首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a leaf flavonoid analysis of six Fuchsia species and seven Fuchsia hybrids, flavonols were found to be abundant in all taxa except F. procumbens. Flavone glycosides were found in only three species: luteolin 7-glucoside in F. splendens; and luteolin and apigenin 7-glucuronides and 7-glucuronidesulphates, tricin 7-glucuronidesulphate and diosmetin 7-glucuronide from one or both of the New Zealand species F. procumbens and F. excorticata. Luteolin 7- glucuronidesulphate is reported for the first time. Other less common phenolics identified include the flavanone, eriodictyol 7-glucoside from F. excorticata, a galloylglucose from F. triphylla, and a galloylglucosesulphate present in all taxa. Eight of the flavonoid glycosides proved useful as marker substances for particular Fuchsia species: quercetin 3- rhamnoside, 3-glucuronide and 3-rutinoside for F.fulgens; quercetin and kaempferol 3-galactosides for F. boliviana var. luxurians; diosmetin 7-glucuronide for F. excorticata and apigenin 7-glucuronide and 7-glucuronidesulphate for F. procumbens. The chemical results on the hybrids support the view that the cultivar ‘Mary’ is a hybrid of F. boliviana var. luxurians and F. triphylla and that both F.fulgens and F. triphylla are involved as parents of the cultivars ‘Koralle’ and ‘Traudchen Bondstedt’.  相似文献   

2.
Lipophilic and vacuolar flavonoids were separately identified in representative temperate species of the genera Anthemis, Chrysanthemum, Cotula, Ismelia, Leucanthemum and Tripleurospermum. The four Anthemis species investigated variously produced four main surface constituents, in leaf and flower: santin, quercetagetin 3,6,3′-trimethyl ether, scutellarein 6,4′-dimethyl ether and 6-hydroxyluteolin 6,3′-dimethyl ether. By contrast, surface extracts of disc and ray florets of the species of Chrysanthemum, Cotula, Ismelia, Leucanthemum and Tripleurospermum surveyed yielded five common flavones in the free state: apigenin, luteolin, acacetin, apigenin 7-methyl ether and chrysoeriol. Polar flavonoids were isolated and identified in leaf, ray floret and disc floret of all the above plants. Anthemis species were distinctive in having flavonol glycosides in the leaves, whereas the leaf flavonoids of the other taxa were generally flavone O-glycosides. The 3-glucoside and 3-rutinoside of patuletin were characterised for the first time from Anthemis tinctoria ssp. subtinctoria. Two new flavonol glycosides, the 5-glucuronides of quercetin and kaempferol, were obtained from the leaf of Leucanthemum vulgare, where they co-occur with the related 5-glucosides and with several flavone glycosides. The ray florets of these Anthemideae generally contain apigenin and/or luteolin 7-glucoside and 7-glucuronide, whereas disc florets have additional flavonol glycosides, notably the 7-glucosides of quercetin and patuletin and the 7-glucuronide of quercetin. A comparison of the flavonoid pattern encountered here with those previously recorded for Tanacetum indicate some chemical affinity between Anthemis and Tanacetum. Flavonoid patterns of the other five genera are more distinct from those of Tanacetum and suggest that those genera form a related group. All 14 species surveyed for their flavonoid profiles have distinctive constituents and the chemical data are in harmony with modern taxonomic treatments of the “Chrysanthemum complex” as a series of separate genera.  相似文献   

3.
《Phytochemistry》1987,26(11):3059-3064
Seventeen flavonoid glycosides were isolated and identified from Artemisia judaica: the 7-glucoside, 7-glucuronide, 4′-glucoside, 7-gentiobioside  相似文献   

4.
Identification of the phenolic constituents in flowers of nine palm species has revealed that charged C-glycosylflavones and caffeylshikimic acid are characteristically present. Flavonol glycosides are also common; the 3-glucosides, 3-rutinosides and 3,4′-diglucosides of quercetin and isorhamnetin and the 7-glucoside and 3,7-diglucoside of quercetin are all variously present. Tricin 7-glucoside, luteolin 7-rutinoside and several unchanged C-glycosylflavones were also detected. Male flowers of Phoenix canariensis differ from female flowers in having flavonol glycosides. As expected, in most species studied, flavonoid patterns in the flowers vary considerably from those found in the leaves.  相似文献   

5.
Ten flavonoid glycosides were isolated and identified from Artemisia monosperma: vicenin-2, lucenin-2, acacetin 7-glucoside, acacetin 7-rutinoside, the 3-glucosides and 3-rutinosides of quercetin and patuletin, and the 5-glucosides of quercetin and isorhamnetin. From Artemisia herba-alba eight flavonoid glycosides were isolated and identified: isovitexin, vicenin-2, schaftoside, isoschaftoside and the 3-glucosides and 3-rutinosides of quercetin and patuletin.  相似文献   

6.
The flavonoids of an additional eight species of Clibadium have been determined. The compounds are derivatives of kaempferol, quercetin and quercetagetin. O-Methylated quercetagetin derivatives were found in several taxa with the possibility that 6-methoxykaempferol may also exist in one collection. Kaempferol and quercetin exist as 3-O-glucosides, galactosides, rhamnosides, rutinosides and diglucosides although not all glycosides occur in each taxon. Quercetagetin derivatives occur as 7-O-glucosides. Observations on these newly investigated species confirm previous work in the genus that three types of flavonoid profiles exist: (1) kaempferol and quercetin 3-glycosides; (2) kaempferol and quercetin 3-glycosides plus quercetagetin 7-glucoside; and (3) kaempferol and quercetin 3-glycosides plus quercetagetin 7-glucoside and O-methylated derivatives of quercetagetin.  相似文献   

7.
Three quercetagetin methyl ethers, quercetin 3-glucoside, quercetin 3-glucuronide and a sulphated flavonoid were identified in leaves and flowers of Pulicaria arabica.  相似文献   

8.
A survey of 125 species of the Palmae revealed a complex pattern of flavonoids in the leaf. C-Glycosylflavones, leucoanthocyanins and tricin, luteolin and quercetin glycosides were common, being present in 84, 66, 51, 30 and 24% of the species respectively. Apigenin and kaempferol were recorded in only a few species and isorhamnetin only once. Eighteen flavonoids were identified: the 7-glucoside, 7-diglucoside and 7-rutinoside of both luteolin and tricin, tricin 5-glucoside, apigenin 7-rutinoside, quercetin 3-rutinoside-7-galactoside, isorhamnetin 7-rutinoside, orientin, iso-orientin, vitexin, isovitexin and vitexin 7-O-glucoside. Many of the C- and O-flavonoid glycosides were present as the potassium bisulphate salts and negatively charged compounds were detected in 50% of the species. The distribution patterns are correlated with the taxonomy of the family in several ways. Thus, the Phoenicoideae and Caryotoideae have distinctive flavonoid patterns, there is evidence to support the separation of the subfamilies Phytelephantoideae and Nypoideae, and tricin is a useful marker at tribal level. At the generic level, Cocos is clearly separated from Butia, and other Cocoseae and Mascarena and Chamaedorea form well defined groups within the Arecoideae. A numerical analysis of these biochemical data, together with morphological characters, produces a new classification which suggests that the flavonoid data may have more systematic value than is indicated when they are applied to the traditional classification.  相似文献   

9.
Two rare anthocyanins, cyanidin 3-(6-malonylglucoside)-7,3′-di(6-sinapylglucoside) and the demalonyl derivative, were characterised as the purple floral pigments of Dendrobium cv. ‘Pompadour’. Nine known flavonol glycosides were also identified, including the 3-rutinoside-7-glucosides of kaempferol and quercetin. One new glycoside was detected: the ferulyl ester of quercetin 7-rutinoside-7-glucoside. These flavonoid patterns are typical for plants in the family Orchidaceae.  相似文献   

10.
Eleven flavonol glycosides and two anthocyanins, only one of which was previously identified, were isolated from the flower petals of okra, Hibiscus esculentus L. On the basis of chromatographic, spectral, and degradative evidence, the following structural assignments were made: quercetin 4′-glucoside, quercetin 7-glucoside, quercetin 5-glucoside, quercetin 3-diglucoside, quercetin 4′-diglucoside, quercetin 3-triglucoside, quercetin 5-rhamnoglucoside, gossypetin 8-glucoside, gossypetin 8-rhamnoglucoside, gossypetin 3-glucosido-8-rhamnoglucoside, cyanidin 4′-glucoside, and cyanidin 3-glucosido-4′ glucoside. Some evidence was obtained of a pentahy-droxy, monomethoxy-flavone glycoside. The total flavonoid content in the red portion of the petal was 0.48% of fresh weight; that in the white portion was 2.51%. The two anthocyanins comprised 28.5% of the flavonoid content of the red flower but only a trace of the content of the white.  相似文献   

11.
The flavonoid chemistry of Lasthenia burkei has been re-examined. The flavonoid profile of the species is based upon quercetin, patuletin and an unidentified aglycone. Glucosides, glucuronides, xylosides, diglucosides and glucosylxylosides were identified. Small amounts of a patuletin triglycoside were also detected. One hundred and eight individual plants, representing five populations, three in Lake County and two in Sonoma County (California), were compared chromatographically. Two flavonoid races were observed based upon occurrence of xylosyl-based glycosides, quercetin and patuletin diglycosides and distribution of quercetin and patuletin glucuronides. Distinctions between the races was not absolute in all cases but the differences in frequencies of occurrence of the various types of compounds is marked.  相似文献   

12.
《Phytochemistry》1986,25(11):2547-2549
In a leaf flavonoid investigation of all species and one hybrid of Fuchsia sect. Skinnera flavonol glycosides were found in all except F. procumbens and F. perscandens. Flavone glycosides and their sulphates previously characterized in F. excorticata, F. procumbens and their hybrid were found additionally in F. perscandens and F. colensoi but were absent from F. cyrtandroides. However, the rare Fuchsia constituents diosmetin 7-glucuronide and eriodictyol 7-glucoside were identified only in F. excorticata, F. excorticata x F. procumbens and F. colensoi, supporting the suggestion that the latter species is of hybrid origin with F. excorticata as one of the parents. The chemical evidence also indicates that sect. Skinnera is monophyletic with the Tahitian F. cyrtandroides, a sister species to a clade incorporating all the New Zealand species and thus not necessarily derived from a New Zealand ancestor.  相似文献   

13.
Flavonoid glycosides are common dietary components which may have health-promoting activities. The metabolism of these compounds is thought to influence their bioactivity and uptake from the small intestine. It has been suggested that the enzyme cytosolic beta-glucosidase could deglycosylate certain flavonoid glycosides. To test this hypothesis, the enzyme was purified to homogeneity from pig liver for the first time. It was found to have a molecular weight (55 kDa) and specific activity (with p-nitrophenol glucoside) consistent with other mammalian cytosolic beta-glucosidases. The pure enzyme was indeed found to deglycosylate various flavonoid glycosides. Genistein 7-glucoside, daidzein 7-glucoside, apigenin 7-glucoside and naringenin 7-glucoside all acted as substrates, but we were unable to detect activity with naringenin 7-rhamnoglucoside. Quercetin 4'-glucoside was a substrate, but neither quercetin 3, 4'-diglucoside, quercetin 3-glucoside nor quercetin 3-rhamnoglucoside were deglycosylated. Estimates of K(m) ranged from 25 to 90 microM while those for V(max) were about 10% of that found with the standard artificial substrate p-nitrophenol glucoside. The non-substrate quercetin 3-glucoside was found to partially inhibit deglycosylation of quercetin 4'-glucoside, but it had no effect upon activity with p-nitrophenol glucoside. This study confirms that mammalian cytosolic beta-glucosidase can deglycosylate some, but not all, common dietary flavonoid glycosides. This enzyme may, therefore, be important in the metabolism of these compounds.  相似文献   

14.
Thirty-three Sonchus, one Embergeria, one Babcockia and five Taeckholmia species were surveyed for their phenolic constituents. The coumarins scopoletin and aesculetin were found as major constituents of Embergeria, Babcockia and Taeckholmia species, and in lesser amount in some Sonchus species. Six flavone glycosides were identified: apigenin 7-glucuronide, apigenin 7-rutinoside, luteolin 7-glucoside, luteolin 7-glucuronide, luteolin 7-rutinoside and luteolin 7-glucosylglucuronide and the systematic significance of their distribution is discussed.  相似文献   

15.
Quercetin is an important dietary flavonoid with in vitro antioxidant activity. However, it is found in human plasma as conjugates with glucuronic acid, sulfate or methyl groups, with no significant amounts of free quercetin present. The antioxidant properties of the conjugates found in vivo and their binding to serum albumin are unknown, but essential for understanding possible actions of quercetin in vivo. We, therefore, tested the most abundant human plasma quercetin conjugates, quercetin-3-glucuronide, quercetin-3'-sulfate and isorhamnetin-3-glucuronide, for their ability to inhibit Cu(II)-induced oxidation of human low density lipoprotein and to bind to human albumin, in comparison to free flavonoids and other quercetin conjugates. LDL oxidation lag time was increased by up to four times by low (<2 microM) concentrations of quercetin-3-glucuronide, but was unaffected by equivalent concentrations of quercetin-3'-sulfate and isorhamnetin-3-glucuronide. In general, the compounds under study prolonged the lag time of copper-induced LDL oxidation in the order: quercetin-7-glucuronide > quercetin > quercetin-3-glucuronide = quercetin-3-glucoside > catechin > quercetin-4'-glucuronide > isorhamnetin-3-glucuronide > quercetin-3'-sulfate. Thus the proposed products of small intestine metabolism (quercetin-7-glucuronide, quercetin-3-glucuronide) are more efficient antioxidants than subsequent liver metabolites (isorhamnetin-3-glucuronide, quercetin-3'-sulfate). Albumin-bound conjugates retained their property of protecting LDL from oxidation, although the order of efficacy was altered (quercetin-3'-sulfate > quercetin-7-glucuronide > quercetin-3-glucuronide > quercetin-4'-glucuronide = isorahmnetin-3-glucuronide). Kq values (concentration required to achieve 50% quenching) for albumin binding, as assessed by fluorescence quenching of Trp214, were as follows: quercetin-3'-sulfate (approximately 4 microM)= quercetin > or = quercetin-7-glucuronide > quercetin-3-glucuronide = quercetin-3-glucoside > isorhamnetin-3-glucuronide > quercetin-4'-glucuronide (approximately 20 microM). The data show that flavonoid intestinal and hepatic metabolism have profound effects on ability to inhibit LDL oxidation and a lesser but significant effect on binding to serum albumin.  相似文献   

16.
Heterogaura is a monotypic genus of the tribe Onagreae of the Onagraceae. It is endemic to south western Oregon and California. Four flavonol glycosides, kaempferol 3-O-rhamnoside, quercetin 3-O-glucoside, quercetin 3-O-rhamnoglucoside and myricetin 3-O-glucoside, were found to occur in methanolic leaf extracts of each of the populations sampled. The presence of only flavonols is consistent with flavonoid analyses from other genera of the Onagreae, including Clarkia, the closest relative of Heterogaura.  相似文献   

17.
The dietary bioavailability of the isoflavone genistein is decreased in older rats compared to young adults. Since flavonoids are metabolized extensively by the UDP-glucuronosyltransferases (UGTs), we hypothesized that UGT flavonoid conjugating activity changes with age. The effect of age on flavonoid glucuronidation was determined using hepatic microsomes from male F344 rats. Kinetic models of UGT activity toward the flavonol quercetin and the isoflavone genistein were established using pooled hepatic microsomal fractions of rats at different ages, and glucuronidation rates were determined using individual samples. Intrinsic clearance (Vmax/Km) values in 4-, 18- and 28-month-old rats were 0.100, 0.078 and 0.087 ml/min/mg for quercetin-7-O-glucuronide; 0.138, 0.133 and 0.088 for quercetin-3′-O-glucuronide; and 0.075, 0.077 and 0.057 for quercetin-4′-O-glucuronide, respectively. While there were no differences in formation rates of total quercetin glucuronides in individual samples, the production of the primary metabolite, quercetin-7-O-glucuronide, at 30 μM quercetin concentration was increased from 3.4 and 3.1 nmol/min/mg at 4 and 18 months to 3.8 nmol/min/mg at 28 months, while quercetin-3′-O-glucuronide formation at 28 months declined by a similar degree (P≤.05). At 30 and 300 μM quercetin concentration, the rate of quercetin-4′-O-glucuronide formation peaked at 18 months at 0.9 nmol/min/mg. Intrinsic clearance values of genistein 7-O-glucuronide increased with age, in contrast to quercetin glucuronidation. Thus, the capacity for flavonoid glucuronidation by rat liver microsomes is dependent on age, UGT isoenzymes and flavonoid structure.  相似文献   

18.
We examined the foliar flavonoids of Chrysanthemum arcticum subsp. arcticum and yezoense, and related Chrysanthemum species. Five flavonoid glycosides (luteolin 7-O-glucoside and 7-O-glucuronides of luteolin, apigenin, eriodictyol and naringenin) were isolated from these taxa. Luteolin 7-O-xylosylglucoside, luteolin, apigenin and quercetin 3-methyl ether were found in subsp. yezoense as very minor compounds that were not recognised by high-performance liquid chromatography/photodiode array (HPLC/PDA). The related species C. yezoense contained acacetin 7-O-rutinoside and some methoxylated flavone aglycones as major compounds. Thus, C. arcticum was distinguished from C. yezoense according to their flavonoid profiles.  相似文献   

19.
Thirty-one accessions of nine species belonging to three subgenera of Ocimum (basil, family Lamiaceae) were surveyed for flavonoid glycosides. Substantial infraspecific differences in flavonoid profiles of the leaves were found only in O. americanum, where var. pilosum accumulated the flavone C-glycoside, vicenin-2, which only occurred in trace amounts in var. americanum and was not detected in cv. Sacred. The major flavonoids in var. americanum and cv. Sacred, and also in all other species investigated for subgenus Ocimum, were flavonol 3-O-glucosides and 3-O-rutinosides. Many species in subgenus Ocimum also produced the more unusual compound, quercetin 3-O-(6″-O-malonyl)glucoside, and small amounts of flavone O-glycosides. The level of flavonol glycosides produced was reduced significantly in glasshouse-grown plants, but levels of flavone glycosides were unaffected. A single species investigated from subgenus Nautochilus, O. lamiifolium, had a different flavonoid glycoside profile, although the major compound was also a flavonol O-glycoside. This was identified as quercetin 3-O-xylosyl(1‴→2″)galactoside, using NMR spectroscopy. The species investigated from subgenus Gymnocimum, O. tenuiflorum (=O. sanctum), was characterised by the accumulation of flavone O-glycosides. These were isolated, and identified as the 7-O-glucuronides of luteolin and apigenin. Luteolin 5-O-glucoside was found in all nine species of Ocimum studied, and is considered to be a key character for the genus.  相似文献   

20.
Three anthocyanins, four flavonols, three aromatic acids and five gallotannins were isolated from Sapria himalayana f. albovinosa in Myanmar. They were identified as cyanidin 3-O-glucoside (1), cyanidin 3-O-xyloside (2) and peonidin 3-O-glucoside (3) (anthocyanins), quercetin 3-O-glucoside (4), quercetin 7-O-glucoside (5), quercetin 3-O-glucuronide (6) and isorhamnetin 3-O-glucoside (7) (flavonols), ellagic acid (8), gallic acid (9) and ethyl gallate (10) (aromatic acids), and 1,2,4,6-tetragalloylglucose (11), 1,4,6-trigalloylglucose (12), 1,2,6-trigalloylglucose (13), 1,2,4-trigalloylglucose (14) and 1,6-digalloylglucose (15) (gallotannins) by UV, LC-MS, acid hydrolysis, NMR and/or HPLC comparisons with authentic samples. The chemical composition of S. myanmarensis was qualitatively the same with that of S. himalayana f. albovinosa. Phenolic compounds of the Rafflesiaceae species including Sapria, Rafflesia and Rhizanthes were isolated and identified in this survey for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号