首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein phosphorylation is a key mechanism to regulate protein functions. However, the contribution of this protein modification to species divergence is still largely unknown. Here, we studied the evolution of mammalian phosphoregulation by comparing the human and mouse phosphoproteomes. We found that 84% of the positions that are phosphorylated in one species or the other are conserved at the residue level. Twenty percent of these conserved sites are phosphorylated in both species. This proportion is 2.5 times more than expected by chance alone, suggesting that purifying selection is preserving phosphoregulation. However, we show that the majority of the sites that are conserved at the residue level are differentially phosphorylated between species. These sites likely result from false-negative identifications due to incomplete experimental coverage, false-positive identifications and non-functional sites. In addition, our results suggest that at least 5% of them are likely to be true differentially phosphorylated sites and may thus contribute to the divergence in phosphorylation networks between mouse and humans and this, despite residue conservation between orthologous proteins. We also showed that evolutionary turnover of phosphosites at adjacent positions (in a distance range of up to 40 amino acids) in human or mouse leads to an over estimation of the divergence in phosphoregulation between these two species. These sites tend to be phosphorylated by the same kinases, supporting the hypothesis that they are functionally redundant. Our results support the hypothesis that the evolutionary turnover of phosphorylation sites contributes to the divergence in phosphorylation profiles while preserving phosphoregulation. Overall, our study provides advanced analyses of mammalian phosphoproteomes and a framework for the study of their contribution to phenotypic evolution.  相似文献   

2.
Protein phosphorylation dynamically regulates cellular activities in response to environmental cues. Sequence conservation analysis of recent proteome-wide phosphorylation data revealed that many previously unidentified phosphorylation sites are not well-conserved leading to the proposal that many are non-functional. However, this is based on the assumption that protein phosphorylation modulates protein function through specific position on protein sequence. Based on emerging understanding on phospho-regulation of cellular activities, we argue, with examples, that non-positionally conserved phosphorylation sites can very well be functional. We previously identified phosphorylation events that need not be conserved at same positions across orthologous proteins but are likely maintained by evolutionary conserved signaling networks through orthologous kinases. We found that proteins with such conserved phosphorylation patterns are statistically over-represented with protein and DNA-binding annotation. Here, we further correlated these proteins with protein-protein interaction data from an independent systematic study and observed they indeed interact frequently with other proteins. Hence, we speculate that non-positionally conserved phosphorylation site could be modulating biomolecular association of phosphorylated proteins possibly through fine-tuning protein’s bulk electrostatic charge and through creating binding sites for phospho-binding interaction domains. We, therefore, advocate the development of complementary evolutionary approaches to interpret physiological important sites.  相似文献   

3.
Although mitogen-activated protein kinases (MAPKs) have been shown to be activated by a wide range of biotic and abiotic stimuli in diverse plant species, few in vivo substrates for these kinases have been identified. While studying proteins that are differentially phosphorylated upon treatment of Arabidopsis suspension cultures with the general bacterial elicitor peptide flagellin-22 (flg22), we identified two proteins with endogenous nickel binding properties that become phosphorylated after flg22 elicitation. These highly related proteins, AtPHOS32 and AtPHOS34, show similarity to bacterial universal stress protein A. We identified one of the phosphorylation sites on AtPHOS32 by nanoelectrospray ionization tandem mass spectrometry. Phosphorylation in a phosphoSer-Pro motif indicated that this protein may be a substrate of MAPKs. Using in vitro kinase assays, we confirmed that AtPHOS32 is a substrate of both AtMPK3 and AtMPK6. Specificity of phosphorylation was demonstrated by site-directed mutagenesis of the first phosphorylation site. In addition, immunosubtraction of both MAPKs from protein extracts removed detectable kinase activity toward AtPHOS32, indicating that the two MAPKs were the predominate kinases recognizing the motif in this protein. Finally, the target phosphorylation site in AtPHOS32 is conserved in AtPHOS34 and among apparent orthologues from many plant species, indicating that phosphorylation of these proteins by AtMPK3 and AtMPK6 orthologues has been conserved throughout evolution.  相似文献   

4.
Protein phosphorylation is a highly conserved mechanism for regulating protein function, being found in all prokaryotes and eukaryotes examined. Phosphorylation can alter protein activity or subcellular localization, target proteins for degradation and effect dynamic changes in protein complexes. In many cases, different kinases may be involved in each of these processes for a single protein, allowing a large degree of combinatorial regulation at the post-translational level. Therefore, knowing which kinases are activated during a response and which proteins are substrates is integral to understanding the mechanistic regulation of a wide range of biological processes. In this paper, I will describe methods for monitoring kinase activity, investigating kinase-substrate specificity, examining phosphorylation in planta and the determination of phosphorylation sites in a protein. In addition, strategic considerations for experimental design and variables will be discussed.  相似文献   

5.
Protein phosphorylation on serine, threonine, and tyrosine (Ser/Thr/Tyr) is well established as a key regulatory posttranslational modification in eukaryotes, but little is known about its extent and function in prokaryotes. Although protein kinases and phosphatases have been predicted and identified in a variety of bacterial species, classical biochemical approaches have so far revealed only a few substrate proteins and even fewer phosphorylation sites. Bacillus subtilis is a model Gram-positive bacterium in which two-dimensional electrophoresis-based studies suggest that the Ser/Thr/Tyr phosphorylation should be present on more than a hundred proteins. However, so far only 16 phosphorylation sites on eight of its proteins have been determined, mostly in in vitro studies. Here we performed a global, gel-free, and site-specific analysis of the B. subtilis phosphoproteome using high accuracy mass spectrometry in combination with biochemical enrichment of phosphopeptides from digested cell lysates. We identified 103 unique phosphopeptides from 78 B. subtilis proteins and determined 78 phosphorylation sites: 54 on serine, 16 on threonine, and eight on tyrosine. Detected phosphoproteins are involved in a wide variety of metabolic processes but are enriched in carbohydrate metabolism. We report phosphorylation sites on almost all glycolytic and tricarboxylic acid cycle enzymes, several kinases, and members of the phosphoenolpyruvate-dependent phosphotransferase system. This significantly enlarged number of bacterial proteins known to be phosphorylated on Ser/Thr/Tyr residues strongly supports the emerging view that protein phosphorylation is a general and fundamental regulatory process, not restricted only to eukaryotes, and opens the way for its detailed functional analysis in bacteria.  相似文献   

6.
Li M  Satinover DL  Brautigan DL 《Biochemistry》2007,46(9):2380-2389
Protein phosphatase-1 (PP1) is an essential protein Ser/Thr phosphatase that is extraordinarily conserved from yeast to human, and Inhibitor-2 (I-2) is the most ancient of the heat-stable proteins specific for PP1. We identified novel I-2 homologues in Caenorhabditis elegans (Ce) and Xenopus laevis (Xe) and compared them to the I-2 proteins from Homo sapiens (Hs), Saccharomyces cerevisiae (GLC8), and Drosophila melanogaster (Dm). The Ce I-2 and Dm I-2 showed the highest potency inhibition of rabbit PP1 with IC50 near 5 nM compared to Hs I-2 and Xe I-2 with IC50 between 10 and 50 nM and GLC8 with >100-fold lower activity. Inhibition of PP1 bound to Nek2 kinase activated the kinase to phosphorylate a C-Nap1 domain substrate. All the species of I-2 except GLC8 activated the Nek2::PP1 to the same extent as microcystin-LR. Only Hs I-2 and Xe I-2, not the I-2 proteins more divergent in sequence, directly activated human Aurora-A kinase. Various species of I-2 have a common PxTP phosphorylation site that showed a wide range of reactivity with GSK3, ERK, or CDC2/cyclinB1 kinases. The Suc1 subunit of CDC2/cyclinB1 enhanced reactivity with I-2, consistent with this being a site of mitotic phosphorylation. The results show species specificity among the I-2 family within the context of conserved PP1 inhibitory activity and variable phosphorylation by Pro-directed kinases.  相似文献   

7.
Human pathogenic protozoa of the genus Leishmania undergo various developmental transitions during the infectious cycle that are triggered by changes in the host environment. How these parasites sense, transduce, and respond to these signals is only poorly understood. Here we used phosphoproteomic approaches to monitor signaling events in L. donovani axenic amastigotes, which may be important for intracellular parasite survival. LC-ESI-MS/MS analysis of IMAC-enriched phosphoprotein extracts identified 445 putative phosphoproteins in two independent biological experiments. Functional enrichment analysis allowed us to gain insight into parasite pathways that are regulated by protein phosphorylation and revealed significant enrichment in our data set of proteins whose biological functions are associated with protein turn-over, stress response, and signal transduction. LC-ESI-MS/MS analysis of TiO(2)-enriched phosphopeptides confirmed these results and identified 157 unique phosphopeptides covering 181 unique phosphorylation sites in 126 distinct proteins. Investigation of phosphorylation site conservation across related trypanosomatids and higher eukaryotes by multiple sequence alignment and cluster analysis revealed L. donovani-specific phosphoresidues in highly conserved proteins that share significant sequence homology to orthologs of the human host. These unique phosphorylation sites reveal important differences between host and parasite biology and post-translational protein regulation, which may be exploited for the design of novel anti-parasitic interventions.  相似文献   

8.
Ser/Thr- and Tyr-Protein kinases constitute a key switch underlying the dynamic nature and graded regulation of signal transduction and pathway activities in cellular organization. Here we describe the identification and characterization of Dusty, a single-copy gene that arose in metazoan evolution and encodes a putative dual Ser/Thr and Tyr protein kinase with unique structural features. Dusty is widely expressed in vertebrates, broadly distributed in the central nervous system, and deregulated in certain human cancers. Confocal imaging of transiently expressed human Dusty-GFP fusion proteins showed a cytoplasmic distribution. Dusty proteins from lower to higher species display an increasing degree of sequence conservation from the N-terminal non-catalytic domain to C-terminal catalytic domain. The non-catalytic region has eight conserved cysteine residues, multiple potential kinase-docking motifs and phosphorylation sites, whereas the catalytic domain is divergent and about equally distant of Ser/Thr and Tyr protein kinases. Homology analyses identified the essential catalytic residues, suggesting that Dusty homologues all possess the enzymatic activity of a protein kinase. Taken together, Dusty is a unique evolutionarily selected group of divergent protein kinases that may play important functional roles in the brain and other tissues of vertebrates.  相似文献   

9.
The human 18S ribosomal RNA gene: evolution and stability.   总被引:10,自引:1,他引:9       下载免费PDF全文
We report the 1,870-base-pair primary sequence of a human 18S rRNA gene and propose a secondary structure based on this sequence and the general mammalian structure. A basic secondary structure for the small subunit rRNA has been preserved throughout evolution by compensatory and neutral base changes in double-stranded regions. The molecule contains eight regions that can vary in structure and that comprise 432 bases, while 1,438 bases belong to regions of conserved structure among all species tested. The conserved regions show a remarkably low sequence divergence rate of 0.1% between the human and mouse genes over the approximately 80 million years since the mammalian radiation. This value may make the small subunit rDNA the most highly conserved sequence known. Sequence conservation in higher eukaryotes with multiple copies of the gene is probably achieved by the combination of strong selection and the correction of tandem genes by unequal homologous exchange.  相似文献   

10.
《Fly》2013,7(2):130-142
Members of the highly conserved LAMMER family of protein kinases have been described in all eukaryotes. LAMMER kinases possess markedly similar peptide motifs in their kinase catalytic subdomains that are responsible for phosphotransfer and substrate interaction, suggesting that family members serve similar functions in widely diverged species. This hypothesis is supported by their phosphorylation of SR and SR-related proteins in diverged species. Here we describe a 3-dimensional homology model of the catalytic domain of DOA, a representative LAMMER kinase, encoded by the Drosophila locus Darkener of apricot (Doa). Homology modeling of DOA based on a Sky1p template revealed a highly conserved structural framework within conserved core regions. These adopt typical kinase folding like that of other protein kinases. However, in contrast to Sky1p, some structural features, such as those in helix ?C suggest that the DOA kinase is not a constitutively active enzyme but requires activation. This may occur by phosphorylation within an activation loop that forms a broad turn and in which interactions between the side chains occur across the loop. The fold of the activation loop is stabilized through interactions with residues in the C-terminal tail, which is not part of the conserved kinase core and is variable among protein kinases. Immediately following the activation loop in the segment between the ?9 sheet and helix ?F is a P+1 loop. The electrostatic surface potential of the DOA substrate binding groove is largely negative, as it is in other known SR protein kinases, suggesting that DOA substrates must be basic. All differences between D. melanogaster and other Drosophila species are single amino acid changes situated in regions outside of any ?-helices or ?-sheets, and after modeling these had absolutely no visible effect on protein structure. The absence of evolved amino acid changes among 12 Drosophila species that would cause at least predictable changes in DOA structure indicate that evolution has already selected evolved mutations for having minimal effect on kinase structure.  相似文献   

11.
Li T  Li F  Zhang X 《Proteins》2008,70(2):404-414
Protein phosphorylation plays important roles in a variety of cellular processes. Detecting possible phosphorylation sites and their corresponding protein kinases is crucial for studying the function of many proteins. This article presents a new prediction system, called PhoScan, to predict phosphorylation sites in a kinase-family-specific way. Common phosphorylation features and kinase-specific features are extracted from substrate sequences of different protein kinases based on the analysis of published experiments, and a scoring system is developed for evaluating the possibility that a peptide can be phosphorylated by the protein kinase at the specific site in its sequence context. PhoScan can achieve a specificity of above 90% with sensitivity around 90% at kinase-family level on the data experimented. The system is applied on a set of human proteins collected from Swiss-Prot and sets of putative phosphorylation sites are predicted for protein kinase A, cyclin-dependent kinase, and casein kinase 2 families. PhoScan is available at http://bioinfo.au.tsinghua.edu.cn/phoscan/.  相似文献   

12.
Protein I, a specific neuronal phosphoprotein, has previously been shown, using rat brain synaptosome preparations, to contain multiple sites of phosphorylation which were differentially regulated by cAMP and calcium. In the present study, Protein I was purified to homogeneity from rat brain and its phosphorylation was investigated using homogeneous cAMP-dependent protein kinase and a partially purified calcium-calmodulin-dependent protein kinase from rat brain. Employing various peptide mapping techniques, a minimum of three phosphorylation sites could be distinguished in Protein I; the phosphorylated amino acid of each site was serine. One phosphorylation site was located in the collagenase-resistant portion of Protein I and was the principal target for phosphorylation by the catalytic subunit of cAMP-dependent protein kinase. This site was also phosphorylated by calcium-calmodulin-dependent protein kinase. The other two phosphorylation sites were located in the collagenase-sensitive portion of Protein I. These latter sites were markedly phosphorylated by calcium-calmodulin-dependent protein kinase, but not by cAMP-dependent protein kinase in concentrations sufficient to phosphorylate maximally the site in the collagenase-resistant portion. Thus, the phosphorylation of purified Protein I by purified cAMP-dependent and calcium-calmodulin-dependent protein kinases provides an enzymological explanation for the regulation of phosphorylation of endogenous Protein I in synaptosome preparations by cAMP and by calcium observed previously. The studies suggest that certain of the synaptic actions of two distinct second messengers, cAMP and calcium, are expressed through the distinct specificities of cAMP- and calcium-dependent protein kinases for the multiple phosphorylation sites in one neuron-specific protein, Protein I.  相似文献   

13.
In rat and human cells, RKIP (previously known as PEBP) was characterized as an inhibitor of the MEK phosphorylation by Raf-1. In Escherichia coli, the genes ybhb and ybcl possibly encode two RKIP homologues while in the genomes of other bacteria and archaebacteria other homologous genes of RKIP have been found. The parallel between the cellular signaling mechanisms in eukaryotes and prokaryotes suggests that these bacterial proteins could be involved in the regulation of protein phosphorylation by kinases as well. We first showed that the proteins YBHB and YBCL were present in the cytoplasm and periplasm of E. coli, respectively, after which we determined their crystallographic structures. These structures verify that YBHB and YBCL belong to the same structural family as mammalian RKIP/PEBP proteins. The general fold and the anion binding site of these proteins are extremely well conserved between mammals and bacteria and suggest functional similarities. However, the bacterial proteins also exhibit some specific structural features, like a substrate binding pocket formed by the dimerization interface and the absence of cis peptide bonds. This structural variety should correspond to the recognition of multiple cellular partners.  相似文献   

14.
Histone H3 proteins are highly conserved across all eukaryotes and are dynamically modified by many post-translational modifications (PTMs). Here we describe a method that defines the evolution of the family of histone H3 proteins, including the emergence of functionally distinct variants. It combines information from histone H3 protein sequences in eukaryotic species with the evolution of these species as described by the tree of life (TOL) project. This so-called TOL analysis identified the time when the few observed protein sequence changes occurred and when distinct, co-existing H3 protein variants arose. Four distinct ancient duplication events were identified where replication-coupled (RC) H3 variants diverged from replication-independent (RI) forms, like histone H3.3 in animals. These independent events occurred in ancestral lineages leading to the clades of metazoa, viridiplantae, basidiomycota, and alveolata. The proto-H3 sequence in the last eukaryotic common ancestor (LECA) was expanded to at least 133 of its 135 residues. Extreme conservation of known acetylation and methylation sites of lysines and arginines predicts that these PTMs will exist across the eukaryotic crown phyla and in protists with canonical chromatin structures. Less complete conservation was found for most serine and threonine phosphorylation sites. This study demonstrates that TOL analysis can determine the evolution of slowly evolving proteins in sequence-saturated datasets.  相似文献   

15.
Protein sulfenylation is a post-translational modification of emerging importance in higher eukaryotes. However, investigation of its diverse roles remains challenging, particularly within a native cellular environment. Herein we report the development and application of DYn-2, a new chemoselective probe for detecting sulfenylated proteins in human cells. These studies show that epidermal growth factor receptor-mediated signaling results in H(2)O(2) production and oxidation of downstream proteins. In addition, we demonstrate that DYn-2 has the ability to detect differences in sulfenylation rates within the cell, which are associated with differences in target protein localization. We also show that the direct modification of epidermal growth factor receptor by H(2)O(2) at a critical active site cysteine (Cys797) enhances its tyrosine kinase activity. Collectively, our findings reveal sulfenylation as a global signaling mechanism that is akin to phosphorylation and has regulatory implications for other receptor tyrosine kinases and irreversible inhibitors that target oxidant-sensitive cysteines in proteins.  相似文献   

16.
Gao X  Jin C  Ren J  Yao X  Xue Y 《Genomics》2008,92(6):457-463
Protein phosphorylation is one of the most essential post-translational modifications (PTMs), and orchestrates a variety of cellular functions and processes. Besides experimental studies, numerous computational predictors implemented in various algorithms have been developed for phosphorylation sites prediction. However, large-scale predictions of kinase-specific phosphorylation sites have not been successfully pursued and remained to be a great challenge. In this work, we raised a “kiss farewell” model and conducted a high-throughput prediction of cAMP-dependent kinase (PKA) phosphorylation sites. Since a protein kinase (PK) should at least “kiss” its substrates and then run away, we proposed a PKA-binding protein to be a potential PKA substrate if at least one PKA site was predicted. To improve the prediction specificity, we reduced false positive rate (FPR) less than 1% when the cut-off value was set as 4. Successfully, we predicted 1387, 630, 568 and 912 potential PKA sites from 410, 217, 173 and 260 PKA-interacting proteins in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens, respectively. Most of these potential phosphorylation sites remained to be experimentally verified. In addition, we detected two sites in one of PKA regulatory subunits to be conserved in eukaryotes as potentially ancient regulatory signals. Our prediction results provide an excellent resource for delineating PKA-mediated signaling pathways and their system integration underlying cellular dynamics and plasticity.  相似文献   

17.
LAMMER protein kinases are ubiquitous throughout eukaryotes, including multiple paralogues in mammals. Members are characterized by similar overall structure and highly identical amino acid sequence motifs in catalytic subdomains essential for phosphotransfer and interaction with substrates. LAMMER kinases phosphorylate and regulate the activity of the SR protein class of pre-mRNA splicing components, both in vitro and in vivo. In this study, we define an optimum in vitro consensus phosphorylation site for three family members using an oriented degenerate peptide library approach. We also examine the substrate specificity and interactions of several LAMMER protein kinases from widely diverged species with potential substrates, including their own N-termini, predicted to be substrates by the peptide-based approach. Although the optimal in vitro consensus phosphorylation site for these kinases is remarkably similar for short peptides, distinct substrate preferences are revealed by in vitro phosphorylation of intact proteins. This finding suggests that these kinases may possess varied substrates in vivo, and thus the multiple LAMMER kinases present in higher eukaryotes may perform differentiable functions. These results further demonstrate that these kinases can phosphorylate a number of substrates in addition to SR proteins, suggesting that they may regulate multiple cellular processes, in addition to the alternative splicing of pre-mRNAs.  相似文献   

18.
Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM - a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site prediction tools. In the independent testing, the high sensitivity and specificity of the proposed method demonstrate the predictive effectiveness of the identified substrate motifs and the importance of investigating potential kinases for viral protein phosphorylation sites.  相似文献   

19.
Protein phosphorylation continues to be regarded as one of the most important post-translational modifications found in eukaryotes and has been implicated in key roles in the development of a number of human diseases. In order to elucidate roles for the 518 human kinases, phosphorylation has routinely been studied using the budding yeast Saccharomyces cerevisiae as a model system. In recent years, a number of technologies have emerged to globally map phosphorylation in yeast. In this article, we review these technologies and discuss how these phosphorylation mapping efforts have shed light on our understanding of kinase signaling pathways and eukaryotic proteomic networks in general.  相似文献   

20.
Protein kinases phosphorylating Ser/Thr/Tyr residues in several cellular proteins exert tight control over their biological functions. They constitute the largest protein family in most eukaryotic species. Protein kinases classified based on sequence similarity in their catalytic domains, cluster into subfamilies, which share gross functional properties. Many protein kinases are associated or tethered covalently to domains that serve as adapter or regulatory modules, aiding substrate recruitment, specificity, and also serve as scaffolds. Hence the modular organisation of the protein kinases serves as guidelines to their functional and molecular properties. Analysis of genomic repertoires of protein kinases in eukaryotes have revealed wide spectrum of domain organisation across various subfamilies of kinases. Occurrence of organism-specific novel domain combinations suggests functional diversity achieved by protein kinases in order to regulate variety of biological processes. In addition, domain architecture of protein kinases revealed existence of hybrid protein kinase subfamilies and their emerging roles in the signaling of eukaryotic organisms. In this review we discuss the repertoire of non-kinase domains tethered to multi-domain kinases in the metazoans. Similarities and differences in the domain architectures of protein kinases in these organisms indicate conserved and unique features that are critical to functional specialization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号