首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosynthetically active chloroplasts retaining high rates of fatty acid synthesis from [1-14C]acetate were purified from leaves of both 16:3 (Solanum nodiflorum, Chenopodium album) and 18:3 plants (Amaranthus lividus, Pisum sativum). A comparison of lipids into which newly synthesized fatty acids were incorporated revealed that, in 18:3 chloroplasts, enzymic activities catalyzing the conversion of phosphatidate to diacylglycerol and of diacylglycerol to monogalactosyl diacylglycerol (MGD) were significantly less active than in 16:3 chloroplasts. In contrast, labeling rates of MGD from UDP-[14C]gal were similar for both types of chloroplasts.

The composition and positional distribution of labeled fatty acids within the glycerides synthesized by isolated 16:3 and 18:3 chloroplasts were similar and in each case only a C18/C16 diacylglycerol backbone was synthesized. In nodiflorum chloroplasts, C18:1/C16:0 MGD assembled de novo was completely desaturated to the C18:3/C16:3 stage.

Whereas newly synthesized C18/C18 MGD could not be detected in any of these chloroplasts if incubated with [14C]acetate after isolation, chloroplasts isolated from acetate-labeled leaves contained MGD with labeled C18 fatty acids at both sn-1 and sn-2 positions. Taken together, these results provide further evidence on an organellar level for the operation of pro- and eucaryotic pathways in the biosynthesis of MGD in different groups of plants.

  相似文献   

2.
Farnesyl pyrophosphate-[14C] and geranylgeranyl pyrophosphate-[14C] were biosynthesized from mevalonic acid-[2-14C] by cell-free enzyme extracts of pea (Pisum sativum) cotyledons containing MgCl2, MnCl2, ATP and AMO-1618. Maximum yields of farnesyl pyrophosphate were obtained after 30 min incubation while geranylgeranyl pyrophosphate was the primary product after 180 min. Biosynthesized geranylgeranyl pyrophosphate-[14C] served as an efficient substrate for ent-kaurene biosynthesis in reaction mixtures containing cotyledon enzymes when AMO-1618 was omitted. Enzyme extracts from green pea shoot tips and chloroplasts also converted geranylgeranyl pyrophosphate to ent-kaurene in very low yields. Ent-kaurene production from mevalonic acid-[2-14C] in extracts of pea shoot tips was also enhanced by addition of chloroplast enzymes. This evidence indicates that kaurene synthetase is present in pea chloroplasts and adds to the possibility that some gibberellin biosynthesis may be compartmentalized in those organelles.  相似文献   

3.
1. Photochemical activities as a function of temperature have been compared in chloroplasts isolated from chilling-sensitive (below approximately 12 °C) and chilling-resistant plants.2. An Arrhenius plot of the photoreduction of NADP+ from water by chloroplasts isolated from tomato (Lycopersicon esculentum var. Gross Lisse), a chilling-sensitive plant, shows a change in slope at about 12 °C. Between 25 and 14 °C the activation energy for this reaction is 8.3 kcal·mole?1. Between 11 and 3 °C the activation energy increases to 22 kcal·mole?1. Photoreduction of NADP+ by chloroplasts from another chilling-sensitive plant, bean (Phaseolus vulgaris var. brown beauty), shows an increase in activation energy from 5.9 to 17.5 kcal·mole?1 below about 12 °C.3. The photoreduction of NADP+ by chloroplasts isolated from two chilling-resistant plants, lettuce (Lactuca sativa var. winter lake) and pea (Pisum sativum var. greenfeast), shows constant activation energies of 5.4 and 8.0 kcal·mole?1, respectively, over the temperature range 3–25 °C.4. The effect of temperature on photosynthetic electron transfer in the chloroplasts of chilling-sensitive plants is localized in Photosystem I region of photosynthesis. Both the photoreduction of NADP+ from reduced 2,6-dichlorophenol-indophenol and the ferredoxin-NADP+ reductase (EC 1.6.99.4) activity of choroplasts of chilling-sensitive plants show increases in activation energies at approximately 12 °C whereas Photosystem II activity of chloroplasts of chilling-sensitive plants shows a constant activation energy over the temperature range 3–25 °C. The photoreduction of Diquat (1,1′-ethylene-2,2′-dipyridylium dibromide) from water by bean chloroplasts, however, does not show a change in activation energy over the same temperature range. The activation energies of each of these reactions in chilling-resistant plants is constant between 3 and 25 °C.5. The effect of temperature on the activation energy of these reactions in chloroplasts from chilling-sensitive plants is reversible.6. In chilling-sensitive plants, the increased activation energies below approximately 12 °C, with consequent decreased rates of reaction for the photoreduction of NADP+, would result in impaired photosynthetic activity at chilling temperatures. This could explain the changes in chloroplast structure and function when chilling-sensitive plants are exposed to chilling temperatures.  相似文献   

4.
Purified, intact chloroplasts of Spinacia oleracea L. synthesize galactose-labeled mono- and digalactosyldiacylglycerol (MGDG and DGDG) from UDP-[U-14C]galactose. In the presence of high concentrations of unchelated divalent cations they also synthesize tri- and tetra-galactosyldiacylglycerol. The acyl chains of galactose-labeled MGDG are strongly desaturated and such MGDG is a good precursor for DGDG and higher oligogalactolipids. The synthesis of MGDG is catalyzed by UDP-Gal:sn-1,2-diacylglycerol galactosyltransferase, and synthesis of DGDG and the oligogalactolipids is exclusively catalyzed by galactolipid:galactolipid galactosyltransferase. The content of diacylglycerol in chloroplasts remains low during UDP-Gal incorporation. This indicates that formation of diacylglycerol by galactolipid:galactolipid galactosyltransferase is balanced with diacylglycerol consumption by UDP-Gal:diacylglycerol galactosyltransferase for MGDG synthesis. Incubation of intact spinach chloroplasts with [2-14C]acetate or sn-[U-14C]glycerol-3-P in the presence of Mg2+ and unlabeled UDP-Gal resulted in high 14C incorporation into MGDG, while DGDG labeling was low. This de novo made MGDG is mainly oligoene. Its conversion into DGDG is also catalyzed, at least in part, by galactolipid:galactolipid galactosyltransferase.  相似文献   

5.
Chloroplast suspensions from spinach (Spinacia oleracea L.) were clearly resolved into intact and stripped chloroplasts by isopycnic centrifugation in density gradients of silica sol (“Ludox”) and polyethlene glycol. The intact chloroplasts fixed CO2 and evolved O2 more rapidly than the crude suspensions; the stripped chloroplasts were inactive. During the photosynthetic fixation of 14CO2 in the intact chloroplasts recovered from the gradient, the 14C label was observed to spread through the photosynthetic intermediate pools, as well as into starch, which indicates that the purified chloroplasts are metabolically competent. This appears to be the first report of the retention of photosynthetic activity following the purification of chloroplasts in density gradients.  相似文献   

6.
The rate of ADP-glucose formation from [14C]glucose 6-phosphate and ATP by the soluble fraction of lysed chloroplasts is studied as a function of the levels of metabolites (3-phosphoglycerate, orthophosphate, hexose monophosphate, and ATP) as determined in whole chloroplasts of Spinacia oleracea in light and dark.  相似文献   

7.
Initial stages in the onset of senescence in tobacco leaves   总被引:1,自引:0,他引:1       下载免费PDF全文
A marked loss of leucine 14C incorporation occurred in chloroplasts isolated from Nicotiana rustica L. leaves exposed to 24 hours of darkness. This loss is not due to an initial decline in RNA-synthesis potential of the chloroplasts, as was inferred from the extent of UTP incorporation by the isolated chloroplasts. Upon reillumination of the leaves, leucine incorporation by the isolated chloroplasts reverted to its original level within 3 to 4 hours, hence it is doubtful whether the period of 24 hours after detachment should be regarded as the initial phase of leaf senescence.  相似文献   

8.
Intact, isolated spinach chloroplasts incorporated 14C from 14CO2 into plastoquinone and β-carotene under photosynthetic conditions. Addition of unlabelled l-tyrosine, p-hydroxyphenylpyruvate, or homogentisate increased the incorporation of 14C into plastoquinone, but decreased that into β-carotene.  相似文献   

9.
The biosynthetic pathway of trans-2-hexenal, leaf aldehyde, in isolated chloroplasts of Thea sinensis leaves. was examined using a tracer experiment. A high and specific incorporation of radioactivity into cis-3-hexenal and trans-2-hexenal, was observed when linolenic acid-[U-14C] was incubated with the isolated chloroplasts. Thus, trans-2-hexenal was biosynthesized via cis-3-hexenal from linolenic acid in the chloroplasts.  相似文献   

10.
Mechanisms restricting the accumulation of chloroplast glycolipids in achlorophyllous etiolated or heat-treated 70S ribosome-deficient rye leaves (Secale cereale L. cv “Halo”) and thereby coupling glycolipid formation to the availability of chlorophyll, were investigated by comparing [14C]acetate incorporation by leaf segments of different age and subsequent chase experiments. In green leaves [14C]acetate incorporation into all major glycerolipids increased with age. In etiolated leaves glycerolipid synthesis developed much more slowly. In light-grown, heat-bleached leaves [14C]acetate incorporation into glycolipids was high at the youngest stage but declined with age. In green leaves [14C]acetate incorporation into unesterified fatty acids and all major glycerolipids was immediately and strongly diminished after application of an inhibitor of chlorophyll synthesis, 4,6-dioxoheptanoic acid. The turnover of glyco- or phospholipids did not differ markedly in green, etiolated, or heat-bleached leaves. The total capacity of isolated ribosome-deficient plastids for fatty acid synthesis was not much lower than that of isolated chloroplasts. However, the main products synthesized from [14C]acetate by chloroplasts were unesterified fatty acids, phosphatidic acid, and diacylglycerol, while those produced by ribosome-deficient plastids were unesterified fatty acids, phosphatidic acid, and phosphatidylglycerol. Isolated heat-bleached plastids exhibited a strikingly lower galactosyltransferase activity than chloroplasts, suggesting that this reaction was rate-limiting, and lacked phosphatidate phosphatase activity.  相似文献   

11.
Yu J  Woo KC 《Plant physiology》1988,88(4):1048-1054
The transport of l-[14C]glutamine in oat (Avena sativa L.) and spinach (Spinacia oleracea L.) chloroplasts was studied by a conventional single-layer and a newly developed stable double-layer silicone oil filtering system. [14C]Glutamine was actively transported into oat chloroplasts against a concentration gradient. Metabolite uptake was greatly affected by the endogenous dicarboxylate pools, which could be easily changed by preloading the chloroplast with specific exogenous substrate. Glutamine uptake was decreased by 44 to 75% in oat chloroplasts preloaded with malate, 2-oxoglutarate (2-OG), and aspartate, but increased by 52% in chloroplasts preloaded with l-glutamate. On the other hand, the uptake of the other four dicarboxylates was decreased by 47 to 79% in chloroplasts preloaded with glutamine. In glutamine-preloaded chloroplasts the uptake of glutamine was inhibited only by l-glutamate. The observed inhibition by l-glutamate was competitive with an apparent Ki value of 32.1 millimolar in oat and 6.7 millimolar in spinach chloroplasts. This study indicates that there are two components involved in glutamine transport in chloroplasts. The major component was mediated via a specific glutamine translocator. It was specific for glutamine and did not transport other dicarboxylates except l-glutamate. A K0.5 value of 1.25 millimolar and Vmax of 45.5 micromoles per milligram of chlorophyll per hour were determined for the glutamine translocator in oat chloroplasts. The respective values were 1.0 millimolar and 16.7 micromoles per milligram of chlorophyll per hour in spinach chloroplasts. A three translocator model, involving the glutamine, dicarboxylate, and 2-OG translocators, is proposed for the reassimilation of photorespiratory NH3 in chloroplasts of C3 species. In this three-translocator model the additional transport of glutamine into the chloroplast is coupled to the export of glutamate via the glutamine translocator. This is an extension of the two-translocator model, involving the dicarboxylate and 2-OG translocators, proposed for spinach chloroplasts, (KC Woo, UI Flügge, HW Heldt 1987 Plant Physiol 84: 624-632).  相似文献   

12.
Suspensions of isolated pine needle chloroplasts were shown to incorporate galactose from UDP galactose-[14C] into galactolipids. The incorporation of the label among galactolipids was always considerably higher in the monogalactosyl diglycerides than in the digalactosyl diglycerides. The galactosyl incorporation into both galactolipid fractions was optimal at pH 8.0 and was inhibited by sulphydryl reagents (p-chloromercuribenzoate, N-ethyl maleimide and CdCl2). The chloroplast preparations were also able to biosynthesize various phospholipids and galactolipids from palmitoyl-[1-14C]-CoA; the major portion of the label appeared in phosphatidyl choline. The incorporation of palmitic-[1-14C] acid into various lipids was very poor compared to that of palmitoyl-[1-14C]-CoA. However, addition of ATP and CoA markedly stimulated lipid biosynthesis from palmitic-[1-14C] acid, suggesting the presence of activating enzymes. These chloroplast suspensions did not show any de novo fatty acid synthesis.  相似文献   

13.
Singh KK  Chen C  Gibbs M 《Plant physiology》1992,100(1):327-333
The role of an electron transport pathway associated with aerobic carbohydrate degradation in isolated, intact chloroplasts was evaluated. This was accomplished by monitoring the evolution of 14CO2 from darkened spinach (Spinacia oleracea) and Chlamydomonas reinhardtii chloroplasts externally supplied with [14C]fructose and [14C]glucose, respectively, in the presence of nitrite, oxaloacetate, and conventional electron transport inhibitors. Addition of nitrite or oxaloacetate increased the release of 14CO2, but it was shown that O2 continued to function as a terminal electron acceptor. 14CO2 evolution was inhibited up to 30 and 15% in Chlamydomonas and spinach, respectively, by 50 μm rotenone and by amytal, but at 500- to 1000-fold higher concentrations, indicating the involvement of a reduced nicotinamide adenine dinucleotide phosphate-plastoquinone oxidoreductase. 14CO2 release from the spinach chloroplast was inhibited 80% by 25 μm 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone. 14CO2 release was sensitive to propylgallate, exhibiting approximately 50% inhibition in Chlamydomonas and in spinach chloroplasts of 100 and 250 μm concentrations, respectively. These concentrations were 20- to 50-fold lower than the concentrations of salicylhydroxamic acid (SHAM) required to produce an equivalent sensitivity. Antimycin A (100 μm) inhibited approximately 80 to 90% of 14CO2 release from both types of chloroplast. At 75 μm, sodium azide inhibited 14CO2 evolution about 50% in Chlamydomonas and 30% in spinach. Sodium azide (100 mm) combined with antimycin A (100 μm) inhibited 14CO2 evolution more than 90%. 14CO2 release was unaffected by uncouplers. These results are interpreted as evidence for a respiratory electron transport pathway functioning in the darkened, isolated chloroplast. Chloroplast respiration defined as 14CO2 release from externally supplied [1-14C]glucose can account for at least 10% of the total respiratory capacity (endogenous release of CO2) of the Chlamydomonas reinhardtii cell.  相似文献   

14.
The kinetics of 14C-labeling of compounds produced during photosynthesis by chloroplast preparations isolated from the green alga Caulerpa simpliciuscula were studied. After 10 minutes photosynthesis sucrose contained more 14C than any other product, and continued to accumulate radioactivity during the whole hour of incubation. Glucose-6-phosphate and alanine also behaved as end products and continued to accumulate label during the period. In these organelles, glucose-6-phosphate replaced triose phosphate as the main compound exported from the chloroplast during shorter periods of photosynthesis. When either glucose-6-phosphate or 3-phosphoglycerate was supplied to the isolated chloroplasts, they were metabolized, but were not converted to either sucrose or alanine. It is proposed that many of the differences in metabolism which distinguish these algal chloroplasts from those isolated from higher plants are due to their isolation in the form of cytoplasts, i.e. chloroplasts surrounded by a thin layer of extrachloroplastic material which is membrane-bound. The restriction of diffusion of intermediates from the chloroplast by this cytoplast membrane appears to be at least as important as the rather small amount of cytoplasm present in determining the properties observed.  相似文献   

15.
In various cellular subfractions of Calendula officinalis leaves a study was made of the distribution of polyprenyl quinones and α-tocopherol and the dynamics of their labelling with 14CO2 and acetate-[1-14C] and incorporation of mevalonate-[2-14C] after 3 hr. It was confirmed that plastoquinone occurs only in the chloroplasts, ubiquinone only in the mitochondria and α-tocopherol in both these subfractions. Phylloquinone was found in the chloroplast and mitochondrial fractions as well as in the post-mitochondrial supernatant. Studies of the dynamics of radioactive precursor incorporation indicated that α-tocopherol is metabolized more rapidly than the polyprenyl quinones studied; the incorporation of mevalonate-[2-14C] suggests that the side chain of plastoquinone can be synthesized in the cytoplasm and transported to the chloroplasts.  相似文献   

16.
17.
Cyanide inhibited unesterified fatty acid synthesis but stimulated glyceride synthesis from [1-14C]acetate when Spinacia oleracea chloroplasts were incubated in basal media. Both unesterified fatty acid and glyceride accumulation were inhibited when chloroplasts were incubated in a diacylglycerol mode. Stimulation of chloroplast fatty acid synthesis by either exogenous coenzyme A or Triton X-100 was almost completely abolished in the presence of cyanide. Stearoyl-ACP desaturation is considered to be inhibited to a greater extent than is fatty acid synthesis de novo.  相似文献   

18.
The light dependent energization of the thylakoid membrane was analyzed in isolated intact spinach (Spinacia oleracea L.) chloroplasts incubated with different concentrations of inorganic phosphate (Pi). Two independent methods were used: (a) the accumulation of [14C]5,5-dimethyl-2,4-oxazolidinedione and [14C] methylamine; (b) the energy dependent chlorophyll fluorescence quenching. The inhibition of CO2 fixation by superoptimal medium Pi or by adding glyceraldehyde—an inhibitor of the Calvin cycle—leads to an increased energization of the thylakoid membrane; however, the membrane energization decreases when chloroplasts are inhibited by suboptimal Pi. This specific `low phosphate' effect could be partially reversed by adding oxaloacetate, which regenerates the electron acceptor NADP+ and stimulates linear electron transport. The energization seen in low Pi is, however, always lower than in superoptimal Pi, even in the presence of oxaloacetate. Energization recovers in the presence of low amounts of N,N′-dicyclohexylcarbodiimide, which reacts with proton channels including the coupling factor 1 ATP synthase. N,N′-Dicyclohexylcarbodiimide has no effect on energization of chloroplasts in superoptimal Pi. These results suggest there is a specific `low phosphate' proton leak in the thylakoids, and its origin is discussed.  相似文献   

19.
14CO2 photoassimilation in the presence of MgATP, MgADP, and MgAMP was investigated using intact chloroplasts from Sedum praealtum, a Crassulacean acid metabolism plant, and two C3 plants: spinach and peas. Inasmuch as free ATP, ADP, AMP, and uncomplexed Mg2+ were present in the assays, their influence upon CO2 assimilation was also examined. Free Mg2+ was inhibitory with all chloroplasts, as were ADP and AMP in chloroplasts from Sedum and peas. With Sedum chloroplasts in the presence of ADP, the time course of assimilation was linear. However, with pea chloroplasts, ADP inhibition became progressively more severe, resulting in a curved time course. ATP stimulated assimilation only in pea chloroplasts. MgATP and MgADP stimulated assimilation in all chloroplasts. ADP inhibition of CO2 assimilation was maximal at optimum orthophosphate concentrations in Sedum chloroplasts, while MgATP stimulation was maximal at optimum or below optimum concentrations of orthophosphate. MgATP stimulation in peas and Sedum and ADP inhibition in Sedum were not sensitive to the addition of glycerate 3-phosphate (PGA).

PGA-supported O2 evolution by pea chloroplasts was not inhibited immediately by ADP; the rate of O2 evolution slowed as time passed, corresponding to the effect of ADP on CO2 assimilation, and indicating that glycerate 3-phosphate kinase was a site of inhibition. Likewise, upon the addition of AMP, inhibition of PGA-dependent O2 evolution became more severe with time. This did not mirror CO2 assimilation, which was inhibited immediately by AMP. In Sedum chloroplasts, PGA-dependent O2 evolution was not inhibited by ADP and AMP. In chloroplasts from peas and Sedum, the magnitude of MgADP and MgATP stimulation of PGA-dependent O2 evolution was not much larger than that given by ATP, and it was much smaller than MgATP stimulation of CO2 assimilation. Analysis of stromal metabolite levels by anion exchange chromatography indicated that ribulose 1,5-bisphosphate carboxylase was inhibited by ADP and stimulated by MgADP in Sedum chloroplasts.

The appearance of label in the medium was measured when [U-14C] ADP-loaded Sedum chloroplasts were challenged with ATP, ADP, or AMP and their Mg2+ complexes. The rate of back exchange was stimulated by the presence of Mg2+. This suggests that ATP, ADP, and AMP penetrate the chloroplast slower than their Mg2+ complexes. A portion of the CO2 assimilation and O2 evolution data could be explained by differential penetration rates, and other proposals were made to explain the remainder of the observations.

  相似文献   

20.
Addition of millimolar sodium glyoxylate to spinach (Spinacia oleracea) chloroplasts was inhibitory to photosynthetic incorporation of 14CO2 under conditions of both low (0.2 millimolar or air levels) and high (9 millimolar) CO2 concentrations. Incorporation of 14C into most metabolites decreased. Labeling of 6-P-gluconate and fructose-1,6-bis-P increased. This suggested that glyoxylate inhibited photosynthetic carbon metabolism indirectly by decreasing the reducing potential of chloroplasts through reduction of glyoxylate to glycolate. This hypothesis was supported by measuring the reduction of [14C]glyoxylate by chloroplasts. Incubation of isolated mesophyll cells with glyoxylate had no effect on net photosynthetic CO2 uptake, but increased labeling was observed in 6-P-gluconate, a key indicator of decreased reducing potential. The possibility that glyoxylate was affecting photosynthetic metabolism by decreasing chloroplast pH cannot be excluded. Increased 14C-labeling of ribulose-1,5-bis-P and decreased 3-P-glyceric acid and glycolate labeling upon addition of glyoxylate to chloroplasts suggested that ribulose-bis-P carboxylase and oxygenase might be inhibited either indirectly or directly by glyoxylate. Glyoxylate addition decreased 14CO2 labeling into glycolate and glycine by isolated mesophyll cells but had no effect on net 14CO2 fixation. Glutamate had little effect on net photosynthetic metabolism in chloroplast preparations but did increase 14CO2 incorporation by 15% in isolated mesophyll cells under air levels of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号