首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
We investigated 2'-O,4'-C-ethylene-bridged nucleic acids (ENA) antisense oligonucleotides (AONs) for vascular endothelial growth factor (VEGF) in human lung carcinoma A549 cells. An ENA/DNA gapmer AON with RNase H-mediated activity was virtually stable in rat plasma and exhibited more than 90% inhibition of VEGF mRNA production. Moreover, 22 genes that are likely to bind to the AON were found in the GenBank database by BLAST and CLUSTAL W searches. Three of these genes were actually inhibited by the ENA AON. In shorter ENA AONs with fewer matched sequences of these genes, inhibitiory activities were decreased and off-target effects were improved. These results indicate that ENA AONs act in a sequence-specific manner and could be used as effective antisense drugs.  相似文献   

2.

We investigated 2 ′-O,4 ′-C-ethylene-bridged nucleic acids (ENA) antisense oligonucleotides (AONs) for vascular endothelial growth factor (VEGF) in human lung carcinoma A549 cells. An ENA/DNA gapmer AON with RNase H-mediated activity was virtually stable in rat plasma and exhibited more than 90% inhibition of VEGF mRNA production. Moreover, 22 genes that are likely to bind to the AON were found in the GenBank database by BLAST and CLUSTAL W searches. Three of these genes were actually inhibited by the ENA AON. In shorter ENA AONs with fewer matched sequences of these genes, inhibitiory activities were decreased and off-target effects were improved. These results indicate that ENA AONs act in a sequence-specific manner and could be used as effective antisense drugs.  相似文献   

3.
4.
The RNase H cleavage potential of the RNA strand basepaired with the complementary antisense oligonucleotides (AONs) containing North-East conformationally constrained 1',2'-methylene-bridged (azetidine-T and oxetane-T) nucleosides, North-constrained 2',4'-ethylene-bridged (aza-ENA-T) nucleoside, and 2'-alkoxy modified nucleosides (2'-O-Me-T and 2'-O-MOE-T modifications) have been evaluated and compared under identical conditions. When compared to the native AON, the aza-ENA-T modified AON/RNA hybrid duplexes showed an increase of melting temperature (DeltaTm = 2.5-4 degrees C per modification), depending on the positions of the modified residues. The azetidine-T modified AONs showed a drop of 4-5.5 degrees C per modification with respect to the native AON/RNA hybrid, whereas the isosequential oxetane-T modified counterpart, showed a drop of approximately 5-6 degrees C per modification. The 2'-O-Me-T and 2'-O-MOE-T modifications, on the other hand, showed an increased of Tm by 0.5 C per modification in their AON/RNA hybrids. All of the partially modified AON/RNA hybrid duplexes were found to be good substrates for the RNase H mediated cleavage. The Km and Vmax values obtained from the RNA concentration-dependent kinetics of RNase H promoted cleavage reaction for all AON/RNA duplexes with identical modification site were compared with those of the reference native AON/RNA hybrid duplex. The catalytic activities (Kcat) of RNase H were found to be greater (approximately 1.4-2.6-fold) for all modified AON/RNA hybrids compared to those for the native AON/RNA duplex. However, the RNase H binding affinity (1/Km) showed a decrease (approximately 1.7-8.3-fold) for all modified AON/RNA hybrids. This resulted in less effective (approximately 1.1-3.2-fold) enzyme activity (Kcat/Km) for all modified AON/RNA duplexes with respect to the native counterpart. A stretch of five to seven nucleotides in the RNA strand (from the site of modifications in the complementary modified AON strand) was found to be resistant to RNase H digestion (giving a footprint) in the modified AON/RNA duplex. Thus, (i) the AON modification with azetidine-T created a resistant region of five to six nucleotides, (ii) modification with 2'-O-Me-T created a resistant stretch of six nucleotides, (iii) modification with aza-ENA-T created a resistant region of five to seven nucleotide residues, whereas (iv) modification with 2'-O-MOE-T created a resistant stretch of seven nucleotide residues. This shows the variable effect of the microstructure perturbation in the modified AON/RNA heteroduplex depending upon the chemical nature as well as the site of modifications in the AON strand. On the other hand, the enhanced blood serum as well as the 3'-exonuclease stability (using snake venom phosphodiesterase, SVPDE) showed the effect of the tight conformational constraint in the AON with aza-ENA-T modifications in that the 3'-exonuclease preferentially hydrolyzed the 3'-phosphodiester bond one nucleotide away (n + 1) from the modification site (n) compared to all other modified AONs, which were 3'-exonuclease cleaved at the 3'-phosphodiester of the modification site (n). The aza-ENA-T modification in the AONs made the 5'-residual oligonucleotides (including the n + 1 nucleotide) highly resistant in the blood serum (remaining after 48 h) compared to the native AON (fully degraded in 2 h). On the other hand, the 5'-residual oligonucleotides (including the n nucleotide) in azetidine-T, 2'-O-Me-T, and 2'-O-MOE-T modified AONs were more stable compared to that of the native counterpart but more easily degradable than that of aza-ENA-T containing AONs.  相似文献   

5.
When we placed an ENA residue into primers at the 3' end, or the n-1, n-2, or n-3 position, which included a single nucleotide polymorphism (SNP) site at the 3' end, only primers containing the ENA residue at the n-2 position were read by Taq DNA polymerase for amplification. The use of the ENA primers avoided the generation of undesired short products, which are thought to be derived from primer-dimers. A greater discrimination of the SNP site by these primers containing the ENA residue was observed compared with that of the corresponding unmodified DNA primers that are often used for allele-specific polymerase chain reaction (AS-PCR). This improvement is probably due to the difficulty of incorporating a nucleotide into the mismatched ENA primer by Taq DNA polymerase in the modified primer-template duplex. These results demonstrate that ENA primer-based AS-PCR would enable a rapid and reliable technique for SNP genotyping.  相似文献   

6.
7.
cDNAs that code for mouse organic anion transporting polypeptide 2 (oatp2) have been cloned. At least three forms of mouse oatp2 cDNAs containing the same coding sequence were isolated. The common coding sequence is for a protein of 670 amino acids with 12 putative transmembrane domains. The deduced amino acid sequence of the mouse oatp2 shares 89% identity with the reported rat oatp2. Cloning and analysis of mouse oatp2 gene indicates that these isoforms are alternatively spliced products from the same gene. Heterogeneity was observed in the 5'-untranslated region of the cDNAs. Two of the three isoforms lacked the noncoding exon 3 sequence. Northern-blot hybridization analysis using the exon 3-specific probes demonstrated that mouse oatp2 mRNA containing exon 3 sequence is expressed in heart and lung, whereas exon 1-, 2-, and 17-specific probes detected mRNA only in brain and liver. The mouse oatp2 gene consists of 17 exons, including three noncoding exons, and 16 introns. All of the introns are flanked by GT-AG splice sequences except for intron 10 that is flanked by GC-AG splice sequence.  相似文献   

8.
Although perturbation of organic anion transport protein (oatp) cell surface expression can result in drug toxicity, little is known regarding mechanisms regulating its subcellular distribution. Many members of the oatp family, including oatp1a1, have a COOH-terminal PDZ consensus binding motif that interacts with PDZK1, while serines upstream of this site (S634 and S635) can be phosphorylated. Using oatp1a1 as a prototypical member of the oatp family, we prepared plasmids in which these serines were mutated to glutamic acid [E634E635 (oatp1a1(EE)), phosphomimetic] or alanine [A634A635 (oatp1a1(AA)), nonphosphorylatable]. Distribution of oatp1a1(AA) and oatp1a1(EE) was largely intracellular in transfected human embryonic kidney (HEK) 293T cells. Cotransfection with a plasmid encoding PDZK1 revealed that oatp1a1(AA) was now expressed largely on the cell surface, while oatp1a1(EE) remained intracellular. To quantify these changes, studies were performed in HuH7 cells stably transfected with these oatp1a1 plasmids. These cells endogenously express PDZK1. Surface biotinylation at 4°C followed by shift to 37°C showed that oatp1a1(EE) internalizes quickly compared with oatp1a1(AA). To examine a physiological role for phosphorylation in oatp1a1 subcellular distribution, studies were performed in rat hepatocytes exposed to extracellular ATP, a condition that stimulates serine phosphorylation of oatp1a1 via activity of a purinergic receptor. Internalization of oatp1a1 under these conditions was rapid. Thus, although PDZK1 binding is required for optimal cell surface expression of oatp1a1, phosphorylation provides a mechanism for fast regulation of the distribution of oatp1a1 between the cell surface and intracellular vesicular pools. Identification of the proteins and motor molecules that mediate these trafficking events represents an important area for future study.  相似文献   

9.
Novel bicyclo nucleosides, 2'-O,4'-C-ethylene nucleosides and 2'-O,4'-C-propylene nucleosides, were synthesized as building blocks for antisense oligonucleotides to further optimize the 2'-O,4'-C-methylene-linkage of bridged nucleic acids (2',4'-BNA) or locked nucleic acids (LNA). Both the 2'-O,4'-C-ethylene- and propylene-linkage within these nucleosides restrict the sugar puckering to the N-conformation of RNA as do 2',4'-BNA/LNA. Furthermore, ethylene-bridged nucleic acids (ENA) having 2'-O,4'-C-ethylene nucleosides had considerably increased the affinity to complementary RNA, and were as high as that of 2',4'-BNA/LNA (DeltaT(m)=+3 approximately 5 degrees C per modification). On the other hand, addition of 2'-O,4'-C-propylene modifications in oligonucleotides led to a decrease in the affinity to complementary RNA. As for the stability against nucleases, incorporation of one 2'-O,4'-C-ethylene or one 2'-O,4'-C-propylene nucleoside into oligonucleotides considerably increased their resistance against exonucleases to an extent greater than 2',4'-BNA/LNA. These results indicate that ENA is more suitable as an antisense oligonucleotide and is expected to have better antisense activity than 2',4'-BNA/LNA.  相似文献   

10.
Synthesis and properties of an oligonucleotide uniformly modified with 2'-O,4-C-ethylene-bridged nucleic acid (ENA) units were compared with those of GRN163, which is modified with N3'-P5' thiophosphoramidates, with the sequence targeting human telomerase RNA subunit. Although an ENA phosphorothioate oligonucleotide, ENA-13, could be synthesized using ENA phosphoramidites on a 100-mg scale, synthesis of GRN163 was very hard even on a 1-micomol scale. In view of both stability of the duplex formation with complementary RNA and the efficiency of cellular uptake by endocytosis, ENA-13 was superior to GRN163. These findings suggest that ENA-13 has useful properties for antisense therapeutic application.  相似文献   

11.
Pseudomonas aeruginosa Exoenzyme S (ExoS) is a bifunctional type-III cytotoxin. The N-terminus (residues 1-232) possesses Rho GTPase-activating (GAP) activity, while the C-terminus (residues 233-453) comprises an ADP-ribosyltransferase domain. Amino acid residues 51-72 of ExoS are involved in membrane binding and aggregation, which has complicated purification schemes. Here, it is reported on the expression, purification, and characterization of two recombinant forms of ExoS that lack this membrane-binding domain, designated rExoS78-453 and rExoSdelta51-72. Purification of these forms was achieved using sequential NTA/Ni(2+)-affinity, gel filtration, and anion-exchange chromatography. Both forms of ExoS possessed Rho GAP activity and ADP-ribosyltransferase activity comparable to wild-type ExoS. Mass spectrometry showed that rExoS78-453 and rExoSdelta51-72 had molecular masses similar to their predicted molecular masses.  相似文献   

12.
The GTPase-activating protein (GAP) stimulates the GTPase reaction of p21 by 5 orders of magnitude such that the kcat of the reaction is increased to 19 s-1. Mutations of residues in loop L1 (Gly-12 and Gly-13), in loop L2 (Thr-35 and Asp-38), and in loop L4 (Gln-61 and Glu-63) influence the reaction in different ways, but all of these mutant p21 proteins still form complexes with GAP. The C-terminal domain of the human GAP gene product, GAP334, which comprises residues 714 to 1047, is 20 times less active than full-length GAP on a molar basis and has a fourfold lower affinity. This finding indicates that the N terminus of GAP containing the SH2 domains modifies the interaction between the catalytic domain and p21.  相似文献   

13.
The rabbit polyclonal antibody against rat organic anion transporting polypeptide 2 (oatp2) was raised and immunoaffinity-purified. Western blot analysis for oatp2 detected two bands ( 74 and 76 kDa) in rat brain and a single band (76 kDa) in the liver. By immunohistochemical analysis, the oatp2 immunoreactivity was specifically high at the basolateral membrane of rat hepatocytes. Functionally, the oatp2-expressing oocytes were found to transport dehydroepiandrosterone sulfate, delta1 opioid receptor agonist [D-Pen2,D-Pen5]enkephalin, Leuenkephalin, and biotin significantly, as well as the substrates previously reported. These data reveal the exact distribution of the rat oatp2 at the protein level in the liver, and that oatp2 appears to be involved in the multispecificity of the uptaking substrates in the liver and brain.  相似文献   

14.
Organic anion transport protein 1a1 (oatp1a1), a prototypical member of the oatp family of highly homologous transport proteins, is expressed on the basolateral (sinusoidal) surface of rat hepatocytes. The organization of oatp1a1 within the plasma membrane has not been well defined, and computer-based models have predicted possible 12- as well as 10-transmembrane domain structures. Which of oatp1a1's four potential N-linked glycosylation sites are actually glycosylated and their influence on transport function have not been investigated in a mammalian system. In the present study, topology of oatp1a1 in the rat hepatocyte plasma membrane was examined by immunofluorescence analysis using an epitope-specific antibody designed to differentiate a 10- from a 12-transmembrane domain model. To map glycosylation sites, the asparagines at the each of the four N-linked glycosylation consensus sites were mutagenized to glutamines. Mutagenized oatp1a1 constructs were expressed in HeLa cells, and effects on protein expression and transport activity were assessed. These studies revealed that oatp1a1 is a 12-transmembrane-domain protein in which the second and fifth extracellular loops are glycosylated at asparagines 124, 135, and 492, whereas the potential glycosylation site at asparagine 62 is not utilized, consistent with its position in a transmembrane domain. Constructs in which more than one glycosylation site were eliminated had reduced transport activity but not necessarily reduced transporter expression. This was in accord with the finding that fully unglycosylated oatp1a1 was well expressed but located intracellularly with limited transport ability as a consequence of its reduced cell surface expression.  相似文献   

15.
The rat and mouse organic anion-transporting polypeptides (oatp) subtype 3 (oatp3) were cloned to further define components of the intestinal bile acid transport system. In transfected COS cells, oatp3 mediated Na(+)-independent, DIDS-inhibited taurocholate uptake (Michaelis-Menten constant approximately 30 microM). The oatp3-mediated uptake rates and affinities were highest for glycine-conjugated dihydroxy bile acids. In stably transfected, polarized Madin-Darby canine kidney (MDCK) cells, oatp3 mediated only apical uptake of taurocholate. RT-PCR analysis revealed that rat oatp3, but not oatp1 or oatp2, was expressed in small intestine. By RNase protection assay, oatp3 mRNA was readily detected down the length of the small intestine as well as in brain, lung, and retina. An antibody directed to the carboxy terminus localized oatp3 to the apical brush-border membrane of rat jejunal enterocytes. The mouse oatp3 gene was localized to a region of mouse chromosome 6. This region is syntenic with human chromosome 12p12, where the human OATP-A gene was mapped, suggesting that rodent oatp3 is orthologous to the human OATP-A. These transport and expression properties suggest that rat oatp3 mediates the anion exchange-driven absorption of bile acids previously described for the proximal small intestine.  相似文献   

16.
The receptor for platelet-derived growth factor (PDGF) binds two proteins containing SH2 domains, GTPase activating protein (GAP) and phosphatidylinositol 3-kinase (PI3-kinase). The sites on the receptor that mediate this interaction were identified by using phosphotyrosine-containing peptides representing receptor sequences to block specifically binding of either PI3-kinase or GAP. These results suggested that PI3-kinase binds two phosphotyrosine residues, each located in a 5 aa motif with an essential methionine at the fourth position C-terminal to the tyrosine. Point mutations at these sites caused a selective elimination of PI3-kinase binding and loss of PDGF-stimulated DNA synthesis. Mutation of the binding site for GAP prevented the receptor from associating with or phosphorylating GAP, but had no effect on PI3-kinase binding and little effect on DNA synthesis. Therefore, GAP and PI3-kinase interact with the receptor by binding to different phosphotyrosine-containing sequence motifs.  相似文献   

17.
The product distributions for the reactions of dihydroxyacetone phosphate (DHAP) in D(2)O at pD 7.9 catalyzed by triosephosphate isomerase (TIM) from chicken and rabbit muscle were determined by (1)H NMR spectroscopy using glyceraldehyde 3-phosphate dehydrogenase to trap the first-formed products of the thermodynamically unfavorable isomerization reaction, (R)-glyceraldehyde 3-phosphate (GAP) and [2(R)-(2)H]-GAP (d-GAP). Three products were observed from the reactions catalyzed by TIM: GAP from isomerization with intramolecular transfer of hydrogen (18% of the enzymatic products), d-GAP from isomerization with incorporation of deuterium from D(2)O into C-2 of GAP (43% of the enzymatic products), and [1(R)-(2)H]-DHAP (d-DHAP) from incorporation of deuterium from D(2)O into C-1 of DHAP (40% of the enzymatic products). The ratios of the yields of the deuterium-labeled products d-DHAP and d-GAP from partitioning of the intermediate of the TIM-catalyzed reactions of GAP and DHAP in D(2)O are 1.48 and 0.93, respectively. This provides evidence that the reaction of these two substrates does not proceed through a single, common, reaction intermediate but, rather, through distinct intermediates that differ in the bonding and arrangement of catalytic residues at the enediolate O-1 and O-2 oxyanions formed on deprotonation of GAP and DHAP, respectively.  相似文献   

18.
Ras GTPase-activating protein (GAP) contains two Src homology 2 (SH2) domains which are implicated in binding to tyrosine-phosphorylated sites in specific activated growth factor receptors and to a cytoplasmic tyrosine-phosphorylated protein, p62. We have used site-directed mutagenesis of the two GAP SH2 domains (SH2-N and SH2-C) to identify residues involved in receptor and p62 binding. A bacterial fusion protein containing the precise SH2-N domain, as defined by sequence homology, associated with both the activated beta platelet-derived growth factor receptor and epidermal growth factor receptor, and p62 in vitro. However, short deletions at either the N or C termini of the SH2-N domain abolished binding, suggesting that the entire SH2 sequence is required for formation of an active domain. Conservative substitutions of 2 highly conserved basic residues in the SH2-N domain, an arginine and a histidine, resulted in complete loss of receptor and p62 binding, whereas other basic residues, and residues at variable SH2 sites, were more tolerant of substitution. The conserved arginine and histidine therefore appear critical for association with phosphotyrosine-containing proteins, possibly through an interaction with phosphotyrosine. The GAP SH2-C domain, unlike SH2-N, does not bind efficiently to activated receptors or p62 in vitro. The SH2-C domain lacks 3 residues which are otherwise well conserved, and contribute to high affinity SH2-N binding. Replacement of 1 of these residues, a cysteine, with the consensus glycine, conferred SH2-C binding activity toward tyrosine-phosphorylated p62 and epidermal growth factor receptor. Loss-of-function and gain-of-function mutations in the GAP SH2 domains can therefore be used to identify residues that are critical for receptor and p62 binding.  相似文献   

19.
20.
rap1GAP is a GTPase-activating protein that specifically stimulates the GTP hydrolytic rate of p21rap1. We have defined the catalytic domain of rap1GAP by constructing a series of cDNAs coding for mutant proteins progressively deleted at the amino- and carboxy-terminal ends. Analysis of the purified mutant proteins shows that of 663 amino acid residues, only amino acids 75 to 416 are necessary for full GAP activity. Further truncation at the amino terminus resulted in complete loss of catalytic activity, whereas removal of additional carboxy-terminal residues dramatically accelerated the degradation of the protein in vivo. The catalytic domain we have defined excludes the region of rap1GAP which undergoes phosphorylation on serine residues. We have further defined this phosphoacceptor region of rap1GAP by introducing point mutations at specific serine residues and comparing the phosphopeptide maps of the mutant proteins. Two of the sites of phosphorylation by cyclic AMP (cAMP)-dependent kinase were localized to serine residues 490 and 499, and one site of phosphorylation by p34cdc2 was localized to serine 484. In vivo, rap1GAP undergoes phosphorylation at four distinct sites, two of which appear to be identical to the sites phosphorylated by cAMP-dependent kinase in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号