首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymorphism in the assembly of polyomavirus capsid protein VP1.   总被引:16,自引:2,他引:14       下载免费PDF全文
Polyomavirus major capsid protein VP1, purified after expression of the recombinant gene in Escherichia coli, forms stable pentamers in low-ionic strength, neutral, or alkaline solutions. Electron microscopy showed that the pentamers, which correspond to viral capsomeres, can be self-assembled into a variety of polymorphic aggregates by lowering the pH, adding calcium, or raising the ionic strength. Some of the aggregates resembled the 500-A-diameter virus capsid, whereas other considerably larger or smaller capsids were also produced. The particular structures formed on transition to an environment favoring assembly depended on the pathway of the solvent changes as well as on the final conditions. Mass measurements from cryoelectron micrographs and image analysis of negatively stained specimens established that a distinctive 320-A-diameter particle consists of 24 close-packed pentamers arranged with octahedral symmetry. Comparison of this unexpected octahedral assembly with a 12-capsomere icosahedral aggregate and the 72-capsomere icosahedral virus capsid by computer graphics methods indicates that similar connections are made among trimers of pentamers in these shells of different size. The polymorphism in the assembly of VP1 pentamers can be related to the switching in bonding specificity required to build the virus capsid.  相似文献   

2.
Cryoelectron microscopy and three-dimensional computer reconstruction techniques have been used to compare the structures of two types of DNA-free capsids of equine herpesvirus 1 at a resolution of 4.5 nm. "Light" capsids are abortive, whereas "intermediate" capsids are related to maturable intracellular precursors. Their T = 16 icosahedral outer shells, approximately 125 nm in diameter, are indistinguishable and may be described in terms of three layers of density, totalling 15 nm in thickness. The outermost layer consists of protruding portions of both the hexon and the penton capsomers, rising approximately 5 nm above a midlayer of density. The innermost layer, or "floor," is a 4-nm-thick sheet of virtually continuous density except for the orifices of the channels that traverse each capsomer. Hexon protrusions are distinctly hexagonal in shape, and penton protrusions are pentagonal. The structures of the three kinds of hexons (distinguished according to their positions on the surface lattice) are closely similar but differ somewhat in their respective orientations and in the shapes of their channels. The most prominent features of the midlayer are threefold nodules ("triplexes") at the trigonal lattice points. By analogy with other viral capsids, the triplexes may represent trimers of another capsid protein, possibly VP23 (36 kilodaltons [kDa]) or VP26 (12 kDa). Intermediate capsids differ from light capsids, which are empty, in having one or more internal components. In individual images from which the shell structure has been filtered away, these components are seen to have dimensions of 20 to 30 nm but to lack a visible substructure. This material--which is smeared out in the reconstruction, implying that its distribution is not icosahedrally symmetric or necessarily consistent from particle to particle--consists of aggregates of VP22 (46 kDa). From several lines of evidence, we conclude that this protein is located entirely within the capsid shell. These aggregates may be the remnants of morphogenetic cores retained in capsids interrupted in the process of DNA packaging.  相似文献   

3.
The Caspar-Klug classification of viruses whose protein shell, called viral capsid, exhibits icosahedral symmetry, has recently been extended to incorporate viruses whose capsid proteins are exclusively organised in pentamers. The approach, named ‘Viral Tiling Theory’, is inspired by the theory of quasicrystals, where aperiodic Penrose tilings enjoy 5-fold and 10-fold local symmetries. This paper analyses the extent to which this classification approach informs dynamical properties of the viral capsids, in particular the pattern of Raman active modes of vibrations, which can be observed experimentally.  相似文献   

4.
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is a double-stranded RNA virus. The IBDV capsid is formed by two major structural proteins, VP2 and VP3, which assemble to form a T=13 markedly nonspherical capsid. During viral infection, VP2 is initially synthesized as a precursor, called VPX, whose C end is proteolytically processed to the mature form during capsid assembly. We have computed three-dimensional maps of IBDV capsid and virus-like particles built up by VP2 alone by using electron cryomicroscopy and image-processing techniques. The IBDV single-shelled capsid is characterized by the presence of 260 protruding trimers on the outer surface. Five classes of trimers can be distinguished according to their different local environments. When VP2 is expressed alone in insect cells, dodecahedral particles form spontaneously; these may be assembled into larger, fragile icosahedral capsids built up by 12 dodecahedral capsids. Each dodecahedral capsid is an empty T=1 shell composed of 20 trimeric clusters of VP2. Structural comparison between IBDV capsids and capsids consisting of VP2 alone allowed the determination of the major capsid protein locations and the interactions between them. Whereas VP2 forms the outer protruding trimers, VP3 is found as trimers on the inner surface and may be responsible for stabilizing functions. Since elimination of the C-terminal region of VPX is correlated with the assembly of T=1 capsids, this domain might be involved (either alone or in cooperation with VP3) in the induction of different conformations of VP2 during capsid morphogenesis.  相似文献   

5.
Since the seminal work of Caspar and Klug on the structure of the protein containers that encapsulate and hence protect the viral genome, it has been recognised that icosahedral symmetry is crucial for the structural organisation of viruses. In particular, icosahedral symmetry has been invoked in order to predict the surface structures of viral capsids in terms of tessellations or tilings that schematically encode the locations of the protein subunits in the capsids. Whilst this approach is capable of predicting the relative locations of the proteins in the capsids, information on their tertiary structures and the organisation of the viral genome within the capsid are inaccessible. We develop here a mathematical framework based on affine extensions of the icosahedral group that allows us to describe those aspects of the three-dimensional structure of simple viruses. This approach complements Caspar-Klug theory and provides details on virus structure that have not been accessible with previous methods, implying that icosahedral symmetry is more important for virus architecture than previously appreciated.   相似文献   

6.
Viral capsids are composed of multiple copies of one or a few chemically distinct capsid proteins and are mostly stabilized by inter subunit protein-protein interactions. There have been efforts to identify and analyze these protein-protein interactions, in terms of their extent and similarity, between the subunit interfaces related by quasi- and icosahedral symmetry. Here, we describe a new method to map quaternary interactions in spherical virus capsids onto polar angle space with respect to the icosahedral symmetry axes using azimuthal orthographic diagrams. This approach enables one to map the nonredundant interactions in a spherical virus capsid, irrespective of its size or triangulation number (T), onto the reference icosahedral asymmetric unit space. The resultant diagrams represent characteristic fingerprints of quaternary interactions of the respective capsids. Hence, they can be used as road maps of the protein-protein interactions to visualize the distribution and the density of the interactions. In addition, unlike the previous studies, the fingerprints of different capsids, when represented in a matrix form, can be compared with one another to quantitatively evaluate the similarity (S-score) in the subunit environments and the associated protein-protein interactions. The S-score selectively distinguishes the similarity, or lack of it, in the locations of the quaternary interactions as opposed to other well-known structural similarity metrics (e.g., RMSD, TM-score). Application of this method on a subset of T = 1 and T = 3 capsids suggests that S-score values range between 1 and 0.6 for capsids that belong to the same virus family/genus; 0.6-0.3 for capsids from different families with the same T-number and similar subunit fold; and <0.3 for comparisons of the dissimilar capsids that display different quaternary architectures (T-numbers). Finally, the sequence conserved interface residues within a virus family, whose spatial locations were also conserved have been hypothesized as the essential residues for self-assembly of the member virus capsids.  相似文献   

7.
Many large viral capsids require special pentameric proteins at their fivefold vertices. Nevertheless, deletion of the special vertex protein gene product 24 (gp24) in bacteriophage T4 can be compensated by mutations in the homologous major capsid protein gp23. The structure of such a mutant virus, determined by cryo-electron microscopy to 26 angstroms, shows that the gp24 pentamers are replaced by mutant major capsid protein (gp23) pentamers at the vertices, thus re-creating a viral capsid prior to the evolution of specialized major capsid proteins and vertex proteins. The mutant gp23* pentamer is structurally similar to the wild-type gp24* pentamer but the insertion domain is slightly more distant from the gp23* pentamer center. There are additional SOC molecules around the gp23* pentamers in the mutant virus that were not present around the gp24* pentamers in the wild-type virus.  相似文献   

8.
The mechanical properties of viral shells are crucial determinates for the pathway and mechanism by which the genetic material leaves the capsid during infection and have therefore been studied by atomic force microscopy as well as by atomistic simulations. The mechanical response to forces from inside the capsid are found to be relevant, especially after ion removal from the shell structure, which is generally assumed to be essential during viral infection; however, atomic force microscopy measurements are restricted to probing the capsids from outside, and the primary effect of ion removal is still inaccessible. To bridge this gap, we performed atomistic force-probe molecular dynamics simulations of the complete solvated icosahedral shell of Southern Bean Mosaic Virus and compared the distribution of elastic constants and yielding forces on the icosahedral shell for probing from inside with the distribution of outside mechanical properties obtained previously. Further, the primary effect of calcium removal on the mechanical properties on both sides, as well as on their spatial distribution, is quantified. Marked differences are seen particularly at the pentamer centers, although only small structural changes occur on the short timescales of the simulation. This unexpected primary effect, hence, precedes subsequent effects due to capsid swelling. In particular, assuming that genome release is preceded by an opening of capsomers instead of a complete capsid bursting, our observed weakening along the fivefold symmetry axes let us suggest pentamers as possible exit ports for RNA release.  相似文献   

9.
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent for KS tumors, multicentric Castleman's disease, and primary effusion lymphomas. Like other herpesvirus capsids, the KSHV capsid is an icosahedral structure composed of six proteins. The capsid shell is made up of the major capsid protein, two triplex proteins, and the small capsid protein. The scaffold protein and the protease occupy the internal space. The assembly of KSHV capsids is thought to occur in a manner similar to that determined for herpes simplex virus type 1 (HSV-1). Our goal was to assemble KSHV capsids in insect cells using the baculovirus expression vector system. Six KSHV capsid open reading frames were cloned and the proteins expressed in Sf9 cells: pORF25 (major capsid protein), pORF62 (triplex 1), pORF26 (triplex 2), pORF17 (protease), pORF17.5 (scaffold protein), and also pORF65 (small capsid protein). When insect cells were coinfected with these baculoviruses, angular capsids that contained internal core structures were readily observed by conventional electron microscopy of the infected cells. Capsids were also readily isolated from infected cells by using rate velocity sedimentation. With immuno-electron microscopy methods, these capsids were seen to be reactive to antisera to pORF65 as well as to KSHV-positive human sera, indicating the correct conformation of pORF65 in these capsids. When either virus expressing the triplex proteins was omitted from the coinfection, capsids did not assemble; similar to observations made in HSV-1-infected cells. If the virus expressing the scaffold protein was excluded, large open shells that did not attain icosahedral structure were seen in the nuclei of infected cells. The presence of pORF65 was required for capsid assembly, in that capsids did not form if this protein was absent as judged by both by ultrastructural analysis of infected cells and rate velocity sedimentation experiments. Thus, a novel outcome of this study is the finding that the small capsid protein of KSHV, like the major capsid and triplex proteins, is essential for capsid shell assembly.  相似文献   

10.
Despite the discovery of Epstein-Barr virus more than 35 years ago, a thorough understanding of gammaherpesvirus capsid composition and structure has remained elusive. We approached this problem by purifying capsids from Kaposi's sarcoma-associated herpesvirus (KSHV), the only other known human gammaherpesvirus. The results from our biochemical and imaging analyses demonstrate that KSHV capsids possess a typical herpesvirus icosahedral capsid shell composed of four structural proteins. The hexameric and pentameric capsomers are composed of the major capsid protein (MCP) encoded by open reading frame 25. The heterotrimeric complexes, forming the capsid floor between the hexons and pentons, are each composed of one molecule of ORF62 and two molecules of ORF26. Each of these proteins has significant amino acid sequence homology to capsid proteins in alpha- and betaherpesviruses. In contrast, the fourth protein, ORF65, lacks significant sequence homology to its structural counterparts from the other subfamilies. Nevertheless, this small, basic, and highly antigenic protein decorates the surface of the capsids, as does, for example, the even smaller basic capsid protein VP26 of herpes simplex virus type 1. We have also found that, as with the alpha- and betaherpesviruses, lytic replication of KSHV leads to the formation of at least three capsid species, A, B, and C, with masses of approximately 200, 230, and 300 MDa, respectively. A capsids are empty, B capsids contain an inner array of a fifth structural protein, ORF17.5, and C capsids contain the viral genome.  相似文献   

11.
The coat proteins of many viruses spontaneously form icosahedral capsids around nucleic acids or other polymers. Elucidating the role of the packaged polymer in capsid formation could promote biomedical efforts to block viral replication and enable use of capsids in nanomaterials applications. To this end, we perform Brownian dynamics on a coarse-grained model that describes the dynamics of icosahedral capsid assembly around a flexible polymer. We identify several mechanisms by which the polymer plays an active role in its encapsulation, including cooperative polymer-protein motions. These mechanisms are related to experimentally controllable parameters such as polymer length, protein concentration and solution conditions. Furthermore, the simulations demonstrate that assembly mechanisms are correlated with encapsulation efficiency, and we present a phase diagram that predicts assembly outcomes as a function of experimental parameters. We anticipate that our simulation results will provide a framework for designing in vitro assembly experiments on single-stranded RNA virus capsids.  相似文献   

12.
Although many viruses have been crystallized and the protein capsid structures have been determined by x-ray crystallography, the nucleic acids often cannot be resolved. This is especially true for RNA viruses. The lack of information about the conformation of DNA/RNA greatly hinders our understanding of the assembly mechanism of various viruses. Here we combine a coarse-grain model and a Monte Carlo method to simulate the distribution of viral RNA inside the capsid of cowpea chlorotic mottle virus. Our results show that there is very strong interaction between the N-terminal residues of the capsid proteins, which are highly positive charged, and the viral RNA. Without these residues, the binding energy disfavors the binding of RNA by the capsid. The RNA forms a shell close to the capsid with the highest densities associated with the capsid dimers. These high-density regions are connected to each other in the shape of a continuous net of triangles. The overall icosahedral shape of the net overlaps with the capsid subunit icosahedral organization. Medium density of RNA is found under the pentamers of the capsid. These findings are consistent with experimental observations.  相似文献   

13.
Interactions between viruses and the host antibody immune response are critical in the development and control of disease, and antibodies are also known to interfere with the efficacy of viral vector-based gene delivery. The adeno-associated viruses (AAVs) being developed as vectors for corrective human gene delivery have shown promise in clinical trials, but preexisting antibodies are detrimental to successful outcomes. However, the antigenic epitopes on AAV capsids remain poorly characterized. Cryo-electron microscopy and three-dimensional image reconstruction were used to define the locations of epitopes to which monoclonal fragment antibodies (Fabs) against AAV1, AAV2, AAV5, and AAV6 bind. Pseudoatomic modeling showed that, in each serotype, Fabs bound to a limited number of sites near the protrusions surrounding the 3-fold axes of the T=1 icosahedral capsids. For the closely related AAV1 and AAV6, a common Fab exhibited substoichiometric binding, with one Fab bound, on average, between two of the three protrusions as a consequence of steric crowding. The other AAV Fabs saturated the capsid and bound to the walls of all 60 protrusions, with the footprint for the AAV5 antibody extending toward the 5-fold axis. The angle of incidence for each bound Fab on the AAVs varied and resulted in significant differences in how much of each viral capsid surface was occluded beyond the Fab footprints. The AAV-antibody interactions showed a common set of footprints that overlapped some known receptor-binding sites and transduction determinants, thus suggesting potential mechanisms for virus neutralization by the antibodies.  相似文献   

14.
The satellite bacteriophage P4 does not have genes coding for any major structural proteins, but assembles a capsid from the gene products of bacteriophage P2. The capsid assembled under control of P4 is smaller (45 nm) than the normal P2 capsid (60 nm). The low resolution (4.5 nm) structures of P2 and P4 capsids were determined by cryo-electron microscopy and image processing. The capsid of P2 shows T = 7 symmetry with most of the mass clustered as 12 pentamers and 60 hexamers. The P4 capsid has T = 4 symmetry with a similar distribution of mass to P2, but the hexamer geometry has changed. The major capsid protein has a two-domain structure. The major domains form the capsomers proper, while connecting domains form trivalent contacts between the capsomers. The size determination by P4 appears to function by altering hexamer geometry rather than by affecting the interdomain angle alone.  相似文献   

15.
The structure of Red clover necrotic mosaic virus (RCNMV), an icosahedral plant virus, was resolved to 8.5 A by cryoelectron microscopy. The virion capsid has prominent surface protrusions and subunits with a clearly defined shell and protruding domains. The structures of both the individual capsid protein (CP) subunits and the entire virion capsid are consistent with other species in the Tombusviridae family. Within the RCNMV capsid, there is a clearly defined inner cage formed by complexes of genomic RNA and the amino termini of CP subunits. An RCNMV virion has approximately 390 +/- 30 Ca2+ ions bound to the capsid and 420 +/- 25 Mg2+ ions thought to be in the interior of the capsid. Depletion of both Ca2+ and Mg2+ ions from RCNMV leads to significant structural changes, including (i) formation of 11- to 13-A-diameter channels that extend through the capsid and (ii) significant reorganization within the interior of the capsid. Genomic RNA within native capsids containing both Ca2+ and Mg2+ ions is extremely resistant to nucleases, but depletion of both of these cations results in nuclease sensitivity, as measured by a significant reduction in RCNMV infectivity. These results indicate that divalent cations play a central role in capsid dynamics and suggest a mechanism for the release of viral RNA in low-divalent-cation environments such as those found within the cytoplasm of a cell.  相似文献   

16.
Bahadur RP  Janin J 《Proteins》2008,71(1):407-414
To evaluate the evolutionary constraints placed on viral proteins by the structure and assembly of the capsid, we calculate Shannon entropies in the aligned sequences of 45 polypeptide chains in 32 icosahedral viruses, and relate these entropies to the residue location in the three-dimensional structure of the capsids. Three categories of residues have entropies lower than the chain average implying that they are better conserved than average: residues that are buried within a subunit (the protein core), residues that contain atoms buried at an interface between subunits (the interface core), and residues that contribute to several such interfaces. The interface core is also conserved in homomeric proteins and in transient protein-protein complexes, which have only one interface whereas capsids have many. In capsids, the subunit interfaces implicate most of the polypeptide chain: on average, 66% of the capsid residues are at an interface, 34% at more than one, and 47% at the interface core. Nevertheless, we observe that the degree of residue conservation can vary widely between interfaces within a capsid and between regions within an interface. The interfaces and regions of interfaces that show a low sequence variability are likely to play major roles in the self-assembly of the capsid, with implications on its mechanism that we discuss taking adeno-associated virus as an example.  相似文献   

17.
We analyze the mechanical properties and putative dynamical fluctuations of a variety of viral capsids comprising different sizes and quasi-equivalent symmetries by performing normal mode analysis using the elastic network model. The expansion of the capsid to a swollen state is studied using normal modes and is compared with the experimentally observed conformational change for three of the viruses for which experimental data exist. We show that a combination of one or two normal modes captures remarkably well the overall translation that dominates the motion between the two conformational states, and reproduces the overall conformational change. We observe for all of the viral capsids that the nature of the modes is different. In particular for the T=7 virus, HK97, for which the shape of the capsid changes from spherical to faceted polyhedra, two modes are necessary to accomplish the conformational transition. In addition, we extend our study to viral capsids with other T numbers, and discuss the similarities and differences in the features of virus capsid conformational dynamics. We note that the pentamers generally have higher flexibility and propensity to move freely from the other capsomers, which facilitates the shape adaptation that may be important in the viral life cycle.  相似文献   

18.
19.
Unlike the capsids of icosahedral viruses, retroviral capsids are pleomorphic, with variably curved, closed fullerene shells composed of ∼ 250 hexamers and exactly 12 pentamers of the viral CA protein. Structures of CA oligomers have been difficult to obtain because the subunit-subunit interactions are inherently weak, and CA tends to spontaneously assemble into capsid-like particles. Guided by a cryoEM-based model of the hexagonal lattice of HIV-1 CA, we used a two-step biochemical strategy to obtain soluble CA hexamers and pentamers for crystallization. First, each oligomer was stabilized by engineering disulfide cross-links between the N-terminal domains of adjacent subunits. Second, the cross-linked oligomers were prevented from polymerizing into hyperstable, capsid-like structures by mutations that weakened the dimeric association between the C-terminal domains that link adjacent oligomers. The X-ray structures revealed that the oligomers are comprised of a fairly rigid, central symmetric ring of N-terminal domains encircled by mobile C-terminal domains. Assembly of the quasi-equivalent oligomers requires remarkably subtle rearrangements in inter-subunit quaternary bonding interactions, and appears to be controlled by an electrostatic switch that favors hexamers over pentamers. An atomic model of the complete HIV-1 capsid was then built using the fullerene cone as a template. Rigid-body rotations around two assembly interfaces are sufficient to generate the full range of continuously varying lattice curvature in the fullerene cone. The steps in determining this HIV-1 capsid atomic model exemplify the synergy of hybrid methods in structural biology, a powerful approach for exploring the structure of pleomorphic macromolecular complexes.  相似文献   

20.
T S Baker  J Drak    M Bina 《Biophysical journal》1989,55(2):243-253
The three-dimensional structure of the simian virus 40 capsid is remarkably similar to the structure of the polyoma empty capsid. This similarity is apparent despite striking differences in the methods used to determine the two structures: image analysis of electron micrographs of frozen-hydrated samples (SV40 virions) and an unconventional x-ray crystallographic analysis (polyoma empty capsids). Both methods have clearly resolved the 72 prominent capsomere units which comprise the T = 7d icosahedral capsid surface lattice. The 12 pentavalent and 60 hexavalent capsomeres consist of pentameric substructures. A pentameric morphology for hexavalent capsomeres clearly shows that the conserved bonding specificity expected from the quasi-equivalence theory is not present in either SV40 or polyoma capsids. Determination of the SV40 structure from cryo-electron microscopy supports the correctness of the polyoma structure solved crystallographically and establishes a strong complementarity of the two techniques. Similarity between the SV40 virion and the empty polyoma capsid indicates that the capsid is not detectably altered by the loss of the nucleohistone core. The unexpected pentameric substructure of the hexavalent capsomeres and the arrangement of the 72 pentamers in the SV40 and polyoma capsid lattices may be characteristic features of all members of the papova virus family, including the papilloma viruses such as human wart and rabbit papilloma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号