首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protease that degrades the beta subunit of the soybean (Glycine max (L.) Merrill) storage protein beta-conglycinin was purified from the cotyledons of seedlings grown for 12 days. The enzyme was named protease C2 because it is the second enzyme to cleave the beta-conglycinin storage protein, the first (protease C1) being one that degrades only the alpha' and alpha subunits of the storage protein to products similar in size and sequence to the remaining intact beta subunit. Protease C2 activity is not evident in vivo until 4 days after imbibition of the seed. The 31 kDa enzyme is a cysteine protease with a pH optimum with beta-conglycinin as substrate of 5.5. The action of protease C2 on native beta-conglycinin produces a set of large fragments (52-46 kDa in size) and small fragments (29-25 kDa). This is consistent with cleavage of all beta-conglycinin subunits at the region linking their N- and C-domains. Protease C2 also cleaves phaseolin, the Phaseolus vulgaris vicilin homologous to beta-conglycinin, to fragments in the 25-28 kDa range. N-Terminal sequences of isolated beta-conglycinin and phaseolin products show that protease C2 cleaves at a bond within a very mobile surface loop connecting the two compact structural domains of each subunit. The protease C2 cleavage specificity appears to be dictated by the substrate's three-dimensional structure rather than a specificity for a particular amino acid or sequence.  相似文献   

2.
In vitro regulation of cytosolic tyrosine protein (Tyr-P) kinase from human erythrocytes by polyamines, polyamino acids, negative charged compounds or by insulin using angiotensin II or poly (Glu-Tyr)4:1 as substrates was studied. All the three polyamines, putrescine (Put), spermidine (Spd) and spermine (Spm) stimulated the Tyr-P kinase activity in a dose dependent manner. Spm stimulated Tyr-P kinase activity higher than Put and Spd whether the substrate was angiotension II or poly (Glu-Tyr)4:1. Polyamino acids (polyornithine, polyarginine, polyglutamic acid and polyaspartic acid) did not affect significantly the Tyr-P kinase phosphorylation except polylysine which significantly stimulated the Tyr-P kinase activity. Negative charged compounds (chondroitin sulfate A, B and C) and heparin inhibited the Tyr-P kinase phosphorylation while insulin did not influence the enzyme activity in the presence of either substrates.  相似文献   

3.
Polyamine-responsive protein kinase, a cyclic nucleotide-independent protein kinase from the cytosol of Morris hepatoma 3924A, was stimulated 8–9 fold by several different polymers of polylysine, polyornithine and random copolymers of lysine-alanine; spermidine; spermine, and mixture of spermine and spermidine stimulated 2, 3, and 5 fold, respectively. The protein kinase was not stimulated by poly-carboxybenzyl-lysine, random copolymer of lysine-tyrosine, polyhistidine, polymethionine, polyglutamic acid, polyaspartic acid, dipeptide (Lys-Lys), lysine, ornithine, and putresine. The polyamine stimulation of the protein kinase was prevented by certain specific charged carbohydrated: heparin, chondroitin sulfates A, B, and C, dextran sulfate and hyaluronic acid. It was not prevented by noncharged carbohydrates: dextran, glycogen, starch, sucrose, etc; or by sulfate salts: ammonium sulfate, potassium sulfate, sodium thiosulfate, etc. The inhibition was reversed by increased polylysine. Heparin was non-competitive inhibitor of Mg2+--ATP. It would appear that this enzyme is regulated by certain highly specific molecules with certain sizes and charges; plus charge is stimulatory, negative charge prevents the stimulation.  相似文献   

4.
The cotyledons of the soybean (Glycine max [L.] Merrill cv Amsoy 71) were examined for proteolytic activities capable of degrading soybean seed proteins. Three distinct activities were identified that attack the native Kunitz soybean trypsin inhibitor of Amsoy 71, Tia. Protease K1 cleaves Tia to Tiam, the inhibitor form lacking the five carboxyl-terminal amino acid residues relative to Tia. Protease K1 is a cysteine protease that peaks in activity on day 4 after the beginning of imbibition, with maximal activity toward Tia at pH 4. The characteristics of protease K1 are consistent with the involvement of this protease in the initial proteolysis of the Kunitz inhibitor during germination. Protease K2 also degrades Tia at pH 4 but produces no electrophoretically recognizable products. It peaks later in seedling growth, at day 8. Protease K3 degrades Tia to products other than Tiam. However, it is active at pH 8. Two proteolytic activities were identified that attack the major storage protein, glycinin. Protease G1 (which appears by 4 days after imbibition) specifically cleaves the acidic polypeptides of glycinin at pH 4, yielding a product approximately 1.5 kilodaltons smaller. Protease G1 is inhibited by metal chelators as well as by reagents reactive toward thiols. Protease G2 also degrades the glycinin acidic chains at pH 4, but without the appearance of electrophoretically recognizable products. Protease G2, while present at low levels in the dry seed, is found primarily in the cotyledons after 8 days of growth.  相似文献   

5.
A second extracellular protease from myxobacter strain AL-1 has been purified to homogeneity and named protease II; the enzyme crystallizes as fine needles. The extracellular, cell wall lytic protease reported previously from the same organism is now designated protease I. Protease II exhibits a pH optimum of 8.5 to 9.0 and is stable from pH 3.0 to 9.0. The enzyme is heat stable at 50 C for 18 hr. Results of sedimentation equilibrium studies yielded a molecular weight of 17,000, and amino acid analysis revealed 157 residues with a minimal molecular weight of 16,660. Cleavage of peptide bonds in the oxidized B-chain of insulin, cytochrome c (horse heart). lysozyme, and vasopressin is restricted to the amino side of lysine. Dilysine and trilysine were not hydrolyzed. Products from digestions of polylysine were lysine and dilysine.  相似文献   

6.
Evidence from a number of plant tissues suggests that phosphoglucomutase (PGM) is present in both the cytosol and the plastid. The cytosolic and plastidic isoforms of PGM have been partially purified from wheat endosperm (Triticum aestivum L. cv. Axona). Both isoforms required glucose 1,6-bisphosphate for their activity with K(a) values of 4.5 micro M and 3.8 micro M for cytosolic and plastidic isoforms, respectively, and followed normal Michaelis-Menten kinetics with glucose 1-phosphate as the substrate with K(m) values of 0.1 mM and 0.12 mM for the cytosolic and plastidic isoforms, respectively. A cDNA clone was isolated from wheat endosperm that encodes the cytosolic isoform of PGM. The deduced amino acid sequence shows significant homology to PGMs from eukaryotic and prokaryotic sources. PGM activity was measured in whole cell extracts and in amyloplasts isolated during the development of wheat endosperm. Results indicate an approximate 80% reduction in measurable activity of plastidial and cytosolic PGM between 8 d and 30 d post-anthesis. Northern analysis showed a reduction in cytosolic PGM mRNA accumulation during the same period of development. The implications of the changes in PGM activity during the synthesis of starch in developing endosperm are discussed.  相似文献   

7.
Programmed cell death (PCD) is the genetically regulated disassembly of cells, and occurs in the endosperm of cereals during seed maturation. Since PCD determines the lifetime of cells, it can affect endosperm growth and, therefore, cereal yield. However, the features and mechanisms of PCD in the developing starchy endosperm in the Poaceae remain unclear. In the present study, we investigated the characteristics of PCD in developing starchy endosperm of rice (Oryza sativa L.) by fluorescence microscopy, focusing on the spatial and temporal progress of PCD-associated responses. Cell death commenced in the central region of starchy endosperm, and then spread to the peripheral region. PCD-associated responses, such as mitochondrial membrane permeabilization and activation of the protease that cleaves the amino acid sequence VEID, showed similar spatial patterns to that of cell death, but preceded cell death. Degradation of nuclear DNA could not be detected in developing starchy endosperm by the TUNEL assay. These results indicated that PCD in developing starchy endosperm of rice proceeds via a highly organized pattern. In addition, these results suggested that PCD in developing starchy endosperm of rice is characterized by the involvement of mitochondrial signaling and the activity of a caspase-like protease that cleaves the VEID sequence.  相似文献   

8.
The starch granules of hexaploid wheat (Triticum aestivum) contain a group of three proteins known as SGP-1 (starch granule protein-1) proteins, which have apparent molecular masses of 100, 108, and 115 kD. The nature and role of these proteins has not been defined previously. We demonstrate that these polypeptides are starch synthases that are present in both the starch granule and the soluble fraction at the early stages of wheat endosperm development, but that are exclusively granule bound at mid and late endosperm development. A partial cDNA clone encoding a fragment of the 100-kD protein was obtained by screening a wheat endosperm cDNA expression library using monoclonal antibodies. Three classes of cDNA were subsequently isolated from a wheat endosperm cDNA library by nucleic acid hybridization and were shown to encode the 100-, 108-, and 115-kD proteins. The cDNA sequences are highly homologous to class II starch synthases and have the highest homology with the maize SSIIa (starch synthase IIa) gene. mRNA for the SGP-1 proteins was detected in the leaf, pre-anthesis florets, and endosperm of wheat and is highly expressed in the leaf and in the grain during the early to mid stages of development. We discuss the roles of the SGP-1 proteins in starch biosynthesis in wheat.  相似文献   

9.
Purification and characterization of proteases from developing normal maize endosperm and high lysine opaque-2 maize endosperm have been carried out with a view to understand their role in storage protein modification. At day 15, normal maize endosperm had two types of proteolytic enzymes, namely, protease I and protease II, while at day 25 protease n disappeared and in place protease III appeared. However, in opaque-2 maize endosperm at both the stages only one type of enzyme (protease I) was present. These proteases had many properties in common-optimum pH and temperature were respectively, 5.7and 40°C; their activity was inhibited to the extent of 75 –93 % by p-chloromercuribenzoate; trypsin inhibitor inhibited the activity more at early stages of endosperm development; all proteases cleaved synthetic substrates p-tosyl-L-arginine methylesler and N-benzoyl-L-tyrosine ethyl ester and poly-L-glutamic acid. TheKm values of day 15 and 25 normal maize endosperm proteases ranged from 2.73–3.30, while for opaque-2 maize endosperm protease I it was 3.33 mg azocasein per ml assay medium. These enzymes, however, differed with respect to proteolytic activity towards poly-L-lysine. Only normal maize endosperm protease III at day 25 followed by protease II at day 15 showed high activity towards this homopolypeptide suggesting thereby their role in determining the quality of normal maize endosperm protein. Part of Ph.D. thesis submitted by the first author  相似文献   

10.
Proteolytic activity has been implicated in several key processes in early development. In an attempt to correlate proteolytic activity with developmental events, a study of the protease(s) in undeveloped cysts of Artemia salina was initiated using 2,4,6-trinitrobenzenesulfonic acid to determine the release of amino groups upon protein hydrolysis. The versatility and sensitivity of this reagent made it possible to detect and characterize the proteolytic activity in small quantities of cysts of the brine shrimp. A protease with a molecular weight of 84,000, a pH optimum of 3.6, and a temperature optimum of 45°C was partially purified from Artemia cysts using ion-exchange chromatography and gel filtration. In addition, two acid protease inhibitors, one dialyzable and one nondialyzable, were found in crude extracts of the cysts. The latter was partially purified and found to have a molecular weight of between 10,000 and 20,000. The activity of the acid protease is not dependent on CaCl2 or EDTA, but CaCl2 in the reaction mixture increases the rate of inactivation of the nondialyzable protease inhibitor. The inhibitors may complex with the acid protease in the embryo and control its activity during development.  相似文献   

11.
Hepatitis C virus non-structural protein 3 contains a serine protease and an RNA helicase. Protease cleaves the genome-encoded polyprotein and inactivates cellular proteins required for innate immunity. Protease has emerged as an important target for the development of antiviral therapeutics, but drug resistance has turned out to be an obstacle in the clinic. Helicase is required for both genome replication and virus assembly. Mechanistic and structural studies of helicase have hurled this enzyme into a prominent position in the field of helicase enzymology. Nevertheless, studies of helicase as an antiviral target remain in their infancy.  相似文献   

12.
Reelin is a glycoprotein essential for brain development and functions. Reelin is subject to specific proteolysis at two distinct (N-t and C-t) sites, and these cleavages significantly diminish Reelin activity. The decrease of Reelin activity is detrimental for brain function, but the protease that catalyzes specific cleavage of Reelin remains elusive. Here we found that a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS-4) cleaves Reelin in an isoform-specific manner. Among ADAMTS-4 isoforms, p50 cleaves the N-t site only, while p75 cleaves both sites. This is the first report identifying a protease that can specifically cleave Reelin.  相似文献   

13.
The degradation of cat immunoglobulin G (IgG) in blood-fed adult C. felis midguts was examined. SDS-PAGE analysis of dissected midgut extracts obtained from C. felis that had been blood fed for various times between 0 to 44 h revealed that by 24 h most of the high molecular weight proteins, including the heavy chain of IgG, were digested. A 31-kDa serine protease with IgG degrading activity was purified from fed C. felis midguts by benzamidine affinity chromatography, hydrophobic interaction chromatography, and cation exchange chromatography. Three primary cleavage products between 30- and 40-kDa were observed when the purified protease was incubated with protein A purified cat IgG. N-terminal amino acid sequence analysis of the products revealed that the IgG degrading protease cleaves after specific cysteine and lysine residues within the hinge region of IgG. The enzyme is also capable of degrading other immunoglobulins, serum albumin, and hemoglobin, suggesting that it may have roles in both combating the host's immune system and providing nutrients for the flea. A cDNA clone encoding the 265 amino acid IgG degrading protease proenzyme was isolated. When expressed in a baculovirus/insect cell expression system, the recombinant protein had the same N-terminus as the processed 237 amino acid mature native protein and possessed IgG degrading activity indistinguishable from the native protein. Arch. Insect Biochem.  相似文献   

14.
15.
Protease activity inSpinacia oleracea leaves, but not roots, increased when sodium sulfite, hydrogen peroxide and sodium azide, but not sulfuric acid, were injected through the petiole under light conditions. On the other hand, protease inhibitory activity in both the leaves and roots decreased by the injection. Protease activity inRicinus communis leaves increased when hydrogen peroxide and sodium sulfite were injected through the petiole and kept for 4 h under light conditions. No visible injuries were caused to the leaf. On the other hand, protease inhibitory activity in leaves decreased by the injection of hydrogen peroxide. Changes in the activity of protease caused the senescence of leaves such as chlorosis and necrosis which were observed with leaves injected with hydrogen peroxide after one week. These results suggested that in the healthy leaf, the protease inhibitor protects the cellular components from the protease.  相似文献   

16.
It has been previously demonstrated that commercial bacterial fibrinolysin (EC 3.4.21.7) selectively cleaves the bond between Met-53 and Ala-54 in ovine prolactin (199 amino acids). A one-step purification procedure on DEAE-cellulose for Protease F, which is the active component of bacterial fibrinolysin, and properties of the purified enzyme are reported. The enzyme is homogeneous as judged by acrylamide gel electrophoresis. Its molecular weight, calculated from gel filtration experiments on Sephadex G-100, is around 13,800. Amino acid analyses do not reveal the presence of any half-cystines. The presence of one tryptophan residue per enzyme molecule was resolved from the fluorescence spectrum. Amino terminal analysis showed that leucine was at the amino terminal position. Protease F hydrolyzes casein and synthetic specific substrates for chymotrypsin and elastase esterases but not for trypsin esterases. It is fully inhibited by phenylmethylsulfonyl fluoride, by chicken ovoinhibitor, and by Chymotrypsin Inhibitor I from potatoes but not by the trypsin-chymotrypsin inhibitors from soybeans and chick peas or by tosyl-L-phenylalanine chloromethyl ketone. The enzyme is stable at room temperature and in the cold, it is not affected by dialysis or by freezing and thawing, but it is inactivated during freeze-drying. The circular dichroism spectra of Protease F indicate an approximate 20% alpha-helix content of the enzyme with a considerable similarity to those of subtilisin, elastase, and beta-trypsin. The relatively low molecular weight of Protease F, the absence of intrachain disulfide bridges, and the fact that it is inhibited by several, but not all, chymotrypsin inhibitors suggest that it may differ phylogenetically from the known serine proteases.  相似文献   

17.
A new cytoplasmic endoprotease, named protease So, was purified to homogeneity from Escherichia coli by conventional procedures with casein as the substrate. Its molecular weight was 140,000 when determined by gel filtration on Sephadex G-200 and 77,000 when estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Thus, it appears to be composed of two identical subunits. Protease So had an isoelectric point of 6.4 and a K(m) of 1.4 muM for casein. In addition to casein, it hydrolyzed globin, glucagon, and denatured bovine serum albumin to acid-soluble peptides but did not degrade insulin, native bovine serum albumin, or the "auto alpha" fragment of beta-galactosidase. A variety of commonly used peptide substrates for endoproteases were not hydrolyzed by protease So. It had a broad pH optimum of 6.5 to 8.0. This enzyme is a serine protease, since it was inhibited by diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride. Although it was not inhibited by chelating agents, divalent cations (e.g., Mg(2+)) stabilized its activity. Protease So was sensitive to inhibition by N-tosyl-l-phenylalanine chloromethyl ketone but not by N-tosyl-l-lysine chloromethyl ketone. Neither ATP nor 5'-diphosphate-guanosine-3'-diphosphate affected the rate of casein hydrolysis. Protease So was distinct from the other soluble endoproteases in E. coli (including proteases Do, Re, Mi, Fa, La, Ci, and Pi) in its physical and chemical properties and also differed from the membrane-associated proteases, protease IV and V, and from two amino acid esterases, originally named protease I and II. The physiological function of protease So is presently unknown.  相似文献   

18.

Endosperm in cereals such as wheat, is a part of the mature seeds and a valuable source of key substances for humans and animals. For this reason, the development of immature endosperm tissues in planta was the focus of this research. However, it is commonly known that tissue culture conditions can alter the developmental pathway of plant cells and can expose their potency. There is scarce information about research on isolated endosperm in wheat. The development of isolated immature endosperm in the winter bread wheat variety ‘Kobra’, depending on the media composition, is presented in this study. Abscisic acid (ABA) is a key plant growth regulator for proper seed development. The addition of exogenous ABA had a positive impact on the size and ultrastructural features in isolated endosperm, especially of the outer aleurone-like cells. Furthermore, the content of starch in the endosperm cultured on a medium with ABA did not significantly differ from that of caryopsis at the same age, in contrast to soluble carbohydrates. Fluorescein diacetate (FDA) staining and confocal microscopy observation confirmed the viability of the cells from the outer layers. The analysis of internucleosomal fragmentation of DNA in the explants suggests the induction of programmed cell death (PCD) and DNA degradation typical of necrosis. We concluded that the development of isolated immature endosperm in bread wheat depends on the composition of the media. Thus, it could be a model for in vitro studies of this specific storage tissue and its response to culture conditions in bread wheat.

  相似文献   

19.
Abstract The distributions of lysozyme and protease activities and of amino acids was measured in the guts of five species of higher termites, Macrotermes annandalei, Odontotermes formosanus, Pericaproitermes nitobei , Termes comis and Nasutitermes takasagoensis . Lysozyme activity was found only in M. annandalei, P. nitobei and N. takasagoensis. Protease activity was high in the midgut of all species but negligible elsewhere in the gut. Amino acid concentration was highest in the midgut of all species of workers.  相似文献   

20.
Characterization of two antifungal endochitinases from barley grain   总被引:2,自引:0,他引:2  
A basic chitinase (chitinase T, EC 3.2.1.14, molecular mass 33 kDa, pI 9.8) was isolated and compared with a previously described chitinase (chitinase C, molecular mass 28 kDa, pI 9.7). The two chitinases were isolated in homogeneous form from barley ( Hordeum vulgare L.) Bomi mutant 1508 grains either by two cation exchange steps or by one affinity step followed by cation exchange. Both chitinases are endochitinases with specific activities of 168 and 54 nkat (mg protein)−1 for chitinase T and chitinase C, respectively. Both inhibit the growth of Trichoderma viride efficiently. The lysozyme activity of both chitinases is 104 times lower than that of hen egg-white lysozyme as measured by lysis of cell walls of Micrococcus lysodeikticus . The amino acid composition and two partial amino acid sequences of chitinase T were determined. A 23 residue sequence of the N-terminal domain of chitinase T, which was not present in chitinase C, showed 73% identity with domain B of wheat germ lectin and 65% identity with the N-terminal domain of an endochitinase from bean leaves (deduced from cDNA). A 9 amino acid sequence of a cyanogen bromide fragment of chitinase T was identical with a cDNA deduced sequence of a barley aleurone endochitinase but differed in one residue from chitinase C. Generally, the two grain chitinases have physico-chemical and enzymatic properties similar to the plant leaf chitinases characterized. Both chitinases are localized in the aleurone layer and starchy endosperm of developing and germinating grain, but not in the embryo. The appearance of chitinases T and C at a late state of grain development suggests a role for these enzymes as a defense against fungi in the quiescent and germinating grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号