首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
This report describes the use of a transtubular bioreactor to study the relative effects of diffusion versus perfusion of medium on antibody production by a hybridoma cell line. The study was performed with a high-density cell culture maintained in a serum-free, low-protein medium for 77 days. It was determined that the reactor possessed a macro-mixing pattern residence time distribution similar to a continuous stirred tank reactor (CSTR). However, due to the arrangement of the medium lines in the reactor, the flow patterns for nutrient distribution consist of largely independent medium path lengths ranging from short to long. When operated with cyclic, reversing, transtubular medium flow, some regions of the reactor (with short residence times) are more accessible to medium than others (with long residence times). From this standpoint, the reactor can be divided into three regions: a captive volume, which consists of medium primarily delivered via diffusion; a lapped volume, which provides nutrients through unilateral convection; and a swept volume, which operates through bilateral convection. The relative sizes of these three volumes were modified experimentally by changing the period over which the direction of medium flow was reversed from 15 min (larger captive volume) to 9 h (larger swept volume). The results suggest that antibody concentration increases as the size of the diffusion-limited (captive) volume is increased to a maximum at around 30 min with a sharp decrease thereafter. As reflected by changes in measured consumption of glucose and production of lactate, no significant difference in cellular metabolism occurred as the reactor was moved between these different states. These results indicate that the mode of operation of the transtubular bioreactor may influence antibody productivity under serum-free, low-protein conditions with minimal effects on cellular metabolism.  相似文献   

2.
This paper presents a study about the influence of gas velocity on a methanogenic biofilm in an inverse turbulent bed reactor. Experimental results indicate a dynamic response of the growing attached biomass to the changes of hydrodynamic conditions, mainly attrition constraints. Short but intensive increases of gas velocity (U(g)) are shown to induce more detachment than a high but constant gas flow rate. Hydrodynamic conditions control the composition of the growing biofilm in terms of cells and exocellular polymeric substances (EPS). The cell fraction within the biofilm (R(cell)) was found to be inversely proportional to the gas velocity. The specific activity expressed in methane production rate or COD removal rate is higher in biofilms formed under high hydrodynamic constraints. The control of the hydrodynamic conditions in a biofilm reactor should make it possible to obtain a resistant and active biofilm.  相似文献   

3.
Recently, considerable interest has been shown in the study and analysis of immobilized cell reactors. One of the major uses of such a reactor system is expected to be in ethanol production from carbohydrates. One distinct disadvantage of this system is carbon dioxide gas holdup associated with unsteady-state temperature distribution across the reactor. Taking into account the earlier published data and assuming steady-state-substrate balance, and unsteady-state energy balance, and an average gas holdup of 20% with the heat retained by the gas neglected, the average reaction rate in the differential element was computed. Finally, a mathematical model to predict steady-state temperature profile along the reactor was developed. It was verified with experimental data obtained from an immobilized yeast reactor column (1 m x 14.5 cm). The experimental data fit well those computed from the model within an accuracy of 5%.  相似文献   

4.
A new bubble aeration system was designed to minimize cell killing and cellular damage due to sparging. The residence time of the bubbles in the developed bubble bed reactor was prolonged dramatically by floating them in a countercurrent produced by an impeller. The performance of the new reactor bubble aeration system, implemented in a laboratory reactor, was tested in dynamic aeration experiments with an without cells. An efficiency up to 95% in oxygen transfer could be achieved, which enables a much lower gas flow rate compared with conventional bubble aeration reactors. The low gas flow rate is important to keep cell damage by bubbles as low as possible. A laser light sheet technique used to find the optimal flow pattern in the reactor. The specific power dissipation of the impeller is a good measure to predict cell damage in a turbulent flow. Typical values for the power dissipation measured in the bubble bed reactor were in the range of 0.002 to 0.013 W/kg, which is far below the critical limit for animal cells. The growth of a hybridoma cell line was studied in cell cultivation experiments. A protein-free medium without supplements such as serum or Pluronic F68 was used to exclude any effect of cell-protecting factors, No difference in the specific growth rate and the yield of the antibodies was observed in cell grown in the bubble free surface aeration in the spinner flask. In contrast to the spinner flask, however, the bubble bed reactor design could be scaled up. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
The simultaneous separation of volatile fermentation products from product-inhibited fermentations can greatly increase the productivity of a bioreactor by reducing the product concentration in the bioreactor, as well as concentrating the product in an output stream free of cells, substrate, or other feed impurities. The Immobilized Cell Reactor-Separator (ICRS) consists of two column reactors: a cocurrent gas-liquid "enricher" followed by a countercurrent "stripper" The columns are four-phase tubular reactors consisting of (1) an inert gas phase, (2) the liquid fermentation broth, (3) the solid column internal packing, and (4) the immobilized biological catalyst or cells. The application of the ICRS to the ethanol-from-whey-lactose fermentation system has been investigated. Operation in the liquid continuous or bubble flow regime allows a high liquid holdup in the reactor and consequent long and controllable liquid residence time but results in a high gas phase pressure drop over the length of the reactor and low gas flow rates. Operation in the gas continuous regime gives high gas flow rates and low pressure drop but also results in short liquid residence time and incomplete column wetting at low liquid loading rates using conventional gas-liquid column packings. Using cells absorbed to conventional ceramic column packing (0.25-in. Intalox saddles), it was found that a good reaction could be obtained in the liquid continuous mode, but little separation, while in the gas continuous mode there was little reaction but good separation. Using cells sorbed to an absorbant matrix allowed operation in the gas continuous regime with a liquid holdup of up to 30% of the total reactor volume. Good reaction rates and product separation were obtained using this matrix. High reaction rates were obtained due to high density cell loading in the reactor. A dry cell density of up to 92 g/L reactor was obtained in the enricher. The enricher ethanol productivity ranged from 50 to 160 g/L h while the stripper productivity varied from 0 to 32 g/L h at different feed rates and concentrations. A separation efficiency of as high as 98% was obtained from the system.  相似文献   

6.
A four-phase reactor-separator (gas, liquid, solid, and immobilized catalyst) is proposed for fermentations characterized by a volatile product and nonvolatile substrate.In this reactor, the biological catalyst is immobilized onto a solid column packing and contacted by the liquid containing the substrate.A gas phase is also moved through the column to strip the volatile product into the gas phase. The Immobilized Cell Reactor-Separator (ICRS) consists of two basic gas-liquid flow sections: a cocurrent "enricher" followed by a countercurrent-"stripper".In this article, an equilibrium stage model of the reactor is developed to determine the feasibility and important operational variables of such a reactor-separator. The ICRS concept is applied to the ethanol from whey lactose fermentation using some preliminary immobilized cell reactor performance data. A mathematical model for a steady-state population based on an adsorbed monolayer of cells is also developed for the reactor. The ICRS model demonstrated that the ICRS should give a significant increase in reactor productivity as compared to an identically sized Immobilized Cell Reactor (ICR) with no separation. The gas-phase separation of the product also allows fermentation of high inlet substrate concentrations. The model is used to determine the effects of reactor parameters on ICRS performance including temperature, pressure, gas flow rates, inlet substrate concentration, and degree of microbial product inhibition.  相似文献   

7.
Sodium Movement across Single Perfused Proximal Tubules of Rat Kidneys   总被引:15,自引:2,他引:13       下载免费PDF全文
Using perfusion techniques in single proximal tubule segments of rat kidney, the relationship between net sodium movement and active transport of ions, as measured by the short-circuit method, has been studied. In addition, the role of the colloid-osmotic pressure gradient in proximal transtubular fluid and sodium movement has been considered. Furthermore, the limiting concentration gradient against which sodium movement can occur and the relationship between intratubular sodium concentration and fluid transfer have been investigated. Comparison of the short-circuit current with the reabsorptive movement of sodium ions indicates that this process is largely, perhaps exclusively, active in nature. No measurable contribution of the normally existing colloid-osmotic pressure gradient to transtubular water movement was detected. On the other hand, fluid movement across the proximal tubular epithelium is dependent upon the transtubular sodium gradient and is abolished when a mean concentration difference of 50 mEq/liter is exceeded.  相似文献   

8.
The death rate of hybridoma cells, grown in a continuous culture, has been studied in a small air-lift loop reactor as a function of reactor height and injected gas flow rate. The first-order death-rate constant was found to be proportional to the reciprocal height and to the gas flow rate, in accordance with the hypothetical killing volume model for insect cells in bubble columns. Furthermore, the effect of the serum concentration on viable cell concentration and cell productivity has been investigated in a continuous culture. A serum component became growth limiting when the serum concentration was decreased from 2% to 1%. No effect of the serum concentration on specific cell productivity could be measured. Samples from this culture were also studied in the air-lift loop reactor to determine the effect of serum concentration on the shear sensitivity. The cells' shear sensitivity increased with decreasing serum concentration. The protective effect of serum was found to be physical as well as physiological.  相似文献   

9.
This paper descibes a new way to measure the headspace, and hence broth volume, of a closed reactor producing gas, or into which some gas can be introduced. The measuring element is an inverted siphon through which reactor gas flows in discrete volumes or boli. Experiments have shown that the gas boli volumes are directly proportional to the headspace volume of the reactor and theoretical considerations confirm this observation.  相似文献   

10.
The local properties of the dispersed gas phase (gasholdup, bubble diamater, and bubble velocity) were measured and evaluated at different positions in the riser and downcomer of a pilot plant reactor and, for comparison, in a laboratory reactor. These were described in Parts I and II of this series of articles during yeast cultivation and with model media. In the riser of the pilot plant reactor, the local gas holdup and bubble velocities varied only slightly in axial direction. The gas holdup increased considerably, while the bubble velocity increased only slightly with aeration rate. The bubble size diminished with increasing distance from the aerator in the riser, since the primary bubble size was larger than the equilibrium bubble size. In the downcomer, the mean bubble size was smaller than in the riser. The mean bubble size varied only slightly, the bubble velocity was accelerated, and the gas holdup decreased from top to bottom in the downcomer. In pilot plant at constant aeration rate, the properties of the dispersed phase were nearly constant during the batch cultivation, i.e., they depended only slightly on the cell concentration. In the laboratory reactor, the mean bubble sizes were much larger than in the pilot plant reactor. In the laboratory reactor, the bubble velocities in the riser and downcomer increased, and the mean gas holdup and bubble diameter in the downcomer remained constant as the aeration rate was increased.  相似文献   

11.
12.
Sulphate and phosphate transport in the renal proximal tubule   总被引:2,自引:0,他引:2  
Experiments performed on microperfused proximal tubules and brush-border membrane vesicles revealed that inorganic phosphate is actively reabsorbed in the proximal tubule involving a 2 Na+-HPO2-4 or H2PO-4 co-transport step in the brush-border membrane and a sodium-independent exit step in the basolateral cell membrane. Na+-phosphate co-transport is competitively inhibited by arsenate. The transtubular transport regulation is mirrored by the brush-border transport step: it is inhibited by parathyroid hormone intracellularly mediated by cyclic AMP. Transepithelial inorganic phosphate (Pi) transport and Na+-dependent Pi transport across the brush-border membrane correlates inversely with the Pi content of the diet. Intraluminal acidification as well as intracellular alkalinization led to a reduction of transepithelial Pi transport. Data from brush-border membrane vesicles indicate that high luminal H+ concentrations reduce the affinity for Na+ of the Na+-phosphate co-transport system, and that this mechanism might be responsible for the pH dependence of phosphate reabsorption. Contraluminal influx of Pi from the interstitium into the cell could be partly inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS). It is not, however, changed when dicarboxylic acids are present or when the pH of the perfusate is reduced to pH 6. Sulphate is actively reabsorbed, involving electroneutral 2 Na+-SO2-4 co-transport through the brush-border membrane. This transport step is inhibited by thiosulphate and molybdate, but not by phosphate or tungstate. The transtubular active sulphate reabsorption is not pH dependent, but is diminished by the absence of bicarbonate. The transport of sulphate through the contraluminal cell side is inhibited by DIDS and diminished when the capillary perfusate contains no bicarbonate or chloride. The latter data indicate the presence of an anion exchange system in the contraluminal cell membrane like that in the erythrocyte membrane.  相似文献   

13.
The enormous versatility of plants has continued to provide the impetus for the development of plant tissue culture as a commercial production strategy for secondary metabolites. Unfortunately problems with slow growth rates and low products yields, which are generally non-growth associated and intracellular, have made plant cell culture-based processes, with a few exceptions, economically unrealistic. Recent developments in reactor design and control, elicitor technology, molecular biology, and consumer demand for natural products, are fuelling a renaissance in plant cell culture as a production strategy. In this review we address the engineering consequences of the unique characteristics of plant cells on the scale-up of plant cell culture.Abbreviations a gas-liquid interfacial area per volume - C dissolved oxygen concentration - C* liquid phase oxygen concentration in equilibrium with the partial pressure of oxygen in the bulk gas phase - KL overall mass transfer coefficient - kL liquid film mass transfer coefficient - mO2 cell maintenance coefficient for oxygen - OTR oxygen transfer rate - OUR oxygen uptake rate - pO2 partial pressure of oxygen - STR stirred-tank reactor - v.v.m. volume of gas fed per unit operating volume of reactor per minute - X biomass concentration - Yx/O2 biomass yield coefficient for oxygen - specific growth rate  相似文献   

14.
To determine the role played by the kidney in the metabolism and excretion of plasma adenosine 3′,5′-monophosphate (cAMP) we have studied the fate of this nucleotide (0.01–1.0mM) when it is perfused in a recirculating medium through the isolated rat kidney. cAMP was rapidly taken up and degraded by the kidney, the rate of its disappearance from the perfusate being at least twice its rate of excretion in the urine. Nevertheless, the cAMP excretory rate exceeded the filtration rate by 1.5 to 2 fold, and thus net secretion (transtubular transport) was demonstrated. The rates of filtration, perfusate clearance, and degradation of cAMP were proportional to its perfusate concentration. Methyl xanthines (caffeine and aminophylline) at 10mM, and probenecid at 0.9mM abolished transtubular transport of cAMP and greatly retarded disappearance of the nucleotide from the perfusate. It is concluded that there is a ready penetration of cAMP into renal cells from peritubular capillaries. Depending on the perfusate concentration of cAMP, transtubular transport may or may not exceed the simultaneous intra-renal breakdown of the compound. A low rate of cAMP excretion in the urine may accompany a considerably higher rate of cAMP clearance from the perfusate by the kidney.  相似文献   

15.
Hydrogen is a central metabolite in the methanization process. In this study the partial pressure of hydrogen in the gas phase of laboratory manure digesters was monitored over extensive periods of time and found to vary between 50 and 100.10(-6) atm. By sparging the gas phase of the digester through an auxiliary reactor, hydrogenotrophic methanogens were allowed to develop at the expense of hydrogen and carbon dioxide present in the biogas, independently of the liquid or cell residence time in the main reactor. By scrubbing ca. 100 volumes of biogas per liter reactor per day through an auxiliary reactor, hydrogen concentration could be decreased maximally 25%. This resulted in an increase in the gas production rate of the main digester of ca. 10% and a concomitant improved removal of volatile fatty acids from the mixed liquor. The results obtained indicate that considerable stripping of hydrogen from the digester could be achieved at acceptable energy expenditure. However, the microbial removal of the hydrogen at these low concentrations is extremely slow and limits the applicability of this approach.  相似文献   

16.
The influence of mixing and phase hold-ups on gas-producing fluidized-bed reactors was investigated and compared with an ideal flow reactor performance (CSTR). The liquid flow in the anaerobic fluidized bed reactor could be described by the classical axially dispersed plug flow model according to measurements of residence time distribution. Gas effervescence in the fluidized bed was responsible for bed contraction and for important gas hold-up, which reduced the contact time between the liquid and the bioparticles. These results were used to support the modeling of large-scale fluidized-bed reactors. The biological kinetics were determined on a 180-L reactor treating wine distillery wastewater where the overall total organic carbon uptake velocity could be described by a Monod model. The outlet concentration and the concentration profile in the reactor appeared to be greatly influenced by hydrodynamic limitations. The biogas effervescence modifies the mixing characteristics and the phase hold-ups. Bed contraction and gas hold-up data are reported and correlated with liquid and gas velocities. It is shown that the reactor performance can be affected by 10% to 15%, depending on the mode of operation and recycle ratio used. At high organic loading rates, reactor performance is particularly sensitive to gas effervescence effects. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

17.
J. Varley  J. Birch 《Cytotechnology》1999,29(3):177-205
The scale of operation of freely suspended animal cell culture has been increasing and in order to meet the demand for recombinant therapeutic products, this increase is likely to continue. The most common reactor types used are stirred tanks. Air lift fermenters are also used, albeit less commonly. No specific guidelines have been published for large scale (≥10 000 L) animal cell culture and reactor designs are often based on those used for microbial systems. However, due to the large difference in energy inputs used for microbial and animal cell systems such designs may be far from optimal. In this review the importance of achieving a balance between mixing, mass transfer and shear effects is emphasised. The implications that meeting this balance has on design of vessels and operation, particularly in terms of strategies to ensure adequate mixing to achieve homogeneity in pH and dissolved gas concentrations are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The clearance and metabolism of N6-substituted (N6-dimethyl-), C8-substituted (8-bromo-, 8-p-chlorophenylthio- (PCPT-)), and exocyclic oxygen substituted phosphorothioate diastereomers (cAMPS(Sp)) and cAMPS (Rp)) of adenosine 3':5'-monophosphate (cyclic AMP, cAMP) has been studied in an isolated perfused rat kidney. The N6- and C8-substituted analogs of cyclic AMP (10-100 microM) were not cleared as rapidly as exogenous cyclic AMP and were metabolized: N6- and C8-substituted analogs of adenosine accumulated in perfusate and urine. All analogs exhibited net transtubular secretion, i.e. their urinary excretion rate greater than glomerular filtration rate. Probenecid (0.9 mM) included in the perfusate abolished transtubular secretion and inhibited the metabolism of PCPT-cyclic AMP, suggesting that cyclic AMP analogs, like cyclic AMP itself, penetrate the renal cell at the peritubular membrane by an organic acid transport system. The phosphorothioate diastereomers of cyclic AMP: cAMPS(Sp) and cAMPS(Rp) were cleared as rapidly from the perfusate as cyclic AMP, were extensively secreted (urinary excretion/ glomerular filtration greater than or equal to 10) and exhibited no metabolism. The latter analog would seem most suitable as an intracellular agonist for cyclic AMP-mediated phenomena in the rat kidney.  相似文献   

19.
A chemostat with cell feedback is analyzed for three kinds of limiting nutrient: a substrate dissolved in the inflow, a gas bubbled directly into the reactor, and light. The effects of recycle are distinct in each case, because the relationships between hydraulic detention time and nutrient inflow are different for each type of nutrient, Effluent recycle, in which the recycle stream is more dilute than the reactor, is discussed in terms of cell detention time and nutrient limitation. Results from chemostat cultures of the blue-green alga, Spirulina geitleri, demonsrtat cell feedback under light limitation. Maximum Productivity is fixed by the incident light intensity. At a particular dilution rate recycling increases or decreases productivity by taking cell density closer or further from the optimum density. Cell recycle with heterogeneous populations can change the outcome of species competition. Selective recycling of one species can reverse this outcome or stabilize coexistence by its selective effect on cell detention time. Experimental results from light-limited mixed cultures of S. geitleri and a Chlorella sp. verify this.  相似文献   

20.
Although the importance of animal cell culture for the industrial (large scale) production of pharmaceutical products is continuously increasing, the sensibility of the cells towards their cultivation environment is still a challenging issue. In comparison to microbial cultures, cell cultures which are not protected by a cell wall are much more sensitive to shear stress and foam formation. Reactor design as well as the selection of ‘robust’ cell lines is particularly important for these circumstances. Nevertheless, even ‘sensitive’ cell lines are selected for certain pharmaceutical processes due to various reasons. These sensitive cell lines have even higher requirements regarding their cultivation environment. Important characteristics for the corresponding reactor design are a high (volumetric) gas mass transfer coefficient, low volumetric power input, low shear stress, low susceptibility to bio-fouling, the ability to cultivate sticky cells and sufficient mixing properties. Membrane aeration has been a long-known possibility to meet some of these requirements, but has not often been applied in recent years. The reasons lie mainly in low gas mass transfer rates, a limited installable volume-specific membrane surface area, restrictions in scalability and problems with membrane fouling. The dynamic membrane aeration bioreactor aeration is a simple concept for bubble-free oxygen supply of such sensitive cultures. It overcomes limitations and draw-backs of previous systems. Consisting of an oscillating, centrally arranged rotor (stirrer) that is wrapped with silicone membrane tubing, it enables doubling the gas mass transfer at the same shear stress in the investigated cultivation scales of 12, 20, 100, and 200 L. Continuous cultivation at these scales allows the same product output as fed-batch cultivation does at tremendously larger reactor volumes. Apart from introducing this novel technology, the presentation comprises selected cultivation results obtained for blood coagulation factor VIII in continuous mode and a therapeutic monoclonal antibody in fed-batch mode in comparison to reference trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号