首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Motorized treadmills have been widely used in locomotion studies, although a debate remains concerning the extrapolation of results obtained from treadmill experiments to overground locomotion. Slight differences between treadmill (TRD) and overground running (OVG) kinematics and muscle activity have previously been reported. However, little is known about differences in the modular control of muscle activation in these two conditions. Therefore, we aimed at investigating differences between motor modules extracted from TRD and OVG by factorization of multi-muscle electromyographic (EMG) signals. Twelve healthy men ran on a treadmill and overground at their preferred speed while we recorded tibial acceleration and surface EMG from 11 ipsilateral lower limb muscles. We extracted motor modules representing relative weightings of synergistic muscle activations by non-negative matrix factorization from 20 consecutive gait cycles. Four motor modules were sufficient to accurately reconstruct the EMG signals in both TRD and OVG (average reconstruction quality = 92±3%). Furthermore, a good reconstruction quality (80±7%) was obtained also when muscle weightings of one condition (either OVG or TRD) were used to reconstruct the EMG data from the other condition. The peak amplitudes of activation signals showed a similar timing (pattern) across conditions. The magnitude of peak activation for the module related to initial contact was significantly greater for OVG, whereas peak activation for modules related to leg swing and preparation to landing were greater for TRD. We conclude that TRD and OVG share similar muscle weightings throughout motion. In addition, modular control for TRD and OVG is achieved with minimal temporal adjustments, which were dependent on the phase of the running cycle.  相似文献   

2.

Background

For the development of specialized training protocols for robot assisted gait training, it is important to understand how the use of exoskeletons alters locomotor task demands, and how the nature and magnitude of these changes depend on training parameters. Therefore, the present study assessed the combined effects of gait speed and body weight support (BWS) on muscle activity, and compared these between treadmill walking and walking in the Lokomat exoskeleton.

Methods

Ten healthy participants walked on a treadmill and in the Lokomat, with varying levels of BWS (0% and 50% of the participants’ body weight) and gait speed (0.8, 1.8, and 2.8 km/h), while temporal step characteristics and muscle activity from Erector Spinae, Gluteus Medius, Vastus Lateralis, Biceps Femoris, Gastrocnemius Medialis, and Tibialis Anterior muscles were recorded.

Results

The temporal structure of the stepping pattern was altered when participants walked in the Lokomat or when BWS was provided (i.e. the relative duration of the double support phase was reduced, and the single support phase prolonged), but these differences normalized as gait speed increased. Alternations in muscle activity were characterized by complex interactions between walking conditions and training parameters: Differences between treadmill walking and walking in the exoskeleton were most prominent at low gait speeds, and speed effects were attenuated when BWS was provided.

Conclusion

Walking in the Lokomat exoskeleton without movement guidance alters the temporal step regulation and the neuromuscular control of walking, although the nature and magnitude of these effects depend on complex interactions with gait speed and BWS. If normative neuromuscular control of gait is targeted during training, it is recommended that very low speeds and high levels of BWS should be avoided when possible.  相似文献   

3.
Hip and knee functions are intimately connected and reduced hip abductor function might play a role in development of knee osteoarthritis (OA) by increasing the external knee adduction moment during walking. The purpose of this study was to test the hypothesis that reduced function of the gluteus medius (GM) muscle would lead to increased external knee adduction moment during level walking in healthy subjects. Reduced GM muscle function was induced experimentally, by means of intramuscular injections of hypertonic saline that produced an intense short-term muscle pain and reduced muscle function. Isotonic saline injections were used as non-painful control. Fifteen healthy subjects performed walking trials at their self-selected walking speed before and immediately after injections, and again after 20 min of rest, to ensure pain recovery. Standard gait analyses were used to calculate three-dimensional trunk and lower extremity joint kinematics and kinetics. Surface electromyography (EMG) of the glutei, quadriceps, and hamstring muscles were also measured. The peak GM EMG activity had temporal concurrence with peaks in frontal plane moments at both hip and knee joints. The EMG activity in the GM muscle was significantly reduced by pain (?39.6%). All other muscles were unaffected. Peaks in the frontal plane hip and knee joint moments were significantly reduced during pain (?6.4% and ?4.2%, respectively). Lateral trunk lean angles and midstance hip joint adduction and knee joint extension angles were reduced by ?1°. Thus, the gait changes were primarily caused by reduced GM function. Walking with impaired GM muscle function due to pain significantly reduced the external knee adduction moment. This study challenge the notion that reduced GM function due to pain would lead to increased loads at the knee joint during level walking.  相似文献   

4.
To understand the role of trunk muscles in maintenance of dynamic postural equilibrium we investigate trunk movements during gait initiation and walking, performing trunk kinematics analysis, Erector spinae muscle (ES) recordings and dynamic analysis. ES muscle expressed a metachronal descending pattern of activity during walking and gait initiation. In the frontal and horizontal planes, lateroflexion and rotation occur before in the upper trunk and after in the lower trunk. Comparison of ES muscle EMGs and trunk kinematics showed that trunk muscle activity precedes corresponding kinematics activity, indicating that the ES drive trunk movement during locomotion and thereby allowing a better pelvis mobilization. EMG data showed that ES activity anticipates propulsive phases in walking with a repetitive pattern, suggesting a programmed control by a central pattern generator. Our findings also suggest that the programs for gait initiation and walking overlap with the latter beginning before the first has ended.  相似文献   

5.
《IRBM》2022,43(5):447-455
ObjectivesThe deviation in gait cycle due to trunk acceleration and muscle activity on even and uneven inclined planes should be analyzed for the design of lower limb exoskeletons. This study compares the gait variability of gastrocnemius and medial hamstring muscle activity variation of twenty young male adults on inclined even and uneven planes.Material and methodsThe individuals walked on a long, 10° inclined even and uneven plane in both up-the-plane and down-the-plane directions at their preferred speed (average speed is 1.2 m/s). Gait variability during walking was calculated using an average standard deviation of trunk acceleration and the significance of change was calculated using two-way-ANOVA. For studying the difference between integrated electromyography (IEMG) values of walking on even and uneven planes, two parameters Normalized IEMG Percentage (NIP) and IEMG Variation Percentage (IVP) were chosen for the analysis.ResultsThe results strongly agree with the hypothesis that gait variability hikes in the vertical direction of subject with a p-value of 0.04. The IEMG range of medial-hamstring muscle while walking on even and uneven plane is not highly significant for swing (0.44) as well as stance phase (0.47). While walking on an inclined uneven plane, the response of gastrocnemius muscle indicated the variation of NIP between 14.31% to 64.63%. It was observed that NIP and IEMG values of medial-hamstring muscles during backward walking have a resemblance.ConclusionTrunk variability had a significant change in the vertical direction (V) and was insignificant in medial-lateral (ML) and anterior-posterior (AP) orientations for both even and uneven inclined planes during forward and reverse walking. The muscle activity of gastrocnemius and medial-hamstring muscles does not have sound variations while walking on the inclined uneven plane.  相似文献   

6.
Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163–191 ms). Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally measure reflexes during treadmill-based clinical gait analysis.  相似文献   

7.
This study was conducted to analyze the unimpaired control of the trunk during walking. Studying the unimpaired control of the trunk reveals characteristics of good control. These characteristics can be pursued in the rehabilitation of impaired control. Impaired control of the trunk during walking is associated with aging and many movement disorders. This is a concern as it is considered to increase fall risk. Muscles that contribute to the trunk control in normal walking may also contribute to it under perturbation circumstances, attempting to prevent an impending fall. Knowledge of such muscles can be used to rehabilitate impaired control of the trunk. Here, angular accelerations of the trunk induced by individual muscles, in the sagittal and frontal planes, were calculated using 3D muscle-driven simulations of seven young healthy subjects walking at free speed. Analysis of the simulations demonstrated that the abdominal and back muscles displayed large contributions throughout the gait cycle both in the sagittal and frontal planes. Proximal lower-limb muscles contributed more than distal muscles in the sagittal plane, while both proximal and distal muscles showed large contributions in the frontal plane. Along with the stance-limb muscles, the swing-limb muscles also exhibited considerable contribution. The gluteus medius was found to be an important individual frontal-plane control muscle; enhancing its function in pathologies could ameliorate gait by attenuating trunk sway. In addition, since gravity appreciably accelerated the trunk in the frontal plane, it may engender excessive trunk sway in pathologies.  相似文献   

8.
Skilled locomotor behaviour requires information from various levels within the central nervous system (CNS). Mathematical models have permitted researchers to simulate various mechanisms in order to understand the organization of the locomotor control system. While it is difficult to adequately characterize the numerous inputs to the locomotor control system, an alternative strategy may be to use a kinematic movement plan to represent the complex inputs to the locomotor control system based on the possibility that the CNS may plan movements at a kinematic level. We propose the use of artificial neural network (ANN) models to represent the transformation of a kinematic plan into the necessary motor patterns. Essentially, kinematic representation of the actual limb movement was used as the input to an ANN model which generated the EMG activity of 8 muscles of the lower limb and trunk. Data from a wide variety of gait conditions was necessary to develop a robust model that could accommodate various environmental conditions encountered during everyday activity. A total of 120 walking strides representing normal walking and ten conditions where the normal gait was modified in terms of cadence, stride length, stance width or required foot clearance. The final network was assessed on its ability to predict the EMG activity on individual walking trials as well as its ability to represent the general activation pattern of a particular gait condition. The predicted EMG patterns closely matched those recorded experimentally, exhibiting the appropriate magnitude and temporal phasing required for each modification. Only 2 of the 96 muscle/gait conditions had RMS errors above 0.10, only 5 muscle/gait conditions exhibited correlations below 0.80 (most were above 0.90) and only 25 muscle/gait conditions deviated outside the normal range of muscle activity for more than 25% of the gait cycle. These results indicate the ability of single network ANNs to represent the transformation between a kinematic movement plan and the necessary muscle activations for normal steady state locomotion but they were also able to generate muscle activation patterns for conditions requiring changes in walking speed, foot placement and foot clearance. The abilities of this type of network have implications towards both the fundamental understanding of the control of locomotion and practical realizations of artificial control systems for use in rehabilitation medicine.  相似文献   

9.
Walking requires coordination of muscles to support the body during single stance. Impaired ability to coordinate muscles following stroke frequently compromises walking performance and results in extremely low walking speeds. Slow gait in post-stroke hemiparesis is further complicated by asymmetries in lower limb muscle excitations. The objectives of the current study were: (1) to compare the muscle coordination patterns of an individual with flexed stance limb posture secondary to post-stroke hemiparesis with that of healthy adults walking very slowly, and (2) to identify how paretic and non-paretic muscles provide support of the body center of mass in this individual. Simulations were generated based on the kinematics and kinetics of a stroke survivor walking at his self-selected speed (0.3 m/s) and of three speed-matched, healthy older individuals. For each simulation, muscle forces were perturbed to determine the muscles contributing most to body weight support (i.e., height of the center of mass during midstance). Differences in muscle excitations and midstance body configuration caused paretic and non-paretic ankle plantarflexors to contribute less to midstance support than in healthy slow gait. Excitation of paretic ankle dorsiflexors and knee flexors during stance opposed support and necessitated compensation by knee and hip extensors. During gait for an individual with post-stroke hemiparesis, adequate body weight support is provided via reorganized muscle coordination patterns of the paretic and non-paretic lower limbs relative to healthy slow gait.  相似文献   

10.
Human gait is characterized by smooth, regular and repeating movements but the control system is complex: there are many more actuators (i.e. muscles) than degrees of freedom in the system. Statistical pattern-recognition techniques have been applied to examine muscle activity signals, but these have all concentrated exclusively on unilateral gait. We report here the application of factor analysis to the electromyographic patterns of 16 muscles (eight bilateral pairs) in ten normal subjects. Consistent with our prior work, we have established two factors, named loading response and propulsion, which correspond with important phases in the gait cycle. In addition, we have also discovered a third factor, which we have named the coordinating factor, that maintains the phase shift between the left and right sides. These findings suggest that the central nervous system solves the problem of high dimensionality by generating a few fundamental signals which control the major muscle groups in both legs.  相似文献   

11.
The study of human evolution depends upon a fair assessment of the ability of hominin individuals to gain access to necessary resources. We expect that the morphology of extant and extinct populations represents a successful locomotory system that allowed individuals to move across the environment gaining access to food, water, and mates while still maintaining excess energy to allocate to reproduction. Our assessment of locomotor morphology must then incorporate tests of fitness within realistic environments—environments that themselves vary in terrain and whose negotiation requires a variety of gait and speeds. This study assesses muscular activity (measured as the integrated signal from surface electromyography) of seven thigh and hip muscle groups during walking and running across a wide range of speeds and inclines to systematically assess the role that morphology can play in minimizing muscular activity and thus energy expenditure. Our data suggest that humans are better adapted to walking than running at any slope, as evidenced by small confidence intervals and even trends across speed and incline. We find that while increasing task intensity unsurprisingly increases muscular activity in the lower limb, individuals with longer limbs show significantly reduced activity during both walking and running, especially in the hip adductors, gluteus maximus, and hamstring muscles. People with a broader pelvis show significantly reduced activity in the hip adductor and hamstring muscles while walking. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Investigations of trunk muscle activation during gait are rare in the literature. As yet, the small body of literature on trunk muscle activation during gait does not include any systematic study on the influence of walking speed. Therefore, the aim of this study was to analyze trunk muscle activation patterns at different walking speeds. Fifteen healthy men were investigated during walking on a treadmill at speeds of 2, 3, 4, 5 and 6 km/h. Five trunk muscles were investigated using surface EMG (SEMG). Data were time normalized according to stride time and grand averaged SEMG curves were calculated. From these data stride characteristics were extracted: mean SEMG amplitude, minimum SEMG level and the variation coefficient (VC) over the stride period. With increasing walking speed, muscle activation patterns remained similar in terms of phase dependent activation during stride, but mean amplitudes increased generally. Phasic activation, indicated by VC, increased also, but remained almost unchanged for the back muscles (lumbar multifidus and erector spinae) between 4 and 6 km/h. During stride, minimum amplitude reached a minimum at 4 km/h for the back muscles, but for internal oblique muscle it decreased continuously from 2 to 6 km/h. Cumulative sidewise activation of all investigated muscles reached maximum amplitudes during the contralateral heel strike and propulsion phases. The observed changes argue for a speed dependent modulation of activation of trunk muscles within the investigated range of walking speeds prior to strictly maintaining certain activation characteristics for all walking speeds.  相似文献   

13.
Previous studies have identified differences in gait kinetics between healthy older and young adults. However, the underlying factors that cause these changes are not well understood. The objective of this study was to assess the effects of age and speed on the activation of lower-extremity muscles during human walking. We recorded electromyography (EMG) signals of the soleus, gastrocnemius, biceps femoris, medial hamstrings, tibialis anterior, vastus lateralis, and rectus femoris as healthy young and older adults walked over ground at slow, preferred and fast walking speeds. Nineteen healthy older adults (age, 73 ± 5 years) and 18 healthy young adults (age, 26 ± 3 years) participated. Rectified EMG signals were normalized to mean activities over a gait cycle at the preferred speed, allowing for an assessment of how the activity was distributed over the gait cycle and modulated with speed. Compared to the young adults, the older adults exhibited greater activation of the tibialis anterior and soleus during mid-stance at all walking speeds and greater activation of the vastus lateralis and medial hamstrings during loading and mid-stance at the fast walking speed, suggesting increased coactivation across the ankle and knee. In addition, older adults depend less on soleus muscle activation to push off at faster walking speeds. We conclude that age-related changes in neuromuscular activity reflect a strategy of stiffening the limb during single support and likely contribute to reduced push off power at fast walking speeds.  相似文献   

14.
Pathological movement patterns like crouch gait are characterized by abnormal kinematics and muscle activations that alter how muscles support the body weight during walking. Individual muscles are often the target of interventions to improve crouch gait, yet the roles of individual muscles during crouch gait remain unknown. The goal of this study was to examine how muscles contribute to mass center accelerations and joint angular accelerations during single-limb stance in crouch gait, and compare these contributions to unimpaired gait. Subject-specific dynamic simulations were created for ten children who walked in a mild crouch gait and had no previous surgeries. The simulations were analyzed to determine the acceleration of the mass center and angular accelerations of the hip, knee, and ankle generated by individual muscles. The results of this analysis indicate that children walking in crouch gait have less passive skeletal support of body weight and utilize substantially higher muscle forces to walk than unimpaired individuals. Crouch gait relies on the same muscles as unimpaired gait to accelerate the mass center upward, including the soleus, vasti, gastrocnemius, gluteus medius, rectus femoris, and gluteus maximus. However, during crouch gait, these muscles are active throughout single-limb stance, in contrast to the modulation of muscle forces seen during single-limb stance in an unimpaired gait. Subjects walking in crouch gait rely more on proximal muscles, including the gluteus medius and hamstrings, to accelerate the mass center forward during single-limb stance than subjects with an unimpaired gait.  相似文献   

15.
Gait performance secondary to a stroke is partially dependent on residual muscle strength. However, to pinpoint more precisely the mechanism of this relationship, biomechanical models, such as the muscular utilization ratio (MUR) that integrates both muscle strength and gait parameters into the concept of level of effort, are warranted. The aim of the present study was to evaluate the MUR of plantarflexors, hip flexors and extensor muscles during their concentric action in 17 chronic hemiparetic participants walking at self-selected and maximal speeds. Results revealed that peak MUR increased with gait speed. At self-selected speed (0.73+/-0.27 m/s), peak MUR values on the paretic side were 64% (+/-18.7), 46% (+/-27.6) and 33% (+/-25.6) for the plantarflexors, hip flexors and extensor muscles, respectively. At maximal speed (1.26+/-0.39 m/s), corresponding values were 77% (+/-23.6), 72% (+/-33.0) and 58% (+/-32.1). Peak MUR showed negative associations (-0.33-0.68), although not all significant, with voluntary muscle strength. The results of this study indicated that the peak MUR increased with gait speed. The plantarflexors were the most used muscle group at self-selected speed, whereas at maximal speed the three muscle groups showed similar peak MUR values. This last finding suggested an important role of the hip muscles in reaching a faster speed. Lastly, because moderate associations were found between peak MUR values and the voluntary muscle strength of hip flexors and extensors, it can be concluded that the weakest paretic muscle groups show, in general, the highest level of effort during gait.  相似文献   

16.
Standing and walking balance control in humans relies on the transformation of sensory information to motor commands that drive muscles. Here, we evaluated whether sensorimotor transformations underlying walking balance control can be described by task-level center of mass kinematics feedback similar to standing balance control. We found that delayed linear feedback of center of mass position and velocity, but not delayed linear feedback from ankle angles and angular velocities, can explain reactive ankle muscle activity and joint moments in response to perturbations of walking across protocols (discrete and continuous platform translations and discrete pelvis pushes). Feedback gains were modulated during the gait cycle and decreased with walking speed. Our results thus suggest that similar task-level variables, i.e. center of mass position and velocity, are controlled across standing and walking but that feedback gains are modulated during gait to accommodate changes in body configuration during the gait cycle and in stability with walking speed. These findings have important implications for modelling the neuromechanics of human balance control and for biomimetic control of wearable robotic devices. The feedback mechanisms we identified can be used to extend the current neuromechanical models that lack balance control mechanisms for the ankle joint. When using these models in the control of wearable robotic devices, we believe that this will facilitate shared control of balance between the user and the robotic device.  相似文献   

17.
This study investigated whether the modular control of changes in direction while running is influenced by perturbations to balance. Twenty-two healthy men performed 90° side-step unperturbed cutting manoeuvres while running (UPT) as well as manoeuvres perturbed at initial contact (PTB, 10 cm translation of a moveable force platform). Surface EMG activity from 16 muscles of the supporting limb and trunk, kinematics, and ground reaction forces were recorded. Motor modules composed by muscle weightings and their respective activation signals were extracted from the EMG signals by non-negative matrix factorization. Knee joint moments, co-contraction ratios and co-contraction indexes (hamstrings/quadriceps) and motor modules were compared between UPT and PTB. Five motor modules were enough to reconstruct UPT and PTB EMG activity (variance accounted for UPT  = 92±5%, PTB = 90±6%). Moreover, higher similarities between muscle weightings from UPT and PTB (similarity = 0.83±0.08) were observed in comparison to the similarities between the activation signals that drive the temporal properties of the motor modules (similarity = 0.71±0.18). In addition, the reconstruction of PTB EMG from fixed muscle weightings from UPT resulted in higher reconstruction quality (82±6%) when compared to reconstruction of PTB EMG from fixed activation signals from UPT (59±11%). Perturbations at initial contact reduced knee abduction moments (7%), as well as co-contraction ratio (11%) and co-contraction index (12%) shortly after the perturbation onset. These changes in co-contraction ratio and co-contraction index were caused by a reduced activation of hamstrings that was also verified in the activation signals of the specific motor module related to initial contact. Our results suggested that perturbations to balance influence modular control of cutting manoeuvres, especially the temporal properties of muscle recruitment, due to altered afferent inputs to the motor patterns. Furthermore, reduced knee stability during perturbed events may be related to overall control of lower limb muscles.  相似文献   

18.
Cyclic activation of the external and internal oblique muscles contributes to twisting moments during normal gait. During pushing while walking, it is not well understood how these muscles respond to presence of predictable (cyclic push-off forces) and unpredictable (external) perturbations that occur in pushing tasks. We hypothesized that the predictable perturbations due to the cyclic push-off forces would be associated with cyclic muscle activity, while external perturbations would be counteracted by cocontraction of the oblique abdominal muscles. Eight healthy male subjects pushed at two target forces and two handle heights in a static condition and while walking without and with external perturbations. For all pushing tasks, the median, the static (10th percentile) and the peak levels (90th percentile) of the electromyographic amplitudes were determined. Linear models with oblique abdominal EMGs and trunk angles as input were fit to the twisting moments, to estimate trunk stiffness. There was no significant difference between the static EMG levels in pushing while walking compared to the peak levels in pushing while standing. When pushing while walking, the additional dynamic activity was associated with the twisting moments, which were actively modulated by the pairs of oblique muscles as in normal gait. The median and static levels of trunk muscle activity and estimated trunk stiffness were significantly higher when perturbations occurred than without perturbations. The increase baseline of muscle activity indicated cocontraction of the antagonistic muscle pairs. Furthermore, this cocontraction resulted in an increased trunk stiffness around the longitudinal axis.  相似文献   

19.
The forces generated by the muscles with origin on the human femur play a major role in transtibial amputee gait, as they are the most effective of the means that the body can use for propulsion. By estimating the forces generated by the thigh muscles of transtibial amputees, and comparing them to the forces generated by the thigh muscles of normal subjects, it is possible to better estimate the energy output needed from prosthetic devices. The purpose of this paper is to obtain the forces generated by the thigh muscles of transtibial amputees and compare these with forces obtained from the same muscles in the case of normal subjects. Two transtibial amputees and four normal subjects similar in size to the amputees were investigated. Level ground walking was chosen as the movement to be studied, since it is a common activity that most amputees engage in. Inverse dynamics and a muscle recruitment algorithm (developed by AnyBody Technology®) were used for generating the muscle activation patterns and for computing the muscle forces. The muscle forces were estimated as two sums: one for all posterior muscles and one for the anterior muscles, based on the position of the muscles of the thigh relative to the frontal plane of the human body. The results showed that a significantly higher force is generated by the posterior muscles of the amputees during walking, leading to a general increase of the metabolic cost necessary for one step.  相似文献   

20.
Despite the extensive electromyographic research that has addressed limb muscle function during primate quadrupedalism, the role of the back muscles in this locomotor behavior has remained undocumented. We report here the results of an electromyographic (EMG) analysis of three intrinsic back muscles (multifidus, longissimus, and iliocostalis) in the baboon (Papio anubis), chimpanzee (Pan troglodytes), and orangutan (Pongo pygmaeus) during quadrupedal walking. The recruitment patterns of these three back muscles are compared to those reported for the same muscles during nonprimate quadrupedalism. In addition, the function of the back muscles during quadrupedalism and bipedalism in the two hominoids is compared. Results indicate that the back muscles restrict trunk movements during quadrupedalism by contracting with the touchdown of one or both feet, with more consistent activity associated with touchdown of the contralateral foot. Moreover, despite reported differences in their gait preferences and forelimb muscle EMG patterns, primates and nonprimate mammals recruit their back muscles in an essentially similar fashion during quadrupedal walking. These quadrupedal EMG patterns also resemble those reported for chimpanzees, gibbons and humans (but not orangutans) walking bipedally. The fundamental similarity in back muscle function across species and locomotor behaviors is consistent with other data pointing to conservatism in the evolution of the neural control of tetrapod limb movement, but does not preclude the suggestion (based on forelimb muscle EMG and spinal lesion studies) that some aspects of primate neural circuitry are unique. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号