首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATP-binding cassette (ABC) systems, also called traffic ATPases, are found in eukaryotes and prokaryotes and almost all participate in the transport of a wide variety of molecules. ABC systems are characterized by a highly conserved ATPase module called here the ABC module, involved in coupling transport to ATP hydrolysis. We have used the sequence of one of the first representatives of bacterial ABC transporters, the MalK protein, to collect 250 closely related sequences from a nonredundant protein sequence database. The sequences collected by this objective method are all known or putative ABC transporters. After having eliminated short protein sequences and duplicates, the 197 remaining sequences were subjected to a phylogenetic analysis based on a mutational similarity matrix. An unrooted tree for these modules was found to display two major branches, one grouping all collected uptake systems and the other all collected export systems. This remarkable disposition strongly suggests that the divergence between these two functionally different types of ABC systems occurred once in the history of these systems and probably before the differentiation of prokaryotes and eukaryotes. We discuss the implications of this finding and we propose a model accounting for the generation and the diversification of ABC systems. Received: 23 February 1997 / Accepted: 7 April 1998  相似文献   

2.
The heat shock protein 70 kDa sequences (HSP70) are of great importance as molecular chaperones in protein folding and transport. They are abundant under conditions of cellular stress. They are highly conserved in all domains of life: Archaea, eubacteria, eukaryotes, and organelles (mitochondria, chloroplasts). A multiple alignment of a large collection of these sequences was obtained employing our symmetric-iterative ITERALIGN program (Brocchieri and Karlin 1998). Assessments of conservation are interpreted in evolutionary terms and with respect to functional implications. Many archaeal sequences (methanogens and halophiles) tend to align best with the Gram-positive sequences. These two groups also miss a signature segment [about 25 amino acids (aa) long] present in all other HSP70 species (Gupta and Golding 1993). We observed a second signature sequence of about 4 aa absent from all eukaryotic homologues, significantly aligned in all prokaryotic sequences. Consensus sequences were developed for eight groups [Archaea, Gram-positive, proteobacterial Gram-negative, singular bacteria, mitochondria, plastids, eukaryotic endoplasmic reticulum (ER) isoforms, eukaryotic cytoplasmic isoforms]. All group consensus comparisons tend to summarize better the alignments than do the individual sequence comparisons. The global individual consensus ``matches' 87% with the consensus of consensuses sequence. A functional analysis of the global consensus identifies a (new) highly significant mixed charge cluster proximal to the carboxyl terminus of the sequence highlighting the hypercharge run EEDKKRRER (one-letter aa code used). The individual Archaea and Gram-positive sequences contain a corresponding significant mixed charge cluster in the location of the charge cluster of the consensus sequence. In contrast, the four Gram-negative proteobacterial sequences of the alignment do not have a charge cluster (even at the 5% significance level). All eukaryotic HSP70 sequences have the analogous charge cluster. Strikingly, several of the eukaryotic isoforms show multiple mixed charged clusters. These clusters were interpreted with supporting data related to HSP70 activity in facilitating chaperone, transport, and secretion function. We observed that the consensus contains only a single tryptophan residue and a single conserved cysteine. This is interpreted with respect to the target rule for disaggregating misfolded proteins. The mitochondrial HSP70 connections to bacterial HSP70 are analyzed, suggesting a polyphyletic split of Trypanosoma and Leishmania protist mitochondrial (Mt) homologues separated from Mt-animal/fungal/plant homologues. Moreover, the HSP70 sequences from the amitochondrial Entamoeba histolytica and Trichomonas vaginalis species were analyzed. The E. histolytica HSP70 is most similar to the higher eukaryotic cytoplasmic sequences, with significantly weaker alignments to ER sequences and much diminished matching to all eubacterial, mitochondrial, and chloroplast sequences. This appears to be at variance with the hypothesis that E. histolytica rather recently lost its mitochondrial organelle. T. vaginalis contains two HSP70 sequences, one Mt-like and the second similar to eukaryotic cytoplasmic sequences suggesting two diverse origins. Received: 29 January 1998 / Accepted: 14 May 1998  相似文献   

3.
Insect vitellogenin and yolk protein receptors (VgR/YPR) are newly discovered members of the low-density lipoprotein receptor (LDLR) family, which is characterized by a highly conserved arrangement of repetitive modular elements homologous to functionally unrelated proteins. The insect VgR/YPRs are unique in having two clusters of complement-type cysteine-rich (class A) repeats or modules, with five modules in the first cluster and seven in the second cluster, unlike classical LDLRs which have a single seven-module cluster, vertebrate VgRs and very low density lipoprotein receptors (VLDLR) which have a single eight-module cluster, and LDLR-related proteins (LRPs) and megalins which have four clusters of 2–7, 8, 10, and 11 modules. Alignment of clusters across subfamilies by conventional alignment programs is problematic because of the repetitive nature of the component modules which may have undergone rearrangements, duplications, and deletions during evolution. To circumvent this problem, we ``fingerprinted' each class A module in the different clusters by identifying those amino acids that are both relatively conserved and relatively unique within the cluster. Intercluster reciprocal comparisons of fingerprints and aligned sequences allowed us to distinguish four cohorts of modules reflecting shared recent ancestry. All but two of the 57 modules examined could be assigned to one of these four cohorts designated A, B, C, and D. Alignment of clusters based on modular cohorts revealed that all clusters are derived from a single primordial cluster of at least seven modules with a consensus arrangement of CDCADBC. All extant clusters examined are consistent with this consensus, though none matches it perfectly. This analysis also revealed that the eight-module clusters in vertebrate VgRs, insect VgR/YPRs, and LRP/megalins are not directly homologous with one another. Assignment of modules to cohorts permitted us to properly align 32 class A clusters from all four LDLR subfamilies for phylogenetic analysis. The results revealed that smaller one-cluster and two-cluster members of the family did not originate from the breakup of a large two-cluster or four-cluster receptor. Similarly, the LRP/megalins did not arise from the duplication of a two-cluster insect VgR/YPR-like progenitor. Rather, it appears that the multicluster receptors were independently constructed from the same single-cluster ancestor. Received: 16 January 1997 / Accepted: 21 August 1997  相似文献   

4.
Large lipid transfer proteins (LLTP) are nonexchangeable apolipoproteins and intracellular lipid-exchange proteins involved in the assembly, secretion, and metabolism of lipoproteins. We have identified contiguous conserved sequence motifs in alignments of insect apolipophorin II/I precursor (apoLp-II/I), human apolipoprotein B (apoB), invertebrate and vertebrate vitellogenins (VTG), and the large subunit of mammalian microsomal triglyceride transfer protein (MTP). Conserved motifs present in the N-terminal part of nonexchangeable apolipoproteins encompass almost completely the large subunit of MTP, suggesting a derivation from a common ancestral functional unit, termed large lipid transfer (LLT) module. Divergence of LLTP from a common ancestor is supported by (1) the statistical significance of the combined match scores obtained after motif-based database searches, (2) the presence of several identical amino acid residues in all LLTP sequences currently available, (3) the conservation of hydrophobic clusters in an α-helical domain, (4) the phylogenetic analysis of the conserved sequences related to the von Willebrand factor D (VWD) module identified in nonexchangeable apolipoproteins, and (5) the presence of four and one ancestral exon boundaries in the LLT and VWD modules, respectively. Our data indicate that the genes coding for apoLp-II/I, apoB, VTG, and the MTP large subunit are members of the same multigene superfamily. LLTP have emerged from an ancestral molecule designed to ensure a pivotal event in the intracellular and extracellular transfer of lipids and liposoluble substances. Received: 8 June 1998 / Accepted: 15 February 1999  相似文献   

5.
We present a novel hypothesis for the origin of the eukaryotic cell, or eukaryogenesis, based on a metabolic symbiosis (syntrophy) between a methanogenic archaeon (methanobacterial-like) and a δ-proteobacterium (an ancestral sulfate-reducing myxobacterium). This syntrophic symbiosis was originally mediated by interspecies H2 transfer in anaerobic, possibly moderately thermophilic, environments. During eukaryogenesis, progressive cellular and genomic cointegration of both types of prokaryotic partners occurred. Initially, the establishment of permanent consortia, accompanied by extensive membrane development and close cell–cell interactions, led to a highly evolved symbiotic structure already endowed with some primitive eukaryotic features, such as a complex membrane system defining a protonuclear space (corresponding to the archaeal cytoplasm), and a protoplasmic region (derived from fusion of the surrounding bacterial cells). Simultaneously, bacterial-to-archaeal preferential gene transfer and eventual replacement took place. Bacterial genome extinction was thus accomplished by gradual transfer to the archaeal host, where genes adapted to a new genetic environment. Emerging eukaryotes would have inherited archaeal genome organization and dynamics and, consequently, most DNA-processing information systems. Conversely, primordial genes for social and developmental behavior would have been provided by the ancient myxobacterial symbiont. Metabolism would have been issued mainly from the versatile bacterial organotrophy, and progressively, methanogenesis was lost. Received: 5 January 1998 / Accepted: 18 March 1998  相似文献   

6.
Protein sequences with similarities to Escherichia coli RecA were compared across the major kingdoms of eubacteria, archaebacteria, and eukaryotes. The archaeal sequences branch monophyletically and are most closely related to the eukaryotic paralogous Rad51 and Dmc1 groups. A multiple alignment of the sequences suggests a modular structure of RecA-like proteins consisting of distinct segments, some of which are conserved only within subgroups of sequences. The eukaryotic and archaeal sequences share an N-terminal domain which may play a role in interactions with other factors and nucleic acids. Several positions in the alignment blocks are highly conserved within the eubacteria as one group and within the eukaryotes and archaebacteria as a second group, but compared between the groups these positions display nonconservative amino acid substitutions. Conservation within the RecA-like core domain identifies possible key residues involved in ATP-induced conformational changes. We propose that RecA-like proteins derive evolutionarily from an assortment of independent domains and that the functional homologs of RecA in noneubacteria comprise an array of RecA-like proteins acting in series or cooperatively. Received: 25 October 1996 / Accepted: 31 December 1996  相似文献   

7.
DNA repair in the Archaea is relevant to the consideration of genome maintenance and replication fidelity in the last universal common ancestor (LUCA) from two perspectives. First, these prokaryotes embody a mix of bacterial and eukaryal molecular features. Second, DNA repair proteins would have been essential in LUCA to maintain genome integrity, regardless of the environmental temperature. Yet we know very little of the basic molecular mechanisms of DNA damage and repair in the Archaea in general. Many studies on DNA repair in archaea have been conducted with hyperthermophiles because of the additional stress imposed on their macromolecules by high temperatures. In addition, of the six complete archaeal genome sequences published so far, five are thermophilic archaea. We have recently shown that the hyperthermophile Pyrococcus furiosus has an extraordinarily high capacity for repair of radiation-induced double-strand breaks and we have identified and sequenced several genes involved in DNA repair in P. furiosus. At the sequence level, only a few genes share homology with known bacterial repair genes. For instance, our phylogenetic analysis indicates that archaeal recombinases occur in two paralogous gene families, one of which is very deeply branched, and both recombinases are more closely related to the eukaryotic RAD51 and Dmc1 gene families than to the Escherichia coli recA gene. We have also identified a gene encoding a repair endo/exonuclease in the genomes of several Archaea. The archaeal sequences are highly homologous to those of the eukaryotic Rad2 family and they cluster with genes of the FEN-1 subfamily, which are known to be involved in DNA replication and repair in eukaryotes. We argue that there is a commonality of mechanisms and protein sequences, shared between prokaryotes and eukaryotes for several modes of DNA repair, reflecting diversification from a minimal set of genes thought to represent the genome of the LUCA.  相似文献   

8.
Tertiary structures of proteins are conserved better than their primary structures during evolution. Quaternary structures or subunit organizations, however, are not always conserved. A typical case is found in hemoglobin family. Although human, Scapharca, and Urechis have tetrameric hemoglobins, their subunit contacts are completely different from each other. We report here that only one or two amino acid replacements are enough to create a new contact between subunits. Such a small number of chance replacements is expected during the evolution of hemoglobins. This result explains why different modes of subunit interaction evolved in animal hemoglobins. In contrast, certain interactions between subunits are necessary for cooperative oxygen binding. Cooperative oxygen binding is observed often in dimeric and tetrameric hemoglobins. Conformational change of a subunit induced by the first oxygen binding to the heme group is transmitted through the subunit contacts and increases the affinity of the second oxygen. The tetrameric hemoglobins from humans and Scapharca have cooperativity in spite of their different modes of subunit contact, but the one from Urechis does not. The relationship between cooperativity and the mode of subunit contacts is not clear. We compared the atomic interactions at the subunit contact surface of cooperative and non-cooperative tetrameric hemoglobins. We show that heme-contact modules M3–M6 play a key role in the subunit contacts responsible for cooperativity. A module was defined as a contiguous peptide segment having compact conformation and its average length is about 15 amino acid residues. We show that the cooperative hemoglobins have interactins involving at least two pairs of modules among the four heme-contact modules at subunit contact. Received: 12 January 2001 / Accepted: 3 April 2001  相似文献   

9.
Channel-forming proteins/peptides fall into over 100 currently recognized families, most of which are restricted to prokaryotes or eukaryotes, but a few of which are ubiquitous. These proteins fall into three major currently recognized classes: (i) α-helix-type channels present in bacterial, archaeal and eukaryotic cytoplasmic and organellar membranes, (ii) β-barrel-type porins present in the outer membranes of Gram-negative bacterial cells, mitochondria and chloroplasts, and (iii) protein/peptide toxins targeted to the cytoplasmic membranes of cells other than those that synthesize the toxins. High-resolution 3-dimensional structural data are available for representative proteins/peptides of all three of these channel-forming types. Each type exhibits distinctive features that distinguish them from the other channel protein types and from carriers. Structural, functional, and evolutionary aspects of transmembrane channel-formers are discussed. Received: 10 September 1999/Revised: 11 February 2000  相似文献   

10.
A phylogenetic analysis of the five major families of DNA polymerase is presented. Viral and plasmid sequences are included in this compilation along with cellular enzymes. The classification by Ito and Braithwaite (Ito and Braithwaite 1991) of the A, B, C, D, and X families has been extended to accommodate the ``Y family' of DNA polymerases that are related to the eukaryotic RAD30 and the bacterial UmuC gene products. After analysis, our data suggest that no DNA polymerase family was universally conserved among the three biological domains and no simple evolutionary scenario could explain that observation. Furthermore, viruses and plasmids carry a remarkably diverse set of DNA polymerase genes, suggesting that lateral gene transfer is frequent and includes non-orthologous gene displacements between cells and viruses. The relationships between viral and host genes appear very complex. We propose that the gamma DNA polymerase of the mitochondrion replication apparatus is of phage origin and that this gene replaced the one in the bacterial ancestor. Often there was no obvious relation between the viral and the host DNA polymerase, but an interesting exception concerned the family B enzymes: in which ancient gene exchange can be detected between the viruses and their hosts. Additional evidence for horizontal gene transfers between cells and viruses comes from an analysis of the small damage-inducible DNA polymerases. Taken together, these findings suggest a complex evolutionary history of the DNA replication apparatus that involved significant exchanges between viruses, plasmids, and their hosts.  相似文献   

11.
We have compared all available deduced protein sequences of the ErbB family of receptors and their ligands. Analysis of the aligned sequences of the receptors indicates that there are some differences in the receptors that are specific to invertebrates. In addition, comparison of the vertebrate ErbB receptors suggest that a gene duplication event generated two ancestral receptors, the ErbB3/ErbB4 precursor and the ErbB1/ErbB2 precursor. Subsequent gene duplications of these precursors generated the four receptors present in mammals. Analysis of the sequences for the known ligands of the ErbB receptors suggests that the vertebrate ligands segregate into the ErbB1 ligands and the ErbB3/ErbB4 ligands, paralleling the evolution of the receptors; however, it is difficult to ascertain any correlation between the invertebrate and the vertebrate ligands. Even though ErbB3 is kinase-impaired, there is significant conservation of the kinase domain within the vertebrate lineage (human, rat, and F. rubripes), suggesting some function for this domain other than kinase activity, such as mediating protein–protein interactions that are involved in receptor dimerization and/or activation of the kinase domain of the heterodimerization partner. To date, no ligand for ErbB2 has been identified, and comparison of the extracellular domains of ErbB2 reveals two regions that are not conserved across the mammalian species. These two regions of divergence align with sequences in ErbB1 that have been shown to be proximal to the amino-terminus and to the carboxyl-terminal region, respectively, of bound EGF. Further, one of these regions contains an insertion, relative to the other members of the mammalian ErbB family, which might affect the ligand binding site and provide a structural basis for this receptor's apparent inability to bind ligand independently. Received: 8 September 1999 / Accepted: 17 January 2000  相似文献   

12.
13.
The large subunit ribosomal RNA sequences from the heterokont algae Ochromonas danica, Nannochloropsis salina, and Tribonema aequale were determined. These sequences were combined with small subunit ribosomal RNA sequences in order to carry out a phylogenetic analysis based on neighbor-joining, maximum parsimony, and maximum likelihood methods. Our results indicate that heterokont fungi and heterokont algae each are monophyletic, and confirm that they together form a monophyletic group called ``stramenopiles.' Within the heterokont algae, the eustigmatophyte Nannochloropsis salina either clusters with the chrysophyte Ochromonas danica or forms a sister group to a cluster comprising the phaeophyte Scytosiphon lomentaria and the xanthophyte Tribonema aequale. The alveolates were identified as the closest relatives of the stramenopiles, but the exact order of divergence between the eukaryotic crown taxa could not be established with confidence. Received: 22 November 1996 / Accepted: 14 February 1997  相似文献   

14.
Plant genomes encode a variety of protein kinases, and while some are functional homologues of animal and fungal kinases, others have a novel structure. This review focuses on three groups of unusual membrane-associated plant protein kinases: receptor-like protein kinases (RLKs), calcium-dependent protein kinases (CDPKs), and histidine protein kinases. Animal RLKs have a putative extracellular domain, a single transmembrane domain, and a protein kinase domain. In plants, all of the RLKs identified thus far have serine/threonine signature sequences, rather than the tyrosine-specific signature sequences common to animals. Recent genetic experiments reveal that some of these plant kinases function in development and pathogen resistance. The CDPKs of plants and protozoans are composed of a single polypeptide with a protein kinase domain fused to a C-terminal calmodulin-like domain containing four calcium-binding EF hands. No functional plant homologues of protein kinase C or Ca2+/calmodulin-dependent protein kinase have been identified, and no animal or fungal CDPK homologues have been identified. Recently, histidine kinases have been shown to participate in signaling pathways in plants and fungi. ETR1, an Arabidopsis histidine kinase homologue with three transmembrane domains, functions as a receptor for the plant hormone ethylene. G-protein-coupled receptors, which often serve as hormone receptors in animal systems, have not yet been identified in plants. Received: 18 August 1997/Revised: 23 December 1997  相似文献   

15.
The MAP-kinase pathways are intracellular signaling modules that are likely to exist in all eukaryotes. We provide an evolutionary model for these signaling pathways by focusing on the gene duplications that have occurred since the divergence of animals from yeast. Construction of evolutionary trees with confidence assessed by bootstrap clearly shows that the mammalian JNK and p38 pathways arose from an ancestral hyperosmolarity pathway after the split from yeast and before the split from C. elegans. These coduplications of interacting proteins at the MAPK and MEK levels have since evolved toward substrate specificity, thus giving distinct pathways. Mammalian duplications since the split from C. elegans are often associated with divergent tissue distribution but do not appear to confer detectable substrate specificity. The yeast kinase cascades have undergone similar fundamental functional changes since the split from mammals, with duplications giving rise to central signaling components of the filamentous and hypoosmolarity pathways. Experimentally defined cross-talk between yeast pheromone and hyperosmolarity pathways is mirrored with corresponding cross-talk in mammalian pathways, suggesting the existence of ancient orthologous cross-talk; our analysis of gene duplications at all levels of the cascade is consistent with this model but does not always provide significant bootstrap support. Our data also provide insights at different levels of the cascade where conflicting experimental evidence exists. Received: 2 December 1998 / Accepted: 9 June 1999  相似文献   

16.
The AAA proteins (ATPases Associated with a variety of cellular Activities) are found in eubacterial, archaebacterial, and eukaryotic species and participate in a large number of cellular processes, including protein degradation, vesicle fusion, cell cycle control, and cellular secretory processes. The AAA proteins are characterized by the presence of a 230 to 250-amino acid ATPase domain referred to as the Conserved ATPase Domain or CAD. Phylogenetic analysis of 133 CAD sequences from 38 species reveal that AAA CADs are organized into discrete groups that are related not only in structure but in cellular function. Evolutionary analyses also indicate that the CAD was present in the last common ancestor of eubacteria, archaebacteria, and eukaryotes. The eubacterial CADs are found in metalloproteases, while CAD-containing proteins in the archaebacterial and eukaryotic lineages appear to have diversified by a series of gene duplication events that lead to the establishment of different functional AAA proteins, including proteasomal regulatory, NSF/Sec, and Pas proteins. The phylogeny of the CADs provides the basis for establishing the patterns of evolutionary change that characterize the AAA proteins. Received: 28 January 1997 / Accepted: 8 May 1997  相似文献   

17.
It is now well-established that compositional bias in DNA sequences can adversely affect phylogenetic analysis based on those sequences. Phylogenetic analyses based on protein sequences are generally considered to be more reliable than those derived from the corresponding DNA sequences because it is believed that the use of encoded protein sequences circumvents the problems caused by nucleotide compositional biases in the DNA sequences. There exists, however, a correlation between AT/GC bias at the nucleotide level and content of AT- and GC-rich codons and their corresponding amino acids. Consequently, protein sequences can also be affected secondarily by nucleotide compositional bias. Here, we report that DNA bias not only may affect phylogenetic analysis based on DNA sequences, but also drives a protein bias which may affect analyses based on protein sequences. We present a striking example where common phylogenetic tools fail to recover the correct tree from complete animal mitochondrial protein-coding sequences. The data set is very extensive, containing several thousand sites per sequence, and the incorrect phylogenetic trees are statistically very well supported. Additionally, neither the use of the LogDet/paralinear transform nor removal of positions in the protein alignment with AT- or GC-rich codons allowed recovery of the correct tree. Two taxa with a large compositional bias continually group together in these analyses, despite a lack of close biological relatedness. We conclude that even protein-based phylogenetic trees may be misleading, and we advise caution in phylogenetic reconstruction using protein sequences, especially those that are compositionally biased. Received: 19 February 1998 / Accepted: 28 August 1998  相似文献   

18.
Eubacterial and eukaryotic translation initiation systems have very little in common, and therefore the evolutionary events that gave rise to these two disparate systems are difficult to ascertain. One common feature is the presence of initiation, elongation, and release factors belonging to a large GTPase superfamily. One of these initiation factors, the γ subunit of initiation factor 2 (eIF-2γ), is found only in eukaryotes and archaebacteria. We have sequenced eIF-2γ gene fragments from representative diplomonads, parabasalia, and microsporidia and used these new sequences together with new archaebacterial homologues to examine the phylogenetic position of eIF-2γ within the GTPase superfamily. The archaebacterial and eukaryotic eIF-2γ proteins are found to be very closely related, and are in turn related to SELB, the selenocysteine-specific elongation factor from eubacteria. The overall topology of the GTPase tree further suggests that the eIF-2γ/SELB group may represent an ancient subfamily of GTPases that diverged prior to the last common ancestor of extant life. Received: 2 January 1998 / Accepted: 1 June 1998  相似文献   

19.
Genomic trees have been constructed based on the presence and absence of families of protein-encoding genes observed in 27 complete genomes, including genomes of 15 free-living organisms. This method does not rely on the identification of suspected orthologs in each genome, nor the specific alignment used to compare gene sequences because the protein-encoding gene families are formed by grouping any protein with a pairwise similarity score greater than a preset value. Because of this all inclusive grouping, this method is resilient to some effects of lateral gene transfer because transfers of genes are masked when the recipient genome already has a homolog (not necessarily an ortholog) of the incoming gene. Of 71 genes suspected to have been laterally transferred to the genome of Aeropyrum pernix, only approximately 7 to 15 represent genes where a lateral gene transfer appears to have generated homoplasy in our character dataset. The genomic tree of the 15 free-living taxa includes six different bacterial orders, six different archaeal orders, and two different eukaryotic kingdoms. The results are remarkably similar to results obtained by analysis of rRNA. Inclusion of the other 12 genomes resulted in a tree only broadly similar to that suggested by rRNA with at least some of the differences due to artifacts caused by the small genome size of many of these species. Very small genomes, such as those of the two Mycoplasma genomes included, fall to the base of the Bacterial domain, a result expected due to the substantial gene loss inherent to these lineages. Finally, artificial ``partial genomes' were generated by randomly selecting ORFs from the complete genomes in order to test our ability to recover the tree generated by the whole genome sequences when only partial data are available. The results indicated that partial genomic data, when sampled randomly, could robustly recover the tree generated by the whole genome sequences. Received: 30 May 2001 / Accepted: 10 October 2001  相似文献   

20.
We examined a region of high variability in the mosaic mercury resistance (mer) operon of natural bacterial isolates from the primate intestinal microbiota. The region between the merP and merA genes of nine mer loci was sequenced and either the merC, the merF, or no gene was present. Two novel merC genes were identified. Overall nucleotide diversity, π (per 100 sites), of the merC gene was greater (49.63) than adjacent merP (35.82) and merA (32.58) genes. However, the consequences of this variability for the predicted structure of the MerC protein are limited and putative functional elements (metal-binding ligands and transmembrane domains) are strongly conserved. Comparison of codon usage of the merTP, merC, and merA genes suggests that several merC genes are not coeval with their flanking sequences. Although evidence of homologous recombination within the very variable merC genes is not apparent, the flanking regions have higher homologies than merC, and recombination appears to be driving their overall sequence identities higher. The synonymous codon usage bias (ENC) values suggest greater variability in expression of the merC gene than in flanking genes in six different bacterial hosts. We propose a model for the evolution of MerC as a host-dependent, adventitious module of the mer operon. Received: 2 June 2000 / Accepted: 23 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号