首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
—Antigen-antibody crossed electrophoresis has been applied to the study of rat brain synaptosomes and synaptic vesicles. Several antigens could be visualized. By comparison with previously describéd water-soluble antigens from rat brain, some of the antigens in the synaptosome and the synaptic vesicle preparations were identified; among these were antigens which have been determined as brain-specific. Furthermore, the antisera against the two subcellular fractions were compared with the anti-serum against water-soluble antigens from rat brain.  相似文献   

2.
—RNA from rat brain synaptosomes, mitochondria and microsomes was analysed by gel electrophoresis under conditions allowing good resolution in three different molecular weight ranges: 4s-16s, 16s-28s and >28s. Two synaptosome specific RNA bands were found, one with comparatively low molecular weight (8-9 × 104 Daltons) and another very large (sE > 60s). RNA species with electrophoretic characteristics similar to those reported for liver mitochondrial RNA were found in brain mitochondria. From the electrophoretic data their mean geometric radii were determined.  相似文献   

3.
Starting from a chloroform-methanol (2: 1 v/v) insoluble pellet of rat brain myelin, two pure proteins W1 and W2 were isolated by sodium dodecylsulphate preparative polyacrylamide gel electrophoresis. Their amino acid composition was compared. Antibodies against these proteins were prepared in rabbits. It was found that the two antigens have common antigenic similarities. The presence of one precipitin line of identity when myelin or isolated W1 and W2 from different animals were tested, led to the conclusion that there was no species specificity. The importance of the availability of such antisera is discussed.  相似文献   

4.
FUNCTIONAL PROPERTIES OF NEURONAL AND GLIAL ISOENZYMES OF BRAIN ENOLASE   总被引:12,自引:5,他引:7  
Two of the major brain enolase (EC 4.2.1.11) isoenzymes exist as cell specific forms. The neuron specific enolase (NSE) is localized in neurons and the non-neuronal enolase (NNE) in glial cells. A third enolase containing one subunit from each of the above species is also present in brain and has been designated hybrid enolase. The stabilities of the brain enolases towards incubation with chloride and bromide salts is markedly different. NNE is rapidly inactivated upon incubation in 0.5 M-KCI or KBr while NSE is minimally effected and the hybrid has an intermediate stability. The inactivation is temperature dependent and reversible by salt removal. Magnesium exerts a stabilizing effect on each enzyme form. The mechanism of the reversible salt inactivation involves dissociation of the enolase subunits with reassociation occurring during reactivation. The brain enolases also display marked stability differences during incubation in 3 M-urea. with the neuronal form again being more stable. The urea inactivation was highly reversible for NNE but only marginally so for NSE. The neuronal enolase is also by far the most stable of the brain enolases at 50°C.  相似文献   

5.
Abstract— Vinblastine- and colchicine-binding proteins in the soluble fraction of immature rat brains were characterized and compared. Based upon criteria of Sephadex G-200 chromatography, electrofocusing and immunological reactivity, several separable species of vinblastine-binding protein were isolated. By contrast, these same procedures yielded only one protein band or elution peak to which [14C]colchicine could be tightly bound. This colchicine-binding protein peak coincided, in part, with one of the protein peaks to which [3H]vinblastine was tightly bound. Rabbit antiserum against soluble brain proteins precipitated by vinblastine sulfate contained antibodies which reacted with colchicine-binding protein. Thus, despite apparent differences in physical properties between the bulk of the vinblastine-binding proteins and the colchicine-binding protein, the vinblastine sulfate-precipitated protein antigens gave rise to antibodies capable of forming an immune complex with colchicine-binding protein.  相似文献   

6.
—Investigations of rat brain RNA were carried out by phenol extraction of the whole brain and chromatographic fractionation into ribosomal RNA and transfer RNA. (1) The amounts of both RNA species increase in the course of the animal's development reaching a maximum at about the tenth week of life. The ratio of both species remains constant throughout the growth to the twentieth week. After the rats had been trained how to reach their forage by balancing on a stressed rope, the rRNA content was found to be significantly higher, whereas the tRNA content was unchanged. (2) The portion of ribosomes bound in polysome complexes decreases with increasing age of rats. Conditioning of the animals brings about again an increase in polysome content. It is supposed that this reflects an enhanced synthesis of specific proteins in young developing rats and in the course of conditioning. (3) In young rats a second valine specific tRNA could be found as a minor component in addition to the major valyl-tRNA. This additional component disappears as the animals advance to an age of 3 weeks and it could not be detected in the brains of rats after training experiments. In tRNAs specific for the amino acids leucine, lysine and phenylalanine no kind of deviation could be stated.  相似文献   

7.
MICROHETEROGENEITY OF BRAIN CYTOPLASMIC AND SYNAPTOPLASMIC ACTINS   总被引:12,自引:9,他引:3  
Abstract— Actin present in whole rat brain cytoplasm and in synaptosomes was purified by DNase I affinity chromatography. By use of two-dimensional gels and one-dimensional isoelectric focusing gels, brain actin was shown to be composed of two isomeric forms. By comparison with muscle actins, brain actins were identified as the β and γ isomers. Muscle type α actin is not present in brain. Synaptosomal protein with high affinity for DNase I is primarily composed of β and γ actin, however, two minor synaptosomal proteins, S1 and S2, with similar DNase I affinity were also isolated. S11 and S2 have the same apparent molecular weight as whole brain actin, are more acidic than the major actin forms and are distinct from a actin. Relative to β and γ actin, the content of S1 and S2 is 3-fOld greater in synaptosomes when compared to similar non-synaptosomal species. The results demonstrate heterogeneity of brain actins and compartmentalization of brain proteins with high affinity for DNase I at the synapse. It was also shown that tubulin has selective affinity for the DNase I-actin complex.  相似文献   

8.
Abstract— The relative proportions of arylsulphatase A and B were determined by the method of B aum , D odgson and S pencer (1959) in brains of various animal species and it was found that there was a considerable variation in the concentration of these two enzymes.
Arylsulphatase A and B of various animal species including rat, man, monkey, sheep and chicken were partially separated using zinc acetate fractionation procedure and gel electrophoresis. The chicken brain arylsulphatase A had a similar electrophoretic mobility to that of arylsulphatase B of other species. Further, chicken brain arylsulphatase A precipitated at a zinc acetate concentration of 0005 M, a condition under which arylsulphatase B from the brain of other species precipitated.
Kinetic properties such as K m value and inhibitory effect of sulphite and phosphate ions indicated that chicken brain arylsulphatase A was similar to arylsulphatase A of other species.
The results on regional distribution of arylsulphatase A and B activities in monkey brain and in developing rat brain suggest a relationship between arylsulphatase A and sulphatides and arylsulphatase B and mucopolysaccharides.  相似文献   

9.
DISTRIBUTION AND PROPERTIES OF ANGIOTENSIN CONVERTING ENZYME OF RAT BRAIN   总被引:29,自引:19,他引:10  
Abstract— Angiotensin converting enzyme of rat brain was studied using Hip-His-Leu as substrate. The highest specific activity of the enzyme was associated with the microsomal fraction. The specific activity of the microsomal enzyme in several regions of the rat brain varied significantly. For example, the specific activities of the striatal and pituitary enzymes were about 10-fold greater than that of the cerebral cortical enzyme. The enzyme required chloride ion; moreover, activity was inhibited in the presence of disodium EDTA or O-phenanthroline, effects suggesting that the converting enzyme of brain is a metalloprotein. SQ-20881, a nonapeptide that inhibits converting enzyme in peripheral tissue, was a potent inhibitor of the enzyme of brain. In addition to Hip-His-Leu, the microsomal fraction was capable of liberating C terminal dipeptides from angiotensin I, Hip-Gly-Gly and Z-Gly- Gly-Val. The broad substrate specificity of the enzyme suggests that, in addition to the possible contribution of the enzyme to the brain renin-angiotensin system, other naturally occurring peptides might also be substrates for the enzyme.  相似文献   

10.
Abstract— The uronic acid-containing glycosaminoglycans present in the brains of rat, monkey, chicken, sheep and rabbit were isolated into various fractions by combining the cetyl pyridinium procedure and DEAE-Sephadex column chromatography. The analyses of the fractions show that hyaluronic acid, chondroitin-4-sulphate, chondroitin-6-sulphate, heparan sulphate and a testicular hyaluronidase-resistant galactosamine-containing GAG are present in the brain of all the species studied. Hyaluronic acid is the major GAG (33–41 per cent). Chondroitin-4-sulphate (19–35 per cent), and heparan sulphate (11–19 per cent), are the next prominent GAGs, in all the species except chicken. The results indicate the similarity in the pattern of GAGs in the brain of all the species.  相似文献   

11.
OCCURRENCE AND LOCALIZATION OF BRAIN PHENOLSULPHOTRANSFERASE   总被引:4,自引:3,他引:1  
—Rat brain contains the enzyme which forms sulphate conjugates of phenols, phenolsulphotransferase (EC 2.8.2.1), but the physiological role of the enzyme is unclear. The enzyme is unevenly distributed in rat brain, with the activity 13 times higher in the hypothalamus than in the cerebellum. Phenolsulphotransferase does not seem to be primarily located in glial cells. Cultured cells (type C6 astrocytoma) derived from rat glia had less than 1 per cent of the phenolsulphotransferase activity of whole rat brain. Sulphate conjugation of neutral compounds may be important in their removal from brain. The pineal and pituitary glands, areas outside the blood-brain barrier had very low phenolsulphotransferase activity. The activity of the enzyme in brain varied widely among different species: rabbit and rat had much higher levels of activity than mouse or frog; the activity in human brain was intermediate. Phenolsulphotransferase also occurred in other organs, including liver, heart, testes, lung, spleen, salivary glands, and intact or decentralized superior cervical ganglion. There was no correlation of enzyme activity with adrenergic or cholinergic innervation, or with the known roles of various tissues in drug metabolism or detoxification. The enzyme activity does not seem to be under neuronal control since ganglionectomy did not affect the phenolsulphotransferase activity of salivary glands. The precise localization of phenolsulphotransferase remains to be established, as well as the physiological importance of sulphate conjugation of phenols in brain and other organs.  相似文献   

12.
Cetaceans rival primates in brain size relative to body size and include species with the largest brains and biggest bodies to have ever evolved. Cetaceans are remarkably diverse, varying in both phenotypes by several orders of magnitude, with notable differences between the two extant suborders, Mysticeti and Odontoceti. We analyzed the evolutionary history of brain and body mass, and relative brain size measured by the encephalization quotient (EQ), using a data set of extinct and extant taxa to capture temporal variation in the mode and direction of evolution. Our results suggest that cetacean brain and body mass evolved under strong directional trends to increase through time, but decreases in EQ were widespread. Mysticetes have significantly lower EQs than odontocetes due to a shift in brain:body allometry following the divergence of the suborders, caused by rapid increases in body mass in Mysticeti and a period of body mass reduction in Odontoceti. The pattern in Cetacea contrasts with that in primates, which experienced strong trends to increase brain mass and relative brain size, but not body mass. We discuss what these analyses reveal about the convergent evolution of large brains, and highlight that until recently the most encephalized mammals were odontocetes, not primates.  相似文献   

13.
A method of separation by antigen-antibody crossed electrophoresis was applied to the study of water-soluble rat brain antigens. Five different rat brain preparations were used as antigens for immunization. The extract from Triton X-100 treated brains gave the best antibody response. An antiserum containing 27 precipitating antibodies was obtained. The preparation of antigens for immunoelectrophoresis was investigated. Treatment with demineralized water gave the highest number of antigen-antibody precipitates. Treatment with detergents and sonication gave a higher total protein yield, but the number of precipitates was unaffected.  相似文献   

14.
Abstract— The concentrations of putrescine and the polyamines, spermidine and spermine, along with the specific activities of the enzymes involved in their biosynthesis, ornithine decarboxylase, S -adenosylmethionine decarboxylase and spermidine synthase have been measured in brain and liver of the developing Rhesus monkey from mid-gestation, through birth and neonatal life to maturity. The results suggest that it is an increased concentration of putrescine and an increased specific activity of ornithine decarboxylase which are associated with the rapid growth of fetal brain during the middle of gestation. By the end of two-thirds of gestation, both of these parameters have attained values similar to those found in mature brain. The concentration of spermidine in brain and the specific activities of S -adenosylmethionine decarboxylase and spermidine synthase are lower in fetal brain than adult brain and increase slowly after birth to reach values similar to those of the adult only after several months. These results provide additional evidence that in the mature brain spermidine serves some function other than one associated with rapid growth.
Fetal liver at mid-gestation was characterized by increased concentrations of both putrescine and spermidine and increased specific activities of the enzymes which synthesize them. By two-thirds of gestation, values similar to those found in adult liver had been attained. Liver has thus reached maturity with regard to polyamine metabolism by this time.  相似文献   

15.
BIOSYNTHESIS AND BIODEGRADATION OF RAT BRAIN GANGLIOSIDES STUDIED IN VIVO   总被引:9,自引:5,他引:4  
Abstract— Metabolic relationships between the four major brain gangliosides, GM1, GD1a, GDlb and GT1 were studied in vivo . Labelled acetate and glucosamine were injected intracerebrally into 6–12-day-old rats and the radioactivities of the cerebral gangliosides were analysed. Radioactivity from [3H]acetate was determined in sialic acid, sphingosine and stearic acid and from [1-14C]glucosamine in hexosamine and sialic acid. The gangliosides were labelled in proportion to their pool size. In 6 day-old rats the labelling was approx. 30 per cent lower in the sialidase-stable sialyl group than in the labile one. When the brain gangliosides were labelled in 12-day-old rats, however, the specific activities of sialidase-labile and stable sialyl groups were the same at 0.5 months after the injection of precursors and disappeared at the same rate. The results indicate that at the age of 6 days a small pool of monosialogangliosides exists, which is converted to di- and trisialogangliosides. The degradation of gangliosides was studied by following the radioactivities in sphingosine and stearic acid from 2 to 6 months after the injection of labelled acetate. The specific activities of sphingosine and stearic acid decreased simultaneously at the same rate in all the four major gangliosides. The specific activity of stearic acid was the same in total brain lipids as in gangliosides. The half-lives for the degradation of the gangliosides were age-dependent and estimated to 60 days in adult rats. They were much shorter in younger rats but no reliable figures could be determined.  相似文献   

16.
Abstract— The concentration of cystathionine, along with the specific activities of the enzymes involved in its synthesis and degradation, cystathionine synthasc and cystathionase, respectively, have been measured in brain, liver and kidney of the developing Rhesus monkey from mid-gestation, through birth and neonatal life, to maturity. The concentration of cystathionine and the specific activity of cystathionine synthase are low in fetal brain. Both parameters increase slowly after birth and reach values found in adult brain at approx 3 months of postnatal age. The activity of cystathionase in brain is low throughout development.
Liver provides a direct contrast in that the concentration of cystathionine and the specific activity of cystathionine synthase are high in the fetus, decreasing rapidly after birth to values found in the adult by 2 weeks of postnatal age. Cystathionase activity is low in fetal liver and increases slowly after birth reaching values found in adult liver after 2–3 months. Kidney has no more than trace amounts of cystathionine throughout development, higher activity of cystathionine synthase in the fetus than in the adult and high, unchanged activity of cystathionase throughout the period of development studied.
These results indicate that the high concentrations of cystathionine found in primate brain are reached postnatally and suggest that this high concentration of cystathionine may be associated with the functioning of mature brain.  相似文献   

17.
PARTICULATE AND SOLUBILIZED FUCOSYL TRANSFERASES FROM MOUSE BRAIN   总被引:1,自引:0,他引:1  
The transfer of [14C]fucose from GDP-[U-14C]fucose to endogenous and exogenous acceptors by particulate and solubilized preparations from mouse brain is described. Suspensions of brain microsomes incorporated [14C]fucose into a heterogenous group of glycoprotein products, which have a distribution on gel electrophoresis similar to those synthesized in vivo. Fucosyl transferase, extracted from brain microsomes by Triton X-100, transferred [14C]fucose from GDP-[U-14C]fucose to terminal galactose residues exposed by mild acid hydrolysis of porcine plasma glycoprotein. Comparison of the specific activities of the solubilized fucosyl transferase from a number of organs showed that, in the presence of the exogenous acceptor which was used, the transferase of brain was more active than the transferases from all other organs tested, with the exception of kidney. Examination of subcellular fractions of brain, with endogenous and exogenous acceptors, showed that activity was limited to fractions containing microsomal membranes, whereas synaptosomal and other fractions were virtually inactive.  相似文献   

18.
LIPID COMPOSITION AND METABOLISM OF CULTURED HAMSTER BRAIN ASTROCYTES   总被引:1,自引:1,他引:0  
Abstract— The lipid composition and metabolism of confluent cultures of cells derived from newborn hamster brain and having morphology characteristic of immature astrocytes or spongioblasts was investigated and compared to that of newborn hamster brain dispersions and cloned glioma cells (C6). The cells displayed stable morphology for at least 30 subcultures; thereafter spontaneous transformation occurred. No appreciable changes were observed in either composition or metabolic characteristics of any major neutral lipid or phospholipid class in successive subcultures or following transformation. The overall lipid composition of the hamster astrocyte cultures closely resembled that of newborn hamster brain, but the phospholipid composition showed substantial differences. The cells contained as a percent of lipid P relatively more ethanolamine plasmalogen, choline plasmalogen and sphingomyelin and somewhat less phosphatidylcholine and phosphatidylethanolamine. The phospholipids of the hamster astrocyte and C6 cells were similar. Of the lipid precursors examined, [U-14C]glucose was incorporated best into all preparations. C6 glioma cells incorporated both [U-14C]glucose and [1-14C]acetate most actively. From 69–88% of 32P incorporated into hamster astrocyte phospholipids was present in choline phosphoglycerides, whereas the corresonding figure for hamster brain dispersions was 53%. The ratio of specific activities of phosphatidylcholine to phosphatidylinositol was substantially higher in the cultured cells than in the brain preparations. The small pool of choline plasmalogen in the hamster astrocytes usually achieved the highest specific activity of any phospholipid. When [U-14C]glucose and [1-14C]acetate were precursors, the bulk of label in the astrocytes appeared in choline phosphoglycerides and triacyglycerol. Our results indicate that the hamster astrocyte cell line as grown expresses distinctive features of lipid composition and metabolism which are nearly constant through many generations.  相似文献   

19.
SIALOGLYCOPROTEINS AND SEVERAL GLYCOSIDASES IN DEVELOPING RAT BRAIN   总被引:6,自引:5,他引:1  
Abstract— The amount of sialoglycoproteins expressed as μmol of sialic acid per g of lipid-free residue remained fairly constant in developing rat brain. However, the activity of various enzymes which may be involved in glycoprotein metabolism varied in an inconstant fashion during the period of development. The specific activity of a neuraminidase increased, N -acetyl-β-glucosaminidase remained relatively constant, while the specific activities of α-mannosidase and α-fucosidase decreased.  相似文献   

20.
STUDIES ON DNA FROM NORMAL AND SCRAPIE-AFFECTED MOUSE BRAIN   总被引:3,自引:0,他引:3  
Abstract— DNA has been extracted from normal and scrapie affected mouse brain fractions, 48 h after the injection of [3H]thymidine precursors. The extracted DNA has been subjected to fractionation on hydroxyapatite columns and CsCl gradients. The specific activity of double stranded nuclear DNA is two to three times higher when extracted from scrapie-affected brain than from normal brain, but there is no apparent difference in the number of counts associated with double stranded mitochondrial DNA extracted from similar numbers of normal and scrapie affected brains. DNA from the large granule fraction of scrapie affected brain contains a peak of counts, melting off hydroxyapatite columns before the double stranded peak, consistent with the presence in scrapie brain of trace amounts of a small single stranded DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号