首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied enzymatic adipyl-7-ADCA hydrolysis as a new process for the production of 7-aminodeacetoxycephalosporanic acid (7-ADCA), one of the building blocks for cephalosporin antibiotics like cephalexin and cefadroxil. Adipyl-7-ADCA hydrolysis carried out with immobilised glutaryl acylase was considerably enhanced by addition of phenylglycine amide, the side-chain donor used for cephalexin synthesis; unlike reactions carried out with free enzyme. The rate enhancing effect was not specifically related to phenylglycine amide; we found a linear relationship between the reaction rate and the buffering capacity of the added substance. These observations can be explained by a pH-gradient in the immobilised enzyme, the pH inside the particle being lower (corresponding to low enzyme activity) than outside. It was concluded that the buffer reduced the pH-gradient inside the biocatalyst, and therewith, caused the reaction rate enhancing effects. Further, chloride ions decreased the reaction rate strongly, while sodium, magnesium, sulphate, and potassium did not influence the reaction rate much. For an actual process, it is important to use a buffer that is appropriate for the reaction-pH. In that way the amount of enzyme required in a process can be reduced considerably, in our case a factor of three was found.  相似文献   

2.
We studied enzymatic adipyl-7-ADCA hydrolysis as a new process for the production of 7-aminodeacetoxycephalosporanic acid (7-ADCA), one of the building blocks for cephalosporin antibiotics like cephalexin and cefadroxil. Adipyl-7-ADCA hydrolysis carried out with immobilised glutaryl acylase was considerably enhanced by addition of phenylglycine amide, the side-chain donor used for cephalexin synthesis; unlike reactions carried out with free enzyme. The rate enhancing effect was not specifically related to phenylglycine amide; we found a linear relationship between the reaction rate and the buffering capacity of the added substance. These observations can be explained by a pH-gradient in the immobilised enzyme, the pH inside the particle being lower (corresponding to low enzyme activity) than outside. It was concluded that the buffer reduced the pH-gradient inside the biocatalyst, and therewith, caused the reaction rate enhancing effects. Further, chloride ions decreased the reaction rate strongly, while sodium, magnesium, sulphate, and potassium did not influence the reaction rate much. For an actual process, it is important to use a buffer that is appropriate for the reaction-pH. In that way the amount of enzyme required in a process can be reduced considerably, in our case a factor of three was found.  相似文献   

3.
During enzymatic kinetic synthesis of cephalexin, an activated phenylglycine derivative (phenylglycine amide or phenylglycine methyl ester) is coupled to the nucleus 7-aminodeacetoxycephalosporanic acid (7-ADCA). Simultaneously, hydrolysis of phenylglycine amide and hydrolysis of cephalexin take place. This results in a temporary high-product concentration that is subsequently consumed by the enzyme. To optimize productivity, it is necessary to develop models that predict the course of the reaction. Such models are known from literature but these are only applicable for a limited range of experimental conditions. In this article a model is presented that is valid for a wide range of substrate concentrations (0-490 mM for phenylglycine amide and 0-300 mM for 7-ADCA) and temperatures (273-298 K). The model was built in a systematic way with parameters that were, for an important part, calculated from independent experiments. With the constants used in the model not only the synthesis reaction but also phenylglycine amide hydrolysis and cephalexin hydrolysis could be described accurately. In contrast to the models described in literature, only a limited number (five) of constants was required to describe the reaction at a certain temperature. For the temperature dependency of the constants, the Arrhenius equation was applied, with the constants at 293 K as references. Again, independent experiments were used, which resulted in a model with high statistic reliability for the entire temperature range. Low temperatures were found beneficial for the process because more cephalexin and less phenylglycine is formed. The model was used to optimize the reaction conditions using criteria such as the yield on 7-ADCA or on activated phenylglycine. Depending on the weight of the criteria, either a high initial phenylglycine amide concentration (yield on 7-ADCA) or a high initial 7-ADCA concentration (yield on phenylglycine amide) is beneficial.  相似文献   

4.
In this study the influence of diffusion limitation on enzymatic kinetically controlled cephalexin synthesis from phenylglycine amide and 7-aminodeacetoxycephalosporinic acid (7-ADCA) was investigated systematically. It was found that if diffusion limitation occurred, both the synthesis/hydrolysis ratio (S/H ratio) and the yield decreased, resulting in lower product and higher by-product concentrations. The effect of pH, enzyme loading, and temperature was investigated, their influence on the course of the reaction was evaluated, and eventually diffusion limitation was minimised. It was found that at pH >or=7 the effect of diffusion limitation was eminent; the difference in S/H ratio and yield between free and immobilised enzyme was considerable. At lower pH, the influence of diffusion limitation was minimal. At low temperature, high yields and S/H ratios were found for all enzymes tested because the hydrolysis reactions were suppressed and the synthesis reaction was hardly influenced by temperature. The enzyme loading influenced the S/H ratio and yield, as expected for diffusion-limited particles. For Assemblase 3750 (the number refers to the degree of enzyme loading), it was proven that both cephalexin synthesis and hydrolysis were diffusion limited. For Assemblase 7500, which carries double the enzyme load of Assemblase 3750, these reactions were also proven to be diffusion limited, together with the binding-step of the substrate phenylglycine amide to the enzyme. For an actual process, the effects of diffusion limitation should preferably be minimised. This can be achieved at low temperature, low pH, and high substrate concentrations. An optimum in S/H ratio and yield was found at pH 7.5 and low temperature, where a relatively low reaction pH can be combined with a relatively high solubility of 7-ADCA. When comparing the different enzymes at these conditions, the free enzyme gave slightly better results than both immobilised biocatalysts, but the effect of diffusion limitation was minimal.  相似文献   

5.
One of the building blocks of cephalosporin antibiotics is 7-amino-deacetoxycephalosporanic acid (7-ADCA). It is currently produced from penicillin G using an elaborate chemical ring-expansion step followed by an enzyme-catalyzed hydrolysis. However, 7-ADCA-like components can also be produced by direct fermentation. This is of scientific and economic interest because the elaborate ring-expansion step is performed within the microorganism. In this article, the hydrolysis of the fermentation product adipyl-7-ADCA is studied. Adipyl-7-ADCA can be hydrolyzed in an equilibrium reaction to adipic acid and 7-ADCA using glutaryl-acylase. The equilibrium reaction yield is described as a function of pH, temperature, and initial adipyl-7-ADCA concentration. Reaction rate equations were derived for adipyl-7-ADCA-hydrolysis using three (pH-independent) reaction rate constants and the apparent equilibrium constant. The reaction rate constants were calculated from experimental data. Based on the equilibrium position and reaction rate equations the hydrolysis reaction was optimized and standard reactor configurations were evaluated. It was found that equilibrium yields are high at high pH, high temperature and low-initial adipyl-7-ADCA concentration. The course of the reaction could be described well as a function of pH (7-9), temperature (20-40 degrees C) and concentration using the reaction rate equations. It was shown that a series of CSTR's is the best alternative for the process.  相似文献   

6.
Yields of kinetically controlled synthesis of antibiotics catalyzed by penicillin G acylase from Escherichia coli (PGA) have been greatly increased by continuous extraction of water soluble products (cephalexin) away from the surroundings of the enzyme. In this way its very rapid enzymatic hydrolysis has been avoided. Enzymes covalently immobilized inside porous supports acting in aqueous two-phase systems have been used to achieve such improvements of synthetic yields. Before the reaction is started, the porous structure of the biocatalyst can be washed and filled with one selected phase. In this way, when the pre-equilibrated biocatalyst is mixed with the second phase (where the reaction product will be extracted), the immobilized enzyme remains in the first selected phase in spite of its possibly different natural trend. Partition coefficients (K) of cephalexin in very different aqueous two-phase systems were firstly evaluated. High K values were obtained under drastic conditions. The best K value for cephalexin (23) was found in 100% PEG 600-3 M ammonium sulfate where cephalexin was extracted to the PEG phase. Pre-incubation of immobilized PGA derivatives in ammonium sulfate and further suspension with 100% PEG 600 allowed us to obtain a 90% synthetic yield of cephalexin from 150 mM phenylglycine methyl ester and 100 mM 7-amino desacetoxicephalosporanic acid (7-ADCA). In this reaction system, the immobilized enzyme remains in the ammonium sulfate phase and hydrolysis of the antibiotic becomes suppressed because of its continuous extraction to the PEG phase. On the contrary, synthetic yields of a similar process carried out in monophasic systems were much lower (55%) because of a rapid enzymatic hydrolysis of cephalexin.  相似文献   

7.
Process design for enzymatic adipyl-7-ADCA hydrolysis   总被引:1,自引:0,他引:1  
Adipyl-7-ADCA is a new source for 7-aminodeacetoxycephalosporanic acid (7-ADCA), one of the substrates for antibiotics synthesis. In this paper, a novel process for enzymatic 7-ADCA production is presented. The process consists of a reactor, a crystallization step, a membrane separation step, and various recycle loops. The reactor can either be operated batch-wise or continuously; with both types of processing high yields can be obtained. For batch reactors chemical degradation of 7-ADCA can be neglected. For continuous reactors, chemical stability of 7-ADCA is a factor to be taken into account. However, it was shown that the reaction conditions and reactor configuration could be chosen in such a way that also for continuous operation chemical degradation is not important. Downstream processing consisted of crystallization of 7-ADCA at low pH, followed by a nanofiltration step with which, at low pH, adipic acid could be separated from adipyl-7-ADCA and 7-ADCA. The separation mechanism of the nanofilter is based on size exclusion combined with charge effects. Application of this filtration step opens possibilities for recycling components to various stages of the process. Adipic acid can be recycled to the fermentation stage of the process while both adipyl-7-ADCA and 7-ADCA can be returned to the hydrolysis reactor. In this way, losses of substrates and product can be minimized.  相似文献   

8.
In enzymatic synthesis of cephalexin from D-alpha-phenylglycine methyl ester (PGM) and 7-amino-3-deacetoxy-cephalosporanic acid (7-ADCA) using alpha-acylamino-beta-lactam acylhydrolase from Xanthomonas citri, it was found that this enzyme catalyzes all three reactions including PGM hydrolysis, cephalexin synthesis, and cephalexin hydrolysis. Based on our experimental results, a mechanistic kinetic model for cephalexin synthesizing enzyme system having acyl-enzyme intermediate was proposed. From this kinetic model, the reaction rate equations for three reactions were derived, and the kinetic parameters were evaluated. A good agreement between the simulation results and the experimental results was found.  相似文献   

9.
An enzyme which catalyzes the synthesis of cephalexin fromD -α phenylglycinemethylester (PGM) and 7-amino-3-desacetoxy-cephalosporanic acid (7-ADCA) was prepared from Xanthomonas citri (IFO 3835) and partially purified 30-fold by ammonium sulfate fractionation, DEAE-cellulose, and Sepharose-4B column chromatography. The Km values for 7-ADCA, PGM, and cephalexin were determined as 11.1, 2.1, and 1.61 mM, respectively. The enzymatic cephalexin synthesis follows the reversible bi-uni reaction kinetics. The equilibrium constant is influenced by the initial mole ratios of 7-ADCA and PGM. The cephalexin hydrolysis is catalyzed by the same cephalexin synthesizing enzyme, but methanol does not participate in the hydrolytic reaction. The amount of enzyme in the reaction mixture affects the initial rate but does not influence the equilibrium product concentration. This cephalexin-synthesizing enzyme was immobilized onto several adsorbents. Among these, Kaolin and bentonite showed a higher retention of enzyme activity and stability for reuse. The immobilized-enzyme reaction kinetics were investigated and compared with those of the soluble enzyme. A rate expression for the enzymatic synthesis of cephalexin was derived. The results of computer simulation showed good agreement with the experimental results.  相似文献   

10.
A cascade of two enzymatic transformations is employed in a one-pot synthesis of cephalexin. The nitrile hydratase (from R. rhodochrous MAWE)-catalyzed hydration of D-phenylglycine nitrile to the corresponding amide was combined with the penicillin G acylase (penicillin amidohydrolase, E.C. 3.5.1.11)-catalyzed acylation of 7-ADCA with the in situ-formed amide to afford a two-step, one-pot synthesis of cephalexin. D-Phenylglycine nitrile appeared to have a remarkable selective inhibitory effect on the penicillin G acylase, resulting in a threefold increase in the synthesis/hydrolysis (S/H) ratio. 1,5-Dihydroxynaphthalene, when added to the reaction mixture, cocrystallized with cephalexin. The resulting low cephalexin concentration prevented its chemical as well as enzymatic degradation; cephalexin was obtained at 79% yield with an S/H ratio of 7.7.  相似文献   

11.
Advantages of performing penicillin acylase-catalyzed synthesis of new penicillins and cephalosporins by enzymatic acyl transfer to the beta-lactam antibiotic nuclei in the supersaturated solutions of substrates have been demonstrated. It has been shown that the effective nucleophile reactivity of 6-aminopenicillanic (6-APA) and 7-aminodesacetoxycephalosporanic (7-ADCA) acids in their supersaturated solutions continue to grow proportionally to the nucleophile concentration. As a result, synthesis/hydrolysis ratio in the enzymatic synthesis can be significantly (up to three times) increased due to the nucleophile supersaturation. In the antibiotic nuclei conversion to the target antibiotic the remarkable improvement (up to 14%) has been gained. Methods of obtaining relatively stable supersaturated solutions of 6-APA, 7-ADCA, and D-p-hydroxyphenylglycine amide (D-HPGA) have been developed and syntheses of ampicillin, amoxicillin, and cephalexin starting from the supersaturated homogeneous solutions of substrates were performed. Higher synthetic efficiency and increased productivity of these reactions compared to the heterogeneous "aqueous solution-precipitate" systems were observed. The suggested approach seems to be an effective solution for the aqueous synthesis of the most widely requested beta-lactam antibiotics (i.e., amoxicillin, cephalexin, cephadroxil, cephaclor, etc.).  相似文献   

12.
Enzymatic synthesis of cefaclor by penicillin acylase (PA) was carried out under kinetic control with in situ product removal (ISPR). We present a continuous acyl donor feeding strategy for enzymatic reactions. Using this strategy, the conversion of the antibiotic nucleus was improved from 65 to 91%, and the hydrolysis of phenylglycine methyl ester (PGME) was decreased. Side product (phenylglycine) production was less than half of that in the control batch. The ratio of synthesis to hydrolysis (S/H) in the process was kept stable for longer and at a higher level than in the control. This is a practical method for enzymatic synthesis of cefaclor.  相似文献   

13.
In an enzymatic synthesis of cephalexin (CEX) using an acylase from Xanthomonas citri, the effect of polyethylene glycol (PEG) on the synthetic reaction of 7-amino-3-deacetoxycephalosporanic acid (7-ADCA) and D-alpha-phenyl-glycine methyl ester (PGM) to CEX was investigated. The addition of PEG (MW 300-20,000) increased the yield significantly. This yield enhancement effect tended to increase with the increasing molecular weight of PEG. Addition of PEG to the reaction system did not affect both the CEX and PGM hydrolytic reactions. The PEG added to the reaction medium used in these experiments did not depress the water activity significantly, and the product yield improvement could not be explained by the activity alone. The PEG stabilized the enzyme activity to some extent, but this stabilizing effect was only partially attributable to the yield enhancement of CEX. The enhancing effect of PEG on the synthetic yield increased with the increasing PEG molecular weight or the length of the poly(oxy-1,2-ethanediyl) chain, which increases the hydrophobicity of PEG. This finding consequently has led to the conclusion that the PEG structure renders the affinity between enzyme and 7-ADCA, which is a hydrophobic substrate. The microenvironmental hydrophobicity of PEG and its interaction with the hydrophobic substrate was found to be the main reason for the improvement of the CEX yield. In fact, the Michaelis-Menten kinetic constant for 7-ADCA, K(7-ADCA) in the presence of PEG was smaller than that in the control system (without PEG addition). (c) 1993 John Wiley & Sons, Inc.  相似文献   

14.
Enzymatic synthesis of cefaclor by penicillin acylase (PA) was carried out under kinetic control with in situ product removal (ISPR). We present a continuous acyl donor feeding strategy for enzymatic reactions. Using this strategy, the conversion of the antibiotic nucleus was improved from 65 to 91%, and the hydrolysis of phenylglycine methyl ester (PGME) was decreased. Side product (phenylglycine) production was less than half of that in the control batch. The ratio of synthesis to hydrolysis (S/H) in the process was kept stable for longer and at a higher level than in the control. This is a practical method for enzymatic synthesis of cefaclor.  相似文献   

15.
From ten genera and 146 bacterial strains, 22 strains producing alpha-amino acid ester hydrolase were selected. Among them, AS 1.586 and 41-2 were the best. The optimal conditions for synthesis of cephalexin by pseudomonas aeruginosa 1.204 were investigated. The optimal pH and temperature for enzymatic synthesis reaction was pH 6.8 and 25 degrees C, respectively. By using 1% 7-ADCA, 3% PGME and 4% biomass, about 70% of 7-ADCA was converted to cephalexin under the mentioned conditions.  相似文献   

16.
Using directed evolution, we have selected an adipyl acylase enzyme that can be used for a one-step bioconversion of adipyl-7-aminodesacetoxycephalosporanic acid (adipyl-7-ADCA) to 7-ADCA, an important compound for the synthesis of semisynthetic cephalosporins. The starting point for the directed evolution was the glutaryl acylase from Pseudomonas SY-77. The gene fragment encoding the beta-subunit was divided into five overlapping parts that were mutagenized separately using error-prone PCR. Mutants were selected in a leucine-deficient host using adipyl-leucine as the sole leucine source. In total, 24 out of 41 plate-selected mutants were found to have a significantly improved ratio of adipyl-7-ADCA versus glutaryl-7-ACA hydrolysis. Several mutations around the substrate-binding site were isolated, especially in two hot spot positions: residues Phe-375 and Asn-266. Five mutants were further characterized by determination of their Michaelis-Menten parameters. Strikingly, mutant SY-77(N266H) shows a nearly 10-fold improved catalytic efficiency (k(cat)/K(m)) on adipyl-7-ADCA, resulting from a 50% increase in k(cat) and a 6-fold decrease in K(m), without decreasing the catalytic efficiency on glutaryl-7-ACA. In contrast, the improved adipyl/glutaryl activity ratio of mutant SY-77(F375L) mainly is a consequence of a decreased catalytic efficiency toward glutaryl-7-ACA. These results are discussed in the light of a structural model of SY-77 glutaryl acylase.  相似文献   

17.
Cephalexin synthesizing enzyme (CSE) of Gluconobacter oxydans ATCC 9324 was purified up to about 940-fold at a yield of 12%. CSE biosynthesis in G. oxydans was found inducible in the presence of D-phenylglycine but not its substrate phenylglycine methyl ester. The purified enzyme was shown homogeneous on SDS-PAGE and exhibited a specific activity of 440 U per mg protein. The apparent molecular mass of the native enzyme was estimated to be 70 kDa over a Superdex 200 gel filtration column and 68 kDa on SDS-PAGE, indicating that the native enzyme is a monomer. Its isoelectric focusing point is 7.1, indicating a neutral character. The enzyme had maximal activity around pH 6.0 to 6.5, and this activity was thermally stable up to 40 degrees C. Synthesis of cephalexin from D-phenylglycine methyl ester and 7-amino-3-deacetoxycephalosporanic acid (7-ADCA) by the purified CSE was demonstrated. Its L-enantiomer was not accepted by CSE. Apart from cephalexin, ampicillin was also synthesized by the purified CSE from its acyl precursors and 6-aminopenicillanic acid (6-APA). Substrate specificity studies indicated that the enzyme required a free alpha amino group and an activated carboxyl group as a methyl ester of D-form phenylglycine. Interestingly, the purified enzyme did not catalyze hydrolysis of its products, e.g., cephalexin, cephradine, and ampicillin, in contrast to enzymes from other strains of Pseudomonadaceae.  相似文献   

18.
Otten LG  Sio CF  Reis CR  Koch G  Cool RH  Quax WJ 《The FEBS journal》2007,274(21):5600-5610
There is strong interest in creating an enzyme that can deacylate natural cephalosporins such as cephalosporin C in order to efficiently acquire the starting compound for the industrial production of semisynthetic cephalosporin antibiotics. In this study, the active site of the glutaryl acylase from Pseudomonas SY-77 was randomized rationally. Several mutations that were found in previous studies to enhance the activity of the enzyme towards adipyl-7-aminodesacetoxycephalosporanic acid (ADCA) and cephalosporin C have now been combined, and libraries have been made in which random amino acid substitutions at these positions are joined. The mutants were expressed in a leucine-deficient Escherichia coli strain and subjected to growth selection with adipyl-leucine or amino-adipyl-leucine as sole leucine source. The mutants growing on these media were selected and purified, and their hydrolysis activities towards adipyl-7-ADCA and cephalosporin C were tested. Several mutants with highly improved activities towards the desired substrates were found in these rationally randomized libraries. The best mutant was selected from a library of totally randomized residues: 178, 266, and 375. This mutant comprises two mutations, Y178F + F375H, which synergistically improve the catalytic efficiency towards adipyl-7-ADCA 36-fold. The activity of this mutant towards adipyl-7-ADCA is 50% of the activity of the wild-type enzyme towards the preferred substrate glutaryl-7-aminocephalosporanic acid, and therefore the characteristics of this mutant approach those needed for industrial application.  相似文献   

19.
Residue Phe375 of cephalosporin acylase has been identified as one of the residues that is involved in substrate specificity. A complete mutational analysis was performed by substituting Phe375 with the 19 other amino acids and characterising all purified mutant enzymes. Several mutations cause a substrate specificity shift from the preferred substrate of the enzyme, glutaryl-7-ACA, towards the desired substrate, adipyl-7-ADCA. The catalytic efficiency ( [Formula: see text] (cat)/ [Formula: see text] (m)) of mutant SY-77(F375C) towards adipyl-7-ADCA was increased 6-fold with respect to the wild-type enzyme, due to a strong decrease of [Formula: see text] (m). The [Formula: see text] (cat) of mutant SY-77(F375H) towards adipyl-7-ADCA was increased 2.4-fold. The mutational effects point at two possible mechanisms by which residue 375 accommodates the long side chain of adipyl-7-ADCA, either by a widening of a hydrophobic ring-like structure that positions the aliphatic part of the side chain of the substrate, or by hydrogen bonding to the carboxylate head of the side chain.  相似文献   

20.
Yang L  Wei DZ 《Biotechnology letters》2003,25(14):1195-1198
In the enzymatic synthesis of cefaclor, 3-chloro-7-d-(2-phenylglycinamide)-3-cephem-4-carboxylic acid, from phenylglycine methyl ester and 7-aminodesacetoxymethyl-3-chlorocephalosporanic acid, the in situ product could influence both the overall conversion and hydrolysis of the ester. Optimization of the parameters, such as pH 6.2, 5 °C and substrate molar ratio of 2:1, made in situ product removal improve the overall conversion from 64% to 85% (mol/mol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号