platelets inhibited by butylidenephthalide could be recovered after the washing of platelets. In human platelet-rich plasma, butylidenephthalide and indomethacin prevented the secondary aggregation and blocked ATP release from platelets induced by epinephrine. Prostaglandin E2 formed by the incubation of guinea-pig lung homogenate with arachidonic acid could be inhibited by butylidenephthalide, indomethacin and aspirin. It is concluded that the antiplatelet effect of butylidenephthalide is mainly due to an inhibitory effect on cyclo-oxygenase and may be due partly to interference with calcium mobilization.  相似文献   

7.
The effects of a single oral administration of acetylsalicylic acid (500 mg), indomethacin (50 mg) and piroxicam (40 mg) to healthy volunteers on functional and biochemical parameters of platelets, polymorphonuclear (PMN) and mononuclear (MNL) leukocytes were evaluated. Blood was collected before and two hours after the drug intake and blood cells separated according to conventional techniques. The considered drugs almost completely suppressed the aggregation of platelets, whereas they did not affect either PMN and MNL aggregation. Superoxide anion generation by leukocytes was (PMN), or no effect (MNL) was observed after piroxicam and indomethacin respectively. The formation of arachidonate metabolites via the 5-lipoxygenase pathway by PMN and MNL challenged with 10 microM A23187 was unchanged following aspirin and indomethacin. In this respect a selective increase of 5-HETE and LTC4 synthesis by MNL only was detected after piroxicam administration. The three drugs similarly reduced TXB2 synthesis by platelets and PMN (-80% for aspirin and indomethacin, and -40% for piroxicam). As far as MNL is concerned, aspirin inhibited this metabolite by 80%, while indomethacin reduced it by 40% only. In contrast piroxicam increased TXB2 synthesis by stimulated MNL. It can be concluded that the considered antiinflammatory drugs 1) differently affect the cyclooxygenase enzyme in platelets and leukocytes; 2) at variance with the situation in platelets, the inhibition of thromboxane formation by leukocytes is not related to modifications of cellular function; 3) the formation of arachidonate metabolites via the 5-lipoxygenase pathway is affected by piroxicam only.  相似文献   

8.
Indomethacin has been charterized as a time-dependent, irreversible inhibitor of cyclo-oxygenase, yet its effects on human platelets have been found to be reversible . To understand this apparent contradiction, we have investigated the kinetics of recovery of platelet thromboxane production after a single dose of indomethacin. The inhibition of platelet thromboxane production was greater than would be expected from the levels of indomethacin found in the plasma suggesting that the time-dependent inhibition occurs . Yet recovery of platelet thromboxane production was faster than expected for the irreversible inhibitor, with 50% of control values being regained within 24 hours after ingestion of the drug. When platelets were isolated and resuspended in homologous drug-free plasma, slow recovery of thromboxane production was seen to occur with 50% of control activity regained in 100 minutes. This recovery was much slower than that seen from a competitive inhibitor of cyclo-oxygenase, ibuprofen. Ibuprofen-treated platelets recovered nearly completely immediately on being resuspended in drug-free plasma. When microsomes were isolated from platelets, then treated with indomethacin, no time-dependent recovery of activity was seen. The recovery of cyclo-oxygenase after indomethacin inhibition appears to be limited to the unperturbed enzyme in this natural milieu.  相似文献   

9.
Indomethacin has been characterized in vitro as a time-dependent, irreversible inhibitor of cyclo-oxygenase, yet its effects on human platelets have been found to be reversible in vivo. To understand this apparent contradiction, we have investigated the kinetics of recovery of platelet thromboxane production after a single dose of indomethacin. The inhibition of platelet thromboxane production was greater than would be expected from the levels of indomethacin found in the plasma suggesting that the time-dependent inhibition occurs in vivo. Yet recovery of platelet thromboxane production was faster than expected for an irreversible inhibitor, with 50% of control values being regained within 24 hours after ingestion of the drug. When platelets were isolated and resuspended in homologous drug-free plasma, slow recovery of thromboxane production was seen to occur with 50% of control activity regained in 100 minutes. This recovery was much slower than that seen from a competitive inhibitor of cyclo-oxygenase, ibuprofen. Ibuprofen-treated platelets recovered nearly completely immediately on being resuspended in drug-free plasma. When microsomes were isolated from platelets, then treated with indomethacin, no time-dependent recovery of activity was seen. The recovery of cyclo-oxygenase after indomethacin inhibition appears to be limited to the unperturbed enzyme in its natural milieu.  相似文献   

10.
A single dose of oral aspirin in human subjects inhibits the aggregation response of platelets to arachidonate and other agents for approximately one week after ingestion. In the present study we have evaluated the rate at which cyclo-oxygenase active platelets return to the circulation in humans and dogs and compared the response curves obtained to improvements in cyclo-oxygenase activity produced by the aspirin platelets. After a single dose of aspirin, dog platelet function was compromised for several days. Normal responses to arachidonate and other aggregating agents were restored six days after aspirin, and the pattern of recovery was the same for dogs and human subjects. However, cyclo-oxygenase active platelets returned to the circulation in dogs more rapidly than in humans and chemical competence was restored in both species well before correction of the defective response to aggregating agents. The delay of 1-3 days before return of significant numbers of cyclo-oxygenase active platelets most likely reflects acetylation of bone marrow megakaryocytes by the drug. More rapid return of chemically competent cells in dogs than humans probably relates to the more rapid turnover and shorter life span of canine platelets. The basis for the discrepancy in return of chemical integrity compared to functional activity after aspirin in vivo compared to simultaneous correction of chemistry and function when 10% normal platelets are added to aspirin platelets in vitro remains unresolved.  相似文献   

11.
The effects of different regimens of 40 mg aspirin on platelet thromboxane A2 synthesis and vascular prostacyclin synthesis were determined in patients who were undergoing elective surgery for removal of varicose veins. Aspirin 40 mg taken at intervals of 48 hours consistently reduced platelet thromboxane A2 synthesis to a level at which it failed to support platelet aggregation and the associated release reaction. This effect lasted for at least 36 hours. In contrast, aspirin 40 mg every 72 hours did not have the same consistent effect. Both dose regimens led to a reduction in vascular prostacyclin synthesis 12 hours after the last dose, but 36 or 72 hours after the last dose prostacyclin synthesis was not reduced; thus the inhibition of prostacyclin synthesis was short lived. If the balance between platelet thromboxane A2 and vascular prostacyclin synthesis is important in thrombosis 40 mg aspirin every 48 hours may have the maximum antithrombotic effect.  相似文献   

12.
In this study we have quantified the potency of three cyclo-oxygenase inhibitors, indomethacin, flurbiprofen and aspirin to reduce the vasoconstriction of isolated strips of human umbilical artery (HUA) to changing the oxygen-tension (PO2) of the bathing medium. The inhibitory potencies (IC50) of indomethacin and flurbiprofen were similar (IC50 = 2.1 x 10(-9) M and 7.6 x 10(-9) M respectively) while aspirin (IC50 = 2.5 x 10(-5) M) was approximately 12,000 fold less potent than indomethacin. At the physiological PO2 of 15 mmHg the isolated HUA was found to have an inherent cyclo-oxygenase induced tone since either reducing the PO2 from 15 to OmmHg or adding cyclo-oxygenase inhibitors caused vasorelaxation. O2-induced contractions were partly dependent on extracellular Ca2+: nifedipine and Bay K 8644 inhibited and enhanced oxygen-induced contractions, respectively, but did not have a significant effect on calcium-dependent 5-hydroxy-tryptamine-induced (5-HT) contractions. Therefore cyclo-oxygenase products and 5-hydroxytryptamine-induced contractions of the HUA may both utilise extracellular calcium but through different processes.  相似文献   

13.
The study involved 22 individuals with aspirin-produced urticaria-edematous skin lesions. Hypersensitivity to aspirin was established with anamnesis showing such lesions on aspirin intake and oral test with aspirin. Threshold, provocative dose of aspirin was determined in all patients at the beginning of the study. Moreover, threshold provocative indomethacin dose was additionally determined in 12 patients. Tolerance to aspirin was produced by the oral administration of aspirin in increasing doses upto total dose 600 mg at a 24-hour intervals. Twelve patients were given 25 mg of indomethacin after 24 hours, and 50 mg of this drug after 48 hours. The patients tolerated indomethacin well during aspirin tolerance stage. The authors suggest that both urticaria-edematous and bronchial type of aspirin hypersensitivity are of the same pathogenetic origin.  相似文献   

14.
Stimulation of platelets with collagen results in the mobilization of arachidonic acid (AA) from phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI). In this study the effect of aspirin, indomethacin, BW755C and prostaglandin H2 (PGH2) on labelled AA release in response to varied concentrations of collagen was investigated. Our results indicate that aspirin (0.56 mM) and indomethacin (5.6 microM) not only inhibited the collagen-mediated formation of cyclo-oxygenase metabolites, but also caused a significant reduction in the accumulation of free labelled AA and 12-hydroxyeicosatetraenoic acid (12-HETE) (21-64%). Aspirin and indomethacin also inhibited the release of [3H]AA from PC (37-75%) and PI (33-63%). The inhibition of AA release caused by aspirin was reversed partially by PGH2 (1 microM). In contrast, a smaller/no inhibition of collagen-stimulated labelled AA and 12-HETE accumulation (0-11%) and of collagen-stimulated AA loss from PC and PI was observed in the presence of BW755C. The results obtained in the presence of aspirin, indomethacin and BW755C at lower concentrations of collagen further demonstrate that AA release from PI (45-61% inhibition at 10 micrograms of collagen), but not from PC, was affected by the inhibition of cyclo-oxygenase. The results obtained on the effect of PGH2 further support that deacylation of phospholipids occurs independently of cyclo-oxygenase metabolites, particularly at higher concentrations of collagen. These results also demonstrate that aspirin and indomethacin, but not BW755C, cause a direct inhibition of collagen-induced [3H]AA liberation from PC as well as from PI. We also conclude that the diacylglycerol lipase pathway is a minor, but important, route for AA release from PI in collagen-stimulated human platelets. The mechanisms underlying the regulation of AA release by collagen in the absence of cyclo-oxygenase metabolites are not clear.  相似文献   

15.
Sodium L-ascorbate (ascorbate) and sodium D-ascorbate produced a dose-related rise of guanosine 3':5'-cyclic monophosphate (cGMP) in platelets with a maximum increment averaging 25-fold at 5 mM ascorbate. The ascorbate-induced increment in cGMP reached a peak after 1 min and was maintained for 1 h in the presence of ascorbate. 5-hydroxytryptamine (5-HT) also produced a dose-related rise of cGMP in platelets with a peak effect of approximately 25-fold at 16 micrometer 5-HT. The elevation of cGMP in platelets by both ascorbate and 5-HT did not require extracellular calcium and was blocked by inhibitors of cyclo-oxygenase such as aspirin or indomethacin. A maximum ascorbate-induced rise in platelet cGMP at the time of addition of epinephrine, collage or thrombin did not augment the release of [14C]5-hydroxytryptamine ([14C]5-HT) measured over 30 min. Although ascorbate appeared to increase platelet cGMP by modulation of endoperoxide formation, its failure to aggregate platelets or to influence the release reaction indicates that the ascorbate-stimulated rise in cGMP does not have a simple relationship to thromboxane formation.  相似文献   

16.
Low-density lipoproteins (LDL) have been shown to cause aggregation of human blood platelets at concentrations above 2 g of protein/l. The secretion of the contents of platelet dense granules was detected, but not that of the lysosomes. LDL gave rise to a mobilization of [3H]arachidonic acid from phospholipids and the appearance of products of the cyclo-oxygenase pathway after only 10 s. LDL-promoted aggregation was inhibited by both aspirin and indomethacin. There was an increase in 3H-labelled diacylglycerols and the phosphorylation of 47 kDa proteins. LDL therefore shares at least some of the mechanisms of stimulus/response coupling with those of other agonists.  相似文献   

17.
M Sato  M Onohara  K Ookawa  N Ohshima 《Biorheology》1992,29(5-6):489-498
Platelet adhesion and aggregation were induced on cultured endothelial cells using the fluorescent dye/light method. A cone-and-plate apparatus was newly developed to observe interactions between platelets and cultured endothelial cells under a shear flow condition. The platelet deposition grew on the light-irradiated area of the cells. Degree of endothelial cell injury induced by the dye/light reaction seemed to depend on the dye concentration. Application of either aspirin or indomethacin significantly inhibited the growth of platelet aggregation, but was not effective for the platelet adhesion to endothelial cells. The platelet thrombi were formed on endothelial cells without their denudation. It was found by transmission electron microscopy that platelets directly adhered to endothelial cells which were not seriously damaged. This thrombus model is expected to be applicable to some physiological and pharmacological studies investigating platelet-endothelial cell interaction and mechanism of platelet thrombus formation in blood vessels.  相似文献   

18.
Aspirin-sensitive asthma is a common and severe disorder characterized by asthmatic attacks after oral ingestion of cyclooxygenase inhibiting drugs. Yet its pathophysiology remains unknown, and no specific in vitro abnormality, neither humoral nor cellular, has been detected in these patients. We have recently described a new model of platelet activation--IgE-dependent platelet activation--expressed by the release of cytocidal mediators and oxygen metabolites. We have now investigated whether cyclooxygenase inhibitors induce a similar response in platelets from aspirin-sensitive asthmatics in vitro. Aspirin or indomethacin strikingly activated platelets from 12 aspirin-sensitive asthmatics to the same extent as IgE-dependent stimuli, but had no effect on platelets from 18 controls (p less than 0.0001). Sodium salicylate, which does not inhibit cyclooxygenase, did not trigger platelets from aspirin-sensitive asthmatics. Preincubation with sodium salicylate or prostaglandin endoperoxides (PGH2), selectively prevented further platelet activation by aspirin or indomethacin (90% inhibition), suggesting that this abnormal platelet activation is the consequence of cyclooxygenase inhibition. This represents the first identification of a specific abnormal cellular response in aspirin-sensitive asthma, provides the basis for an in vitro diagnostic test of the disease, and for new insights on its pathogenesis and its prevention.  相似文献   

19.
1. Variations in the concentration of Ca2+ [Ca2+] in the suspending medium have different effects on the responses of human and rabbit platelets to collagen. 2. When rabbit platelets are stimulated with a low concentration of collagen (0.5 micrograms/ml), aggregation, release of granule contents, and formation of thromboxane are maximal when the suspending medium contains [Ca2+] in the physiological range (0.5-2.0 mM), and very slight in a medium with no added Ca2+. 3. In contrast, human platelets respond most strongly when the suspending medium contains no added Ca2+ [( Ca2+] approx. 20 microM); this is attributable to the enhanced formation of thromboxane A2 (TXA2) upon close platelet-to-platelet contact in this medium. 4. When TXA2 formation is blocked by inhibition of cyclo-oxygenase with aspirin or indomethacin, rabbit platelet aggregation and release in response to 1.25-10 micrograms/ml collagen is also maximal at [Ca2+] of 0.5-2.0 mM and least at 20 microM; human platelets do not aggregate and the extent of release is relatively independent of [Ca2+]. 5. In 1 mM [Ca2+], use of apyrase and/or ketanserin with rabbit platelets in which TXA2 formation is blocked shows that released ADP and serotonin make large contributions to aggregation and release in response to high concentrations of collagen; human platelet aggregation is largely dependent on TXA2. 6. Use of fura-2-loaded platelets shows that the collagen-induced rise in cytosolic [Ca2+] is only slightly inhibited by aspirin or indomethacin in rabbit platelets, but almost completely inhibited in human platelets. 7. Responses of rabbit platelets to collagen are less dependent on TXA2 than those of human platelets. Released ADP and serotonin make major contributions to the responses of rabbit platelets to collagen.  相似文献   

20.
High concentrations of neomycin (2-10 mM) inhibited aggregation, but not shape change, of intact platelets by collagen, ADP and the Ca2+ ionophore, A23187, the last two studies being carried out in the presence of the cyclo-oxygenase inhibitor indomethacin. In contrast, over the same range of concentrations neomycin inhibited both aggregation and shape change induced by thrombin. Under these conditions activation of platelets by collagen and by thrombin, but not by A23187 or by ADP, is believed to be dependent on the hydrolysis of membrane inositol phospholipids. These data therefore suggest that the inhibitory action of neomycin on intact platelets is not related to its previously reported inhibitory effect on phosphoinositide metabolism. The selective inhibition of thrombin-induced shape change indicates a second site of action of neomycin on intact platelets. On platelets rendered semi-permeable with saponin, neomycin and a second aminoglycoside antibiotic, streptomycin (each 0.06-2 mM), stimulated secretion and aggregation responses. These effects were inhibited by indomethacin and by EGTA. Activation of semi-permeabilized platelets by neomycin is associated with the formation of inositol phosphates and phosphatidic acid, indicating activation by phospholipase C. This effect is also inhibited by indomethacin, implying that it is secondary to the formation of prostaglandins and endoperoxides. These results are discussed in the context of the use of neomycin as a selective inhibitor of polyphosphoinositide metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号