首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sarcoplasmic reticulum (SR) plays a critical role in mediating cardiac contractility and its function is abnormal in the diabetic heart. However, the mechanisms underlying SR dysfunction in the diabetic heart are not clear. Because protein phosphorylation regulates SR function, this study examined the phosphorylation state of phospholamban, a key SR protein that regulates SR calcium (Ca2+) uptake in the heart. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (STZ; 65 mg kg(-1) i.v.), and the animals were humanely killed after 6 weeks and cardiac SR function was examined. Depressed cardiac performance was associated with reduced SR Ca2+-uptake activity in diabetic animals. The reduction in SR Ca2+-uptake was consistent with a significant decrease in the level of SR Ca2+-pump ATPase (SERCA2a) protein. The level of phospholamban (PLB) protein was also decreased, however, the ratio of PLB to SERCA2a was increased in the diabetic heart. Depressed SR Ca2+-uptake was also due to a reduction in the phosphorylation of PLB by the Ca2+-calmodulin-dependent protein kinase (CaMK) and cAMP-dependent protein kinase (PKA). Although the activities of the SR-associated Ca2+-calmodulin-dependent protein kinase (CaMK), cAMP-dependent protein kinase (PKA) were increased in the diabetic heart, depressed phosphorylation of PLB could partly be attributed to an increase in the SR-associated protein phosphatase activities. These results suggest that there is increased inhibition of SERCA2a by PLB and this appears to be a major defect underlying SR dysfunction in the diabetic heart.  相似文献   

2.
Phospholamban (PLB) is a sarcoplasmic reticulum (SR) protein that when phosphorylated at Ser16 by PKA and/or at Thr17 by CaMKII increases the affinity of the SR Ca2+ pump for Ca2+. PLB is therefore, a critical regulator of SR function, myocardial relaxation and myocardial contractility. The present study was undertaken to examine the status of PLB phosphorylation after ischemia and reperfusion and to provide evidence about the possible role of the phosphorylation of Thr17 PLB residue on the recovery of contractility and relaxation after a period of ischemia. Experiments were performed in Langendorff perfused hearts from Wistar rats. Hearts were submitted to a protocol of global normothermic ischemia and reperfusion. The results showed that (1) the phosphorylation of Ser16 and Thr17 residues of PLB increased at the end of the ischemia and the onset of reperfusion, respectively. The increase in Thr17 phosphorylation was associated with a recovery of relaxation to preischemic values. This recovery occurred in spite of the fact that contractility was depressed. (2) The reperfusion-induced increase in Thr17 phosphorylation was dependent on Ca2+ entry to the cardiac cell. This Ca2+ influx would mainly occur by the coupled activation of the Na+ / H+ exchanger and the Na+ / Ca2+ exchanger working in the reverse mode, since phosphorylation of Thr17 was decreased by inhibition of these exchangers and not affected by blockade of the L-type Ca2+ channels. (3) Specific inhibition of CaMKII by KN93 significantly decreased Thr17 phosphorylation. This decrease was associated with an impairment of myocardial relaxation. The present study suggests that the phosphorylation of Thr17 of PLB upon reflow, may favor the full recovery of relaxation after ischemia.  相似文献   

3.
Using a chemically defined reconstitution system, we performed a systematic study of key factors in the regulation of the Ca-ATPase by phospholamban (PLB). We varied both the lipid/protein and PLB/Ca-ATPase ratios, determined the effects of PLB phosphorylation, and compared the regulatory effects of several PLB mutants, as a function of Ca concentration. The reconstitution system allowed us to determine accurately not only the PLB effects on K(Ca) (Ca concentration at half-maximal activity) of the Ca-ATPase, but also the effects on V(max) (maximal activity). Wild-type PLB (WT-PLB) and two gain-of-function mutants, N27A-PLB and I40A-PLB, showed not only the previously reported increase in K(Ca), but also an increase in V(max). Specifically, V(max) increases linearly with the intramembrane PLB concentration, and is approximately doubled when the sample composition approaches that of cardiac SR. Upon phosphorylation of PLB at Ser-16, the K(Ca) effects were almost completely reversed for WT- and N27A-PLB but were only partially reversed for I40A-PLB. Phosphorylation induced a V(max) increase for WT-PLB, and a V(max) decrease for N27A- and I40A-PLB. We conclude that PLB and PLB phosphorylation affect V(max) as well as K(Ca), and that the magnitude of both effects is sensitive to the PLB concentration in the membrane.  相似文献   

4.
The role of sarcolipin (SLN) in cardiac physiology was critically evaluated by generating a transgenic (TG) mouse model in which the SLN to sarco(endoplasmic)reticulum (SR) Ca(2+) ATPase (SERCA) ratio was increased in the ventricle. Overexpression of SLN decreases SR calcium transport function and results in decreased calcium transient amplitude and rate of relaxation. SLN TG hearts exhibit a significant decrease in rates of contraction and relaxation when assessed by ex vivo work-performing heart preparations. Similar results were also observed with muscle preparations and myocytes from SLN TG ventricles. Interestingly, the inhibitory effect of SLN was partially relieved upon high dose of isoproterenol treatment and stimulation at high frequency. Biochemical analyses show that an increase in SLN level does not affect PLB levels, monomer to pentamer ratio, or its phosphorylation status. No compensatory changes were seen in the expression of other calcium-handling proteins. These studies suggest that the SLN effect on SERCA pump is direct and is not mediated through increased monomerization of PLB or by a change in PLB phosphorylation status. We conclude that SLN is a novel regulator of SERCA pump activity, and its inhibitory effect can be reversed by beta-adrenergic agonists.  相似文献   

5.
We have studied the effects of C28R2, a basic peptide derived from the autoinhibitory domain of the plasma membrane Ca-ATPase, on enzyme activity, oligomeric state, and E1-E2 conformational equilibrium of the Ca-ATPase from skeletal and cardiac sarcoplasmic reticulum (SR). Time-resolved phosphorescence anisotropy (TPA) was used to determine changes in the distribution of Ca-ATPase among its different oligomeric species in SR. C28R2, at a concentration of 1-10 microM, inhibits the Ca-ATPase activity of both skeletal and cardiac SR (CSR). In skeletal SR, this inhibition by C28R2 is much greater at low (0.15 microM) than at high (10 microM) Ca2+, whereas in CSR the inhibition is the same at low and high Ca2+. The effects of the peptide on the rotational mobility of the Ca-ATPase correlated well with function, indicating that C28R2-induced protein aggregation and Ca-ATPase inhibition are much more Ca-dependent in skeletal than in CSR. In CSR at low Ca2+, phospholamban (PLB) antibody (functionally equivalent to PLB phosphorylation) increased the inhibitory effect of C28R2 slightly. Fluorescence of fluorescein 5-isothiocyanate-labeled SR suggests that C28R2 stabilizes the E1 conformation of the Ca-ATPase in skeletal SR, whereas in CSR it stabilizes E2. After the addition of PLB antibody, C28R2 still stabilizes the E2 conformational state of CSR. Therefore, we conclude that C28R2 affects Ca-ATPase activity, conformation, and self-association differently in cardiac and skeletal SR and that PLB is probably not responsible for the differences.  相似文献   

6.
Activation of cardiac muscle sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) by beta1-agonists involves cAMP- and PKA-dependent phosphorylation of phospholamban (PLB), which relieves the inhibitory effects of PLB on SERCA2a. To investigate the mechanism of SERCA2a activation, we compared the kinetic properties of SERCA2a expressed with (+) and without (-) PLB in High Five insect cell microsomes to those of SERCA1 and SERCA2a in native skeletal and cardiac muscle SR. Both native SERCA1 and expressed SERCA2a without PLB exhibited high-affinity (10-50 microM) activation of pre-steady-state catalytic site dephosphorylation by ATP, steady-state accumulation of the ADP-sensitive phosphoenzyme (E1P), and a rapid phase of EGTA-induced phosphoenzyme (E2P) hydrolysis. In contrast, SERCA2a in native cardiac SR vesicles and expressed SERCA2a with PLB lacked the high-affinity activation by ATP and the rapid phase of E2P hydrolysis, and exhibited low steady-state levels of E1P. The results indicate that the kinetic differences in Ca2+ transport between skeletal and cardiac SR are due to the presence of phospholamban in cardiac SR, and not due to isoform-dependent differences between SERCA1 and SERCA2a. Therefore, the results are discussed in terms of a model in which PLB interferes with SERCA2a oligomeric interactions, which are important for the mechanism of Ca2+ transport in skeletal muscle SERCA1 [Mahaney, J. E., Thomas, D. D., and Froehlich, J. P. (2004) Biochemistry 43, 4400-4416]. We propose that intermolecular coupling of SERCA2a molecules during catalytic cycling is obligatory for the changes in Ca2+ transport activity that accompany the relief of PLB inhibition of the cardiac SR Ca2+-ATPase.  相似文献   

7.
Ferrington DA  Yao Q  Squier TC  Bigelow DJ 《Biochemistry》2002,41(44):13289-13296
Alterations in expression levels of phospholamban (PLB) relative to the sarcoplasmic reticulum (SR) Ca-ATPase have been suggested to underlie defects of calcium regulation in the failing heart and other cardiac pathologies. To understand how variation in PLB expression relative to that of the Ca-ATPase can modulate calcium transport, we have investigated the inhibition of the Ca-ATPase by PLB in native SR membranes from slow-twitch skeletal and cardiac muscle and in reconstituted proteoliposomes. Quantitative immunoblotting in combination with affinity-purified protein standards was used to measure protein concentrations of PLB and of the Ca-ATPase. Functional inhibition of the Ca-ATPase was determined from both the calcium concentrations for half-maximal activation (Ca(1/2)) and the shift in the calcium concentrations following release of PLB inhibition (i.e., (Delta)Ca(1/2)) by incubation with monoclonal antibodies against PLB, which are equivalent to phosphorylation of PLB by cAMP-dependent protein kinase. We report that equivalent levels of PLB inhibition and antibody-induced activation ((Delta)Ca(1/2) = 0.25 +/- 0.02 microM) are observed in SR membranes from slow-twitch skeletal and cardiac muscle, where molar stoichiometries of PLB expressed per Ca-ATPase vary, respectively, from 0.9 +/- 0.1 to 4.1 +/- 0.8. Similar levels of inhibition to those observed in isolated SR vesicles were observed using reconstituted proteoliposomes following co-reconstitution of affinity-purified Ca-ATPase with PLB. These results indicate that total expression levels of one PLB per Ca-ATPase result in full inhibition of the Ca-ATPase and, based on the measured K(D) (140 +/- 30 microM), suggests one PLB complexed with two Ca-ATPase molecules is sufficient for full inhibition of activity. Therefore, the excess PLB expressed in the heart over that required for inhibition suggests a capability for graded responses of the Ca-ATPase activity to endogenous kinases and phosphatases that modulate the level of phosphorylation necessary to relieve inhibition of the Ca-ATPase by PLB.  相似文献   

8.
J T Gasser  M P Chiesi  E Carafoli 《Biochemistry》1986,25(23):7615-7623
Phospholamban (PLB) from cardiac sarcoplasmic reticulum (SR) was phosphorylated under various conditions by the adenosine cyclic 3',5'-phosphate (cAMP)-dependent and/or the calmodulin-dependent protein kinase. The small shifts in apparent molecular weight resulting from the incorporation of Pi groups in the PLB complexes were analyzed by high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In parallel experiments, PLB was dissociated into its subunits and analyzed by using a newly developed isoelectric focusing system. The pI values of the PLB subunits phosphorylated by the cAMP- or calmodulin-dependent kinase were 6.2 and 6.4, respectively. Double phosphorylation of the same subunit resulted in an acidic shift of the pI to 5.2. The combined analysis of the behavior of the PLB complex and of its subunits has greatly simplified the interpretation of the complex phosphorylation pattern and has led to the following conclusions: The PLB complex is composed of five probably identical subunits, each of them containing a distinct phosphorylation site for the calmodulin- and the cAMP-dependent kinase. The population of PLB interacting with the endogenous calmodulin-dependent kinase cannot be phosphorylated by the cAMP-dependent kinase unless previously phosphorylated in the presence of calmodulin. It was also observed that after maximal phosphorylation of PLB in the presence of very large amounts of the cAMP-dependent protein kinase, the Ca2+ pumping rate of the cardiac SR ATPase is stimulated up to 5-fold, i.e., a level of a stimulation which exceeds considerably the values so far reported in the literature.  相似文献   

9.
We tested the hypothesis that increased Sarcoplasmic reticulum (SR) Ca content ([Ca](SRT)) in phospholamban knockout mice (PLB-KO) is because of increased SR Ca pump efficiency defined by the steady-state SR [Ca] gradient. The time course of thapsigargin-sensitive ATP-dependent (45)Ca influx into and efflux out of cardiac SR vesicles from PLB-KO and wild-type (WT) mice was measured at 100 nm free [Ca]. We found that PLB decreased the initial SR Ca uptake rate (0.13 versus 0.31 nmol/mg/s) and decreased steady-state (45)Ca content (0.9 versus 4.1 nmol/mg protein). Furthermore, at similar total SR [Ca], the pump-mediated Ca efflux rate was higher in WT (0.065 versus 0.037 nmol/mg/s). The pump-independent leak rate constant (k(leak)) was also measured at 100 nm free [Ca]. The results indicate that k(leak) was < 1% of pump-mediated backflux and was not different among nonpentameric mutant PLB (PLB-C41F), WT pentameric PLB (same expression level), and PLB-KO. Therefore differences in passive SR Ca leak cannot be the cause of the higher thapsigargin-sensitive Ca efflux from the WT membranes. We conclude that the decreased total SR [Ca] in WT mice is caused by decreased SR Ca influx rate, an increased Ca-pump backflux, and unaltered leak. Based upon both thermodynamic and kinetic analysis, we conclude that PLB decreases the energetic efficiency of the SR Ca pump.  相似文献   

10.
Pantano S  Carafoli E 《Proteins》2007,66(4):930-940
Phospholamban (PLB) is a small membrane protein that regulates the activity of the calcium ATP-ase in the cardiac, slow-twitch, and smooth muscle sarcoplasmic reticulum through the reversible phosphorylation of Ser16. We present here a comparative molecular dynamics study of unmodified and phosphorylated PLB immersed in a phospholipid membrane. The study has been performed under different ionic strength conditions, using the NMR structures of two PLB variants determined in mixed organic solvent and dodecylphosphocholine micelles. The simulations indicate that all PLB forms studied display a highly dynamic behavior of the N-terminal cytoplasmic moiety, with a decrease of its helical content in the phosphorylated forms. The cytoplasmic domain undergoes large collective motions sampling conformations parallel as well as perpendicular to the membrane surface in all the simulations. The transmembrane domain retains a tightly folded helical conformation with a small tilt with respect to the membrane plane probably induced by the presence of Asn30 and Asn34 within the hydrophobic environment. Furthermore, the phosphoric group on Ser16 establishes transient electrostatic interactions with the phospholipid heads. We propose a model in which phosphorylation diminishes the probability of interactions of PLB with residues near Lys400 in the SERCA pump, thus relieving its inhibition.  相似文献   

11.
Cardioprotection by intermittent high-altitude (IHA) hypoxia against ischemia-reperfusion (I/R) injury is associated with Ca(2+) overload reduction. Phospholamban (PLB) phosphorylation relieves cardiac sarcoplasmic reticulum (SR) Ca(2+)-pump ATPase, a critical regulator in intracellular Ca(2+) cycling, from inhibition. To test the hypothesis that IHA hypoxia increases PLB phosphorylation and that such an effect plays a role in cardioprotection, we compared the time-dependent changes in the PLB phosphorylation at Ser(16) (PKA site) and Thr(17) (CaMKII site) in perfused normoxic rat hearts with those in IHA hypoxic rat hearts submitted to 30-min ischemia (I30) followed by 30-min reperfusion (R30). IHA hypoxia improved postischemic contractile recovery, reduced the maximum extent of ischemic contracture, and attenuated I/R-induced depression in Ca(2+)-pump ATPase activity. Although the PLB protein levels remained constant during I/R in both groups, Ser(16) phosphorylation increased at I30 and 1 min of reperfusion (R1) but decreased at R30 in normoxic hearts. IHA hypoxia upregulated the increase further at I30 and R1. Thr(17) phosphorylation decreased at I30, R1, and R30 in normoxic hearts, but IHA hypoxia attenuated the depression at R1 and R30. Moreover, PKA inhibitor H89 abolished IHA hypoxia-induced increase in Ser(16) phosphorylation, Ca(2+)-pump ATPase activity, and the recovery of cardiac performance after ischemia. CaMKII inhibitor KN-93 also abolished the beneficial effects of IHA hypoxia on Thr(17) phosphorylation, Ca(2+)-pump ATPase activity, and the postischemic contractile recovery. These findings indicate that IHA hypoxia mitigates I/R-induced depression in SR Ca(2+)-pump ATPase activity by upregulating dual-site PLB phosphorylation, which may consequently contribute to IHA hypoxia-induced cardioprotection against I/R injury.  相似文献   

12.
Systematic immunological and biochemical studies indicate that the level of expression of sarcoplasmic reticulum (SR) Ca(2+)-ATPase regulatory protein phospholamban (PLB) in mammalian slow-twitch fibers varies from zero, in the rat, to significant levels in the rabbit, and even higher in humans. The lack of PLB expression in the rat, at the mRNA level, is shown to be exclusive to slow-twitch skeletal muscle, and not to be shared by the heart, thus suggesting a tissue-specific, in addition to a species-specific regulation of PLB. A comparison of sucrose density-purified SR of rat and rabbit slow-twitch muscle, with regard to protein compositional and phosphorylation properties, demonstrates that the biodiversity is two-fold, i.e. (a) in PLB membrane density; and (b) in the ability of membrane-bound Ca(2+)-calmodulin (CaM)-dependent protein kinase II to phosphorylate both PLB and SERCA2a (slow-twitch isoform of Ca(2+)-ATPase). The basal phosphorylation state of PLB at Thr-17 in isolated SR vesicles from rabbit slow-twitch muscle, colocalization of CaM K II with PLB and SERCA2a at the same membrane domain, and the divergent subcellular distribution of PKA, taken together, seem to argue for a differential heterogeneity in the regulation of Ca(2+) transport between such muscle and heart muscle.  相似文献   

13.
E Terzi  L Poteur  E Trifilieff 《FEBS letters》1992,309(3):413-416
Phospholamban (PLB), an integral membrane protein of cardiac sarcoplasmic reticulum (SR), is described as the regulator of the Ca(2+)-ATPase pump, via its phosphorylation-dephosphorylation of Ser-16. Recently it has been shown that a direct interaction between the N-terminal hydrophilic domain of PLB and Ca(2+)-ATPase may be one of the mechanisms of regulation. In order to show that this interaction could be modulated by a phosphorylation-induced conformational change in PLB, we ran CD studies on the synthetic peptide PLB(2-33) in its phosphorylated and non-phosphorylated forms, at various pHs, concentrations and in the absence or presence of trifluoroethanol. The results show a clear difference in structure of the phosphorylated and non-phosphorylated peptide.  相似文献   

14.
吉勇  董林旺 《生理学报》1995,47(4):336-342
本工作在大鼠盲肠结扎加穿孔(CLP)腹膜炎败血症休克模型上休克不同阶段心肌肌浆网(SR)钙摄取功能的变化,并探讨了其变化机制。结果显示:败血症休克早期,心肌SR摄钙初速率降低,但SR最大摄钙量及Ca^2+-ATPase活性没有明显变化;败血症休克晚期,心肌SR摄钙初速率、最大摄钙量以及Ca^2+-ATPase活性显著降低。测定Xa^2+,Mg^2+和ATP对早、晚期要克大鼠心肌SR钙泵的亲和力以及  相似文献   

15.
E G Kranias  F Mandel  T Wang  A Schwartz 《Biochemistry》1980,19(23):5434-5439
Canine cardiac sarcoplasmic reticulum (SR) is known to be phosphorylated by adenosine 3',5'-monophosphate (cAMP) dependent protein kinase on a 22 000-dalton protein. Phosphorylation enhances the initial rate of Ca2+ uptake and Ca2+-ATPase activity. To determine the molecular mechanism by which phosphorylation regulates the calcium pump in SR, we examined the effect of cAMP-dependent protein kinase on the individual steps of the Ca2+-ATPase reaction sequence. Cardiac sarcoplasmic reticulum was preincubated with cAMP and cAMP-dependent protein kinse in the presence (phosphorylated SR) and absence (control) of adenosine 5'-triphosphate (ATP). Control and phosphorylated SR were subsequently assayed for formation (4-200 ms) and decomposition (0-73 ms) of the acid-stable phosphorylated enzyme (E approximately P) of Ca2+-ATPase in media containing 100 microM [ATP] and various free [Ca2+]. cAMP-dependent phosphorylation of SR resulted in pronounced stimulation of initial rates and levels of E approximately P formed at low free [Ca2+] (less than or equal to 7 microM), but the effect was less at high free Ca2+ (greater than or equal to 10 microM). This stimulation was associated with a decrease in the dissociation constant for Ca2+ binding and a possible increase in Ca2+ sites. The observed rate constant for E approximately P formation of calcium-preincubated SR was not significantly altered by phosphorylation. Phosphorylation also increased the initial rate of E approximately P decomposition. These findings indicate that phosphorylation of cardiac SR by cAMP-dependent protein kinase regulates several steps in the Ca2+-ATPase reaction sequence which result in an overall stimulation of the calcium pump observed at steady state.  相似文献   

16.
Elevations in the intracellular Ca(2+) concentration activate the serine/threonine protein kinase Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). We tested the hypothesis that increased sarco(endo)plasmic reticulum Ca(2+)-ATPase activity by phospholamban (PLB) phosphorylation contributes to smooth muscle relaxation by elevating the sarcoplasmic reticulum (SR) Ca(2+) load and increasing the frequency of Ca(2+) release events from the SR. We have previously shown that caffeine or sodium nitroprusside (SNP) relaxes murine gastric fundus smooth muscles and increases PLB phosphorylation by CaM kinase II. These findings suggest that an increased SR Ca(2+) load increases the frequency of Ca(2+) transients from the SR and results in PLB phosphorylation by CaM kinase II, contributing to caffeine- or SNP-induced relaxation. The aim of the present study was to investigate the effects of SNP on CaM kinase II and PLB phosphorylation in gastric antrum smooth muscles. SNP or 8-bromo-cGMP decreased the basal tone and amplitudes of spontaneous phasic contractions and activated CaM kinase II. SNP-induced relaxation and CaM kinase II activation were blocked by [1,2,4]oxadizolo-[4,3alpha]quinoxaline-1-one (ODQ) and inhibited by cyclopiazonic acid (CPA) or KN-93. SNP also increased PLBSer(16) and PLBThr(17) phosphorylation. Both PLBSer(16) and Thr(17) phosphorylation were ODQ sensitive. However, only PLBThr(17) phosphorylation was inhibited by CPA or KN-93. These results suggest that CaM kinase II activation and PLB phosphorylation participate in the relaxant effect of SNP on murine gastric antrum smooth muscles through a nitric oxide/guanylyl cyclase/cGMP pathway.  相似文献   

17.
Reconstitution into proteoliposomes is a powerful method for studying calcium transport in a chemically pure membrane environment. By use of this approach, we have studied the regulation of Ca(2+)-ATPase by phospholamban (PLB) as a function of calcium concentration and PLB mutation. Co-reconstitution of PLB and Ca(2+)-ATPase revealed the expected effects of PLB on the apparent calcium affinity of Ca(2+)-ATPase (K(Ca)) and unexpected effects of PLB on maximal activity (V(max)). Wild-type PLB, six loss-of-function mutants (L7A, R9E, I12A, N34A, I38A, L42A), and three gain-of-function mutants (N27A, L37A, and I40A) were evaluated for their effects on K(Ca) and V(max). With the loss-of-function mutants, their ability to shift K(Ca) correlated with their ability to increase V(max). A total loss-of-function mutant, N34A, had no effect on K(Ca) of the calcium pump and produced only a marginal increase in V(max). A near-wild-type mutant, I12A, significantly altered both K(Ca) and V(max) of the calcium pump. With the gain-of-function mutants, their ability to shift K(Ca) did not correlate with their ability to increase V(max). The "super-shifting" mutants N27A, L37A, and I40A produced a large shift in K(Ca) of the calcium pump; however, L37A decreased V(max), while N27A and I40A increased V(max). For wild-type PLB, phosphorylation completely reversed the effect on K(Ca), but had no effect on V(max). We conclude that PLB increases V(max) of Ca(2+)-ATPase, and that the magnitude of this effect is sensitive to mutation. The mutation sensitivity of PLB Asn(34) and Leu(37) identifies a region of the protein that is responsible for this regulatory property.  相似文献   

18.
We have developed a detailed mathematical model for Ca2+ handling and ionic currents in the rabbit ventricular myocyte. The objective was to develop a model that: 1), accurately reflects Ca-dependent Ca release; 2), uses realistic parameters, particularly those that concern Ca transport from the cytosol; 3), comes to steady state; 4), simulates basic excitation-contraction coupling phenomena; and 5), runs on a normal desktop computer. The model includes the following novel features: 1), the addition of a subsarcolemmal compartment to the other two commonly formulated cytosolic compartments (junctional and bulk) because ion channels in the membrane sense ion concentrations that differ from bulk; 2), the use of realistic cytosolic Ca buffering parameters; 3), a reversible sarcoplasmic reticulum (SR) Ca pump; 4), a scheme for Na-Ca exchange transport that is [Na]i dependent and allosterically regulated by [Ca]i; and 5), a practical model of SR Ca release including both inactivation/adaptation and SR Ca load dependence. The data describe normal electrical activity and Ca handling characteristics of the cardiac myocyte and the SR Ca load dependence of these processes. The model includes a realistic balance of Ca removal mechanisms (e.g., SR Ca pump versus Na-Ca exchange), and the phenomena of rest decay and frequency-dependent inotropy. A particular emphasis is placed upon reproducing the nonlinear dependence of gain and fractional SR Ca release upon SR Ca load. We conclude that this model is more robust than many previously existing models and reproduces many experimental results using parameters based largely on experimental measurements in myocytes.  相似文献   

19.
Activation of protein kinase C (PKC) is cardioprotective, but the mechanism(s) by which PKC mediates protection is not fully understood. Inasmuch as PKC has been well documented to modulate sarcoplasmic reticulum (SR) Ca2+ and because altered SR Ca2+ handling during ischemia is involved in cardioprotection, we examined the role of PKC-mediated alterations of SR Ca2+ in cardioprotection. Using isolated adult rat ventricular myocytes, we found that addition of 1,2-dioctanoyl-sn-glycerol (DOG), to activate PKC under conditions that reduced myocyte death associated with simulated ischemia and reperfusion, also reduced SR Ca2+. Cell death was 57.9 +/- 2.9% and 47.3 +/- 1.8% in untreated and DOG-treated myocytes, respectively (P < 0.05). Using fura 2 fluorescence to monitor Ca2+ transients and caffeine-releasable SR Ca2+, we examined the effect of DOG on SR Ca2+. Caffeine-releasable SR Ca2+ was significantly reduced (by approximately 65%) after 10 min of DOG treatment compared with untreated myocytes (P < 0.05). From our examination of the mechanism by which PKC alters SR Ca2+, we present the novel finding that DOG treatment reduced the phosphorylation of phospholamban (PLB) at Ser16. This effect is mediated by PKC-epsilon, because a PKC-epsilon-selective inhibitory peptide blocked the DOG-mediated decrease in phosphorylation of PLB and abolished the DOG-induced reduction in caffeine-releasable SR Ca2+. Using immunoprecipitation, we further demonstrated that DOG increased the association between protein phosphatase 1 and PLB. These data suggest that activated PKC-epsilon reduces SR Ca2+ content through PLB dephosphorylation and that reduced SR Ca2+ may be important in cardioprotection.  相似文献   

20.
Phospholamban (PLN) phosphorylation contributes largely to the inotropic and lusitropic effects of beta-adrenergic agonists on the heart. The mechanical effects of PLN phosphorylation on the heart are generally attributed solely to an increase in the apparent affinity of the Ca pump in the sarcoplasmic reticulum (SR) membranes for Ca2+ with little or no effect on V max(Ca). In the present report, we compare the kinetic properties of the cardiac SR Ca pump in commonly studied crude microsomes with those of our recently developed preparation of light SR vesicles. We demonstrate that in crude microsomes, the increase in the apparent affinity of the pump for Ca2+ is larger, while the increase in V max(Ca) is smaller, than in purified vesicles. The greater phosphorylation-induced increase in apparent Ca2+ affinity in crude microsomes may be further enhanced by an ATP-sensitive inhibitory effect of ruthenium red on the activity of the pump at subsaturating, but not saturating, Ca2+ concentrations as a result of a greater inhibition in unphosphorylated microsomes. Upon increasing the ATP concentration from 1 to 5 mm, an inhibition by 10 μm ruthenium red is eliminated in phosphorylated microsomes and reduced in control microsomes. Addition of the phosphoprotein phosphatase inhibitor okadaic acid produces a considerable increase in the phosphorylation-induced effects in both crude and purified microsomes. We conclude that the use of purified cardiac SR vesicles is critical for the demonstration of a major increase in V max(Ca) in addition to an increase in the pump's apparent affinity for Ca2+ in response to phosphorylation of PLN by protein kinase A. Received: 20 May 1998/Revised: 13 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号