首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marrelec G  Fransson P 《PloS one》2011,6(4):e14788
In blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI), assessing functional connectivity between and within brain networks from datasets acquired during steady-state conditions has become increasingly common. However, in contrast to connectivity analyses based on task-evoked signal changes, selecting the optimal spatial location of the regions of interest (ROIs) whose timecourses will be extracted and used in subsequent analyses is not straightforward. Moreover, it is also unknown how different choices of the precise anatomical locations within given brain regions influence the estimates of functional connectivity under steady-state conditions. The objective of the present study was to assess the variability in estimates of functional connectivity induced by different anatomical choices of ROI locations for a given brain network. We here targeted the default mode network (DMN) sampled during both resting-state and a continuous verbal 2-back working memory task to compare four different methods to extract ROIs in terms of ROI features (spatial overlap, spatial functional heterogeneity), signal features (signal distribution, mean, variance, correlation) as well as strength of functional connectivity as a function of condition. We show that, while different ROI selection methods produced quantitatively different results, all tested ROI selection methods agreed on the final conclusion that functional connectivity within the DMN decreased during the continuous working memory task compared to rest.  相似文献   

2.
Estimating the functional interactions and connections between brain regions to corresponding process in cognitive, behavioral and psychiatric domains is a central pursuit for understanding the human connectome. Few studies have examined the effects of dynamic evolution on cognitive processing and brain activation using brain network model in scalp electroencephalography (EEG) data. Aim of this study was to investigate the brain functional connectivity and construct dynamic programing model from EEG data and to evaluate a possible correlation between topological characteristics of the brain connectivity and cognitive evolution processing. Here, functional connectivity between brain regions is defined as the statistical dependence between EEG signals in different brain areas and is typically determined by calculating the relationship between regional time series using wavelet coherence. We present an accelerated dynamic programing algorithm to construct dynamic cognitive model that we found that spatially distributed regions coherence connection difference, the topologic characteristics with which they can transfer information, producing temporary network states. Our findings suggest that brain dynamics give rise to variations in complex network properties over time after variation audio stimulation, dynamic programing model gives the dynamic evolution processing at different time and frequency. In this paper, by applying a new construct approach to understand whole brain network dynamics, firstly, brain network is constructed by wavelet coherence, secondly, different time active brain regions are selected by network topological characteristics and minimum spanning tree. Finally, dynamic evolution model is constructed to understand cognitive process by dynamic programing algorithm, this model is applied to the auditory experiment, results showed that, quantitatively, more correlation was observed after variation audio stimulation, the EEG function connection dynamic evolution model on cognitive processing is feasible with wavelet coherence EEG recording.  相似文献   

3.
Liao W  Qiu C  Gentili C  Walter M  Pan Z  Ding J  Zhang W  Gong Q  Chen H 《PloS one》2010,5(12):e15238
The amygdala is often found to be abnormally recruited in social anxiety disorder (SAD) patients. The question whether amygdala activation is primarily abnormal and affects other brain systems or whether it responds "normally" to an abnormal pattern of information conveyed by other brain structures remained unanswered. To address this question, we investigated a network of effective connectivity associated with the amygdala using Granger causality analysis on resting-state functional MRI data of 22 SAD patients and 21 healthy controls (HC). Implications of abnormal effective connectivity and clinical severity were investigated using the Liebowitz Social Anxiety Scale (LSAS). Decreased influence from inferior temporal gyrus (ITG) to amygdala was found in SAD, while bidirectional influences between amygdala and visual cortices were increased compared to HCs. Clinical relevance of decreased effective connectivity from ITG to amygdala was suggested by a negative correlation of LSAS avoidance scores and the value of Granger causality. Our study is the first to reveal a network of abnormal effective connectivity of core structures in SAD. This is in support of a disregulation in predescribed modules involved in affect control. The amygdala is placed in a central position of dysfunction characterized both by decreased regulatory influence of orbitofrontal cortex and increased crosstalk with visual cortex. The model which is proposed based on our results lends neurobiological support towards cognitive models considering disinhibition and an attentional bias towards negative stimuli as a core feature of the disorder.  相似文献   

4.
Protected areas (PAs) are recognized as the flagship tool to offset biodiversity loss on Earth. Spatial conservation planning seeks optimal designs of PAs that meet multiple targets such as biodiversity representation and population persistence. Since connectivity between PAs is a fundamental requirement for population persistence, several methods have been developed to include connectivity into PA design algorithms. Among these, the eigenvalue decomposition of the connectivity matrix allows for identifying clusters of strongly connected sites and selecting the sites contributing the most to population persistence. So far, this method was only suited to optimize an entire network of PAs without considering existing PAs in the new design. However, a more cost‐effective and realistic approach is to optimize the design of an extended network to improve its connectivity and thus population persistence. Here, we develop a flexible algorithm based on eigenvalue decomposition of connectivity matrices to extend existing networks of PAs while optimizing connectivity and population growth rate. We also include a splitting algorithm to improve cluster identification. The new algorithm accounts for the change in connectivity due to the increased biological productivity often observed in existing PAs. We illustrate the potential of our algorithm by proposing an extension of the network of ~100 Mediterranean marine PAs to reach the targeted 10% surface area protection from the current 1.8%. We identify differences between the clean slate scenario, where all sites are available for protection, irrespective of their current protection status, and the scenario where existing PAs are forced to be included into the optimized solution. By integrating this algorithm to existing multi‐objective and multi‐specific algorithms of PA selection, the demographic effects of connectivity can be explicitly included into conservation planning.  相似文献   

5.
Previous researches have explored the changes of functional connectivity caused by smoking with the aid of fMRI. This study considers not only functional connectivity but also effective connectivity regarding both brain networks and brain regions by using a novel analysis framework that combines independent component analysis (ICA) and Granger causality analysis (GCA). We conducted a resting-state fMRI experiment in which twenty-one heavy smokers were scanned in two sessions of different conditions: smoking abstinence followed by smoking satiety. In our framework, group ICA was firstly adopted to obtain the spatial patterns of the default-mode network (DMN), executive-control network (ECN), and salience network (SN). Their associated time courses were analyzed using GCA, showing that the effective connectivity from SN to DMN was reduced and that from ECN/DMN to SN was enhanced after smoking replenishment. A paired t-test on ICA spatial patterns revealed functional connectivity variation in regions such as the insula, parahippocampus, precuneus, anterior cingulate cortex, supplementary motor area, and ventromedial/dorsolateral prefrontal cortex. These regions were later selected as the regions of interest (ROIs), and their effective connectivity was investigated subsequently using GCA. In smoking abstinence, the insula showed the increased effective connectivity with the other ROIs; while in smoking satiety, the parahippocampus had the enhanced inter-area effective connectivity. These results demonstrate our hypothesis that for deprived heavy smokers, smoking replenishment takes effect on both functional and effective connectivity. Moreover, our analysis framework could be applied in a range of neuroscience studies.  相似文献   

6.
Identifying the genes that change their expressions between two conditions (such as normal versus cancer) is a crucial task that can help in understanding the causes of diseases. Differential networking has emerged as a powerful approach to detect the changes in network structures and to identify the differentially connected genes among two networks. However, existing differential network-based methods primarily depend on pairwise comparisons of the genes based on their connectivity. Therefore, these methods cannot capture the essential topological changes in the network structures. In this paper, we propose a novel algorithm, DiffRank, which ranks the genes based on their contribution to the differences between the two networks. To achieve this goal, we define two novel structural scoring measures: a local structure measure (differential connectivity) and a global structure measure (differential betweenness centrality). These measures are optimized by propagating the scores through the network structure and then ranking the genes based on these propagated scores. We demonstrate the effectiveness of DiffRank on synthetic and real datasets. For the synthetic datasets, we developed a simulator for generating synthetic differential scale-free networks, and we compared our method with existing methods. The comparisons show that our algorithm outperforms these existing methods. For the real datasets, we apply the proposed algorithm on several gene expression datasets and demonstrate that the proposed method provides biologically interesting results.  相似文献   

7.
Functional connectivity MRI (fcMRI) is an fMRI method that examines the connectivity of different brain areas based on the correlation of BOLD signal fluctuations over time. Temporal Lobe Epilepsy (TLE) is the most common type of adult epilepsy and involves multiple brain networks. The default mode network (DMN) is involved in conscious, resting state cognition and is thought to be affected in TLE where seizures cause impairment of consciousness. The DMN in epilepsy was examined using seed based fcMRI. The anterior and posterior hubs of the DMN were used as seeds in this analysis. The results show a disconnection between the anterior and posterior hubs of the DMN in TLE during the basal state. In addition, increased DMN connectivity to other brain regions in left TLE along with decreased connectivity in right TLE is revealed. The analysis demonstrates how seed-based fcMRI can be used to probe cerebral networks in brain disorders such as TLE.  相似文献   

8.
The present paper concentrates on the impact of visual attention task on structure of the brain functional and effective connectivity networks using coherence and Granger causality methods. Since most studies used correlation method and resting-state functional connectivity, the task-based approach was selected for this experiment to boost our knowledge of spatial and feature-based attention. In the present study, the whole brain was divided into 82 sub-regions based on Brodmann areas. The coherence and Granger causality were applied to construct functional and effective connectivity matrices. These matrices were converted into graphs using a threshold, and the graph theory measures were calculated from it including degree and characteristic path length. Visual attention was found to reveal more information during the spatial-based task. The degree was higher while performing a spatial-based task, whereas characteristic path length was lower in the spatial-based task in both functional and effective connectivity. Primary and secondary visual cortex (17 and 18 Brodmann areas) were highly connected to parietal and prefrontal cortex while doing visual attention task. Whole brain connectivity was also calculated in both functional and effective connectivity. Our results reveal that Brodmann areas of 17, 18, 19, 46, 3 and 4 had a significant role proving that somatosensory, parietal and prefrontal regions along with visual cortex were highly connected to other parts of the cortex during the visual attention task. Characteristic path length results indicated an increase in functional connectivity and more functional integration in spatial-based attention compared with feature-based attention. The results of this work can provide useful information about the mechanism of visual attention at the network level.  相似文献   

9.
Functional Magnetic Resonance (fMRI) data can be used to depict functional connectivity of the brain. Standard techniques have been developed to construct brain networks from this data; typically nodes are considered as voxels or sets of voxels with weighted edges between them representing measures of correlation. Identifying cognitive states based on fMRI data is connected with recording voxel activity over a certain time interval. Using this information, network and machine learning techniques can be applied to discriminate the cognitive states of the subjects by exploring different features of data. In this work we wish to describe and understand the organization of brain connectivity networks under cognitive tasks. In particular, we use a regularity partitioning algorithm that finds clusters of vertices such that they all behave with each other almost like random bipartite graphs. Based on the random approximation of the graph, we calculate a lower bound on the number of triangles as well as the expectation of the distribution of the edges in each subject and state. We investigate the results by comparing them to the state of the art algorithms for exploring connectivity and we argue that during epochs that the subject is exposed to stimulus, the inspected part of the brain is organized in an efficient way that enables enhanced functionality.  相似文献   

10.
Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.  相似文献   

11.
The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone) and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS), an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity) between coherent sources was investigated using the renormalized partial directed coherence (RPDC) method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis.  相似文献   

12.
利用功能磁共振成像技术,将空间ICA和时间相关方法相结合来研究不同活动状态下人脑视觉皮层V5区的功能连通性。首先利用空间ICA处理组块视觉运动刺激的数据,定位V5区;然后分别计算静息和连续视觉运动刺激两种稳态下V5区与其它脑区低频振荡的时间相关,检测出该区的功能连通网络。实验结果表明,静息时V5区的功能连通网络更广泛,且与已知的解剖连通一致;当被试接受连续视觉运动刺激时,与V5区连通的脑区网络局限在视觉皮层,此时的网络特定于处理视觉运动这一任务。  相似文献   

13.
Complex brains have evolved a highly efficient network architecture whose structural connectivity is capable of generating a large repertoire of functional states. We detect characteristic network building blocks (structural and functional motifs) in neuroanatomical data sets and identify a small set of structural motifs that occur in significantly increased numbers. Our analysis suggests the hypothesis that brain networks maximize both the number and the diversity of functional motifs, while the repertoire of structural motifs remains small. Using functional motif number as a cost function in an optimization algorithm, we obtain network topologies that resemble real brain networks across a broad spectrum of structural measures, including small-world attributes. These results are consistent with the hypothesis that highly evolved neural architectures are organized to maximize functional repertoires and to support highly efficient integration of information.  相似文献   

14.
The application of data-driven time series analysis techniques such as Granger causality, partial directed coherence and phase dynamics modeling to estimate effective connectivity in brain networks has recently gained significant prominence in the neuroscience community. While these techniques have been useful in determining causal interactions among different regions of brain networks, a thorough analysis of the comparative accuracy and robustness of these methods in identifying patterns of effective connectivity among brain networks is still lacking. In this paper, we systematically address this issue within the context of simple networks of coupled spiking neurons. Specifically, we develop a method to assess the ability of various effective connectivity measures to accurately determine the true effective connectivity of a given neuronal network. Our method is based on decision tree classifiers which are trained using several time series features that can be observed solely from experimentally recorded data. We show that the classifiers constructed in this work provide a general framework for determining whether a particular effective connectivity measure is likely to produce incorrect results when applied to a dataset.  相似文献   

15.
J Yang  P Li 《PloS one》2012,7(8):e42993
Are explicit versus implicit learning mechanisms reflected in the brain as distinct neural structures, as previous research indicates, or are they distinguished by brain networks that involve overlapping systems with differential connectivity? In this functional MRI study we examined the neural correlates of explicit and implicit learning of artificial grammar sequences. Using effective connectivity analyses we found that brain networks of different connectivity underlie the two types of learning: while both processes involve activation in a set of cortical and subcortical structures, explicit learners engage a network that uses the insula as a key mediator whereas implicit learners evoke a direct frontal-striatal network. Individual differences in working memory also differentially impact the two types of sequence learning.  相似文献   

16.
17.
Ecological complex networks are common in the study of patched ecological systems where evolving populations interact within and among the patches. The loss of the dispersal connections between patches due to reasons such as erosion of migration corridors and road construction can cause an undesirable partitioning of such networks resulting in instability or negative impact on the metapopulations. A partitioning or spatial cut that is aware of the stability of the dynamics in the resulting daughter sub-networks can be an effective tool in dealing with the situation like proposing road alignment through a metapopulations network. This paper provides some mathematical conditions along with an heuristic graph partitioning algorithm that can help in finding ecologically suitable partitions of the metapopulations networks. Our study noted the crucial role of network connectivity (measured by Fiedler value) in stabilizing the metapopulations. That is, a sufficiently connected metapopulations network along with constrained internal patch dynamics has stable dynamics around its homogeneous co-existential equilibrium solution. With the considered mathematical model in this paper, network partitioning does not alter the internal patch dynamics around its homogeneous equilibrium point, but it can change the connectivity levels in the partitioned subnetworks. Thus, the proposed partitioning problem for an already stable metapopulations network is reduced to finding its subnetworks with desirable connectivity levels.  相似文献   

18.
19.
20.
The number of interactions, or connectivity, among proteins in the yeast protein interaction network follows a power law. I compare patterns of connectivity for subsets of yeast proteins associated with senescence and with five other traits. I find that proteins associated with ageing have significantly higher connectivity than expected by chance, a pattern not seen for most other datasets. The pattern holds even when controlling for other factors also associated with connectivity, such as localization of protein expression within the cell. I suggest that these observations are consistent with the antagonistic pleiotropy theory for the evolution of senescence. In further support of this argument, I find that a protein's connectivity is positively correlated with the number of traits it influences or its degree of pleiotropy, and further show that the average degree of pleiotropy is greatest for proteins associated with senescence. I explain these results with a simple mathematical model combining assumptions of the antagonistic pleiotropy theory for the evolution of senescence with data on network topology. These findings integrate molecular and evolutionary models of senescence, and should aid in the search for new ageing genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号