首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yra1p is an essential and conserved mRNA export factor in yeast. Strikingly, removal of the intron from YRA1 causes a dominant-negative growth phenotype and a concomitant inhibition of mRNA export. However, both defects are neutralized by replacement of the intron of YRA1 by a different intron. Significantly, Yra1p is overproduced in yeast when expressed from its intronless gene, but Yra1p levels are the same as the wild type when expressed from an intron-containing YRA1 gene. Thus, an intron in YRA1 controls Yra1p expression and mRNA export.  相似文献   

2.
Recent evidence supports the idea that pre-mRNA splicing and mRNA export are mechanistically coupled. In metazoans, this process appears to be mediated by a multicomponent complex, which associates with the spliced RNA upstream of the exon-exon junction. One of these components (Aly/REF) has a homolog in the budding yeast Saccharomyces cerevisiae known as Yra1p. The YRA1 gene is essential for growth and required for mRNA export. Notably, YRA1 is one of the only approximately 5% intron-containing genes in yeast. Moreover, the YRA1 intron has several unusual features and is conserved in other budding yeast species. Previously, overexpression of intronless YRA1 was shown to be toxic. We show here that overexpression of the intron-containing gene results in increased levels of unspliced pre-mRNA but normal levels of Yra1 protein; conversely, expression of the cDNA results in increased levels of protein and accumulation of nuclear poly(A)+ RNA. Two additional lines of evidence suggest that expression of Yra1p is autoregulated: First, expression of excess Yra1p from a plasmid reduces the level of tagged, chromosomal Yra1p, and, second, this effect requires wild-type protein. Replacement of the YRA1 intron with that of other S. cerevisiae genes cannot rescue the dominant-negative growth defect of intronless YRA1. We conclude that the level of Yra1p is negatively autoregulated by a mechanism that involves splicing of its unusual intron. Tight control of the levels of Yra1p might be necessary to couple the rates of pre-mRNA splicing and mRNA export.  相似文献   

3.
4.
5.
Yra1p is an essential nuclear protein which belongs to the evolutionarily conserved REF (RNA and export factor binding proteins) family of hnRNP-like proteins. Yra1p contributes to mRNA export in vivo and directly interacts with RNA and the shuttling mRNP export receptor Mex67p in vitro. Here we describe a second nonessential Saccharomyces cerevisiae family member, called Yra2p, which is able to complement a YRA1 deletion when overexpressed. Like other REF proteins, Yra1p and Yra2p consist of two highly conserved N- and C-terminal boxes and a central RNP-like RNA-binding domain (RBD). These conserved regions are separated by two more variable regions, N-vr and C-vr. Surprisingly, the deletion of a single conserved box or the deletion of the RBD in Yra1p does not affect viability. Consistently, neither the conserved N and C boxes nor the RBD is required for Mex67p and RNA binding in vitro. Instead, the N-vr and C-vr regions both interact with Mex67p and RNA. We further show that Yra1 deletion mutants which poorly interact with Mex67p in vitro affect the association of Mex67p with mRNP complexes in vivo and are paralleled by poly(A)(+) RNA export defects. These observations support the idea that Yra1p promotes mRNA export by facilitating the recruitment of Mex67p to the mRNP.  相似文献   

6.
7.
Schizosaccharomyces pombe Pfh1p is an essential member of the Pif family of 5′-3′ DNA helicases. The two Saccharomyces cerevisiae homologs, Pif1p and Rrm3p, function in nuclear DNA replication, telomere length regulation, and mitochondrial genome integrity. We demonstrate here the existence of multiple Pfh1p isoforms that localized to either nuclei or mitochondria. The catalytic activity of Pfh1p was essential in both cellular compartments. The absence of nuclear Pfh1p resulted in G2 arrest and accumulation of DNA damage foci, a finding suggestive of an essential role in DNA replication. Exogenous DNA damage resulted in localization of Pfh1p to DNA damage foci, suggesting that nuclear Pfh1p also functions in DNA repair. The absence of mitochondrial Pfh1p caused rapid depletion of mitochondrial DNA. Despite localization to nuclei and mitochondria in S. pombe, neither of the S. cerevisiae homologs, nor human PIF1, suppressed the lethality of pfh1Δ cells. However, the essential nuclear function of Pfh1p could be supplied by Rrm3p. Expression of Rrm3p suppressed the accumulation of DNA damage foci but not the hydroxyurea sensitivity of cells depleted of nuclear Pfh1p. Together, these data demonstrate that Pfh1p has essential roles in the replication of both nuclear and mitochondrial DNA.  相似文献   

8.
9.
Roles of Pif1-like helicases in the maintenance of genomic stability   总被引:4,自引:1,他引:3  
The Pif1p family of DNA helicases is conserved from yeast to humans. To date, four members of this family have been analyzed in some detail by in vitro and in vivo assays: the two baker's yeast helicases, ScPif1p and Rrm3p, the fission yeast Pfh1p and the human enzyme hPif1p. In vitro, these enzymes are 5′ to 3′ DNA helicase and show little processivity. In vivo, ScPif1p, Rrm3p and probably Pfh1p, function in both the nucleus at specific genomic loci and in mitochondria, where they are needed for the stable maintenance of the genome as accessory helicases to the replication machinery. Interestingly, they act on common DNA substrates but appear to have largely non-overlapping cellular functions, ranging from Okazaki fragment processing, telomerase inhibition, to helping the replication fork progress through non-nucleosomal protein–DNA complexes. For example, both ScPif1p and Rrm3p affect the replication of telomeres, but in a different way: Pif1p inhibits telomerase-mediated telomere elongation by directly removing telomerase from a DNA end, whereas Rrm3p facilitates replication through telomeric DNA. Here we review the current knowledge on the Pif1-like helicases, as a first step towards understanding the basis of their functional specialization and mechanism of action.  相似文献   

10.
11.
12.
Ty1 mobile DNA element is the most abundant and mutagenic retrotransposon present in the genome of the budding yeast Saccharomyces cerevisiae. Protein regulator of Ty1 transposition 105 (Rtt105) associates with large subunit of RPA and facilitates its loading onto a single-stranded DNA at replication forks. Here, we dissect the role of RTT105 in the maintenance of genome stability under normal conditions and upon various replication stresses through multiple genetic analyses. RTT105 is essential for viability in cells experiencing replication problems and in cells lacking functional S-phase checkpoints and DNA repair pathways involving homologous recombination. Our genetic analyses also indicate that RTT105 is crucial when cohesion is affected and is required for the establishment of normal heterochromatic structures. Moreover, RTT105 plays a role in telomere maintenance as its function is important for the telomere elongation phenotype resulting from the Est1 tethering to telomeres. Genetic analyses indicate that rtt105Δ affects the growth of several rfa1 mutants but does not aggravate their telomere length defects. Analysis of the phenotypes of rtt105Δ cells expressing NLS-Rfa1 fusion protein reveals that RTT105 safeguards genome stability through its role in RPA nuclear import but also by directly affecting RPA function in genome stability maintenance during replication.  相似文献   

13.
A cancer is a robustly evolving cell population originating from a normal diploid cell. Improper chromosome segregation causes aneuploidy, a driving force of cancer development and malignant progression. Telomeric repeat binding factor 1 (TRF1) has been established as a telomeric protein that negatively regulates telomere elongation by telomerase and promotes efficient DNA replication at telomeres. Intriguingly, overexpression of a mitotic kinase, Aurora-A, compromises efficient microtubule-kinetochore attachment in a TRF1-dependent manner. However, the precise role of TRF1 in mitosis remains elusive. Here we demonstrate that TRF1 is required for the centromeric function of Aurora-B, which ensures proper chromosome segregation. TRF1 depletion abolishes centromeric recruitment of Aurora-B and loosens sister centromere cohesion, resulting in the induction of merotelic kinetochore attachments, lagging chromosomes, and micronuclei. Accordingly, an absence of TRF1 in human and mouse diploid cells induces aneuploidy. These phenomena seem to be telomere independent, because a telomere-unbound TRF1 mutant can suppress the TRF1 knockdown phenotype. These observations indicate that TRF1 regulates the rigidity of the microtubule-kinetochore attachment, contributing to proper chromosome segregation and the maintenance of genomic integrity.  相似文献   

14.
15.
Structure-specific endonucleases act to repair potentially toxic structures produced by recombination and DNA replication, ensuring proper segregation of the genetic material to daughter cells during mitosis and meiosis. Arabidopsis thaliana has two putative homologs of the resolvase (structure-specific endonuclease): GEN1/Yen1. Knockout of resolvase genes GEN1 and SEND1, individually or together, has no detectable effect on growth, fertility, or sensitivity to DNA damage. However, combined absence of the endonucleases MUS81 and SEND1 results in severe developmental defects, spontaneous cell death, and genome instability. A similar effect is not seen in mus81 gen1 plants, which develop normally and are fertile. Absence of RAD51 does not rescue mus81 send1, pointing to roles of these proteins in DNA replication rather than DNA break repair. The enrichment of S-phase histone γ-H2AX foci and a striking loss of telomeric DNA in mus81 send1 further support this interpretation. SEND1 has at most a minor role in resolution of the Holliday junction but acts as an essential backup to MUS81 for resolution of toxic replication structures to ensure genome stability and to maintain telomere integrity.  相似文献   

16.
Def1p is involved in telomere maintenance in budding yeast   总被引:3,自引:0,他引:3  
Saccharomyces Rrm3p, a member of Pif1 5'-3' DNA helicase subfamily, helps replication forks traverse protein-DNA complexes, including the telomere. Here we have identified an Rrm3p interaction protein known to be Def1p. In def1 mutants, telomeres were approximately 200-bp shorter than that in wild-type cells. DEF1 is also required for the stable maintenance of mitochondrial DNA, and the telomere shortening phenotype seen in def1 cells is not a secondary consequence of the mitochondrion defect. A combination of DEF1 null mutation with deletion of EST2 or EST3 resulted in an accelerated senescence phenotype, suggesting that Def1p is not involved in the telomerase recruitment pathway. In the absence of telomerase, cells escape senescence by either amplifying Y' regions or TG-telomeric repeats to generate type I or type II survivors, respectively. Only type I survivors were recovered from both def1Delta est2Delta and def1Delta est3Delta double mutant cells, further suggesting that the function of Def1p in telomere maintenance is specific. Our novel findings of the functions of Def1p in telomere and mitochondria suggested that Def1p plays multiple roles in yeast.  相似文献   

17.
The intra-S phase checkpoint protein complex Tof1/Csm3 of Saccharomyces cerevisiae antagonizes Rrm3 helicase to modulate replication fork arrest not only at the replication termini of rDNA but also at strong nonhistone protein binding sites throughout the genome. We investigated whether these checkpoint proteins acted either antagonistically or synergistically with Rrm3 in mediating other important functions such as maintenance of genome stability. High retromobility of a normally quiescent retrovirus-like transposable element Ty1 of S. cerevisiae is a form of genome instability, because the transposition events induce mutations. We measured the transposition of Ty1 in various genetic backgrounds and discovered that Tof1 suppressed excessive retromobility in collaboration with either Rrm3 or the F-box protein Dia2. Although both Rrm3 and Dia2 are believed to facilitate fork movement, fork stalling at DNA-protein complexes did not appear to be a major contributor to enhancement of retromobility. Absence of the aforementioned proteins either individually or in pair-wise combinations caused karyotype changes as revealed by the altered migrations of the individual chromosomes in pulsed field gels. The mobility changes were RNase H-resistant and therefore, unlikely to have been caused by extensive R loop formation. These mutations also resulted in alterations of telomere lengths. However, the latter changes could not fully account for the magnitude of the observed karyotypic alterations. We conclude that unlike other checkpoint proteins that are known to be required for elevated retromobility, Tof1 suppressed high frequency retrotransposition and maintained karyotype stability in collaboration with the aforementioned proteins.  相似文献   

18.
Pif1 DNA helicase is the prototypical member of a 5′ to 3′ helicase superfamily conserved from bacteria to humans. In Saccharomyces cerevisiae, Pif1 and its homologue Rrm3, localize in both mitochondria and nucleus playing multiple roles in the maintenance of genomic homeostasis. They display relatively weak processivities in vitro, but have largely non-overlapping functions on common genomic loci such as mitochondrial DNA, telomeric ends, and many replication forks especially at hard-to-replicate regions including ribosomal DNA and G-quadruplex structures. Recently, emerging evidence shows that Pif1, but not Rrm3, has a significant new role in repair-associated DNA synthesis with Polδ during homologous recombination stimulating D-loop migration for conservative DNA replication. Comparative genetic and biochemical studies on the structure and function of Pif1 family helicases across different biological systems are further needed to elucidate both diversity and specificity of their mechanisms of action that contribute to genome stability.  相似文献   

19.
20.
Telomere maintenance is essential to preserve genomic stability and involves several telomere-specific proteins as well as DNA replication and repair proteins. The kinase ATR, which has a crucial function in maintaining genome integrity from yeast to human, has been shown to be involved in telomere maintenance in several eukaryotic organisms, including yeast, Arabidopsis and Drosophila. However, its role in telomere maintenance in mammals remains poorly explored. Here, we report by using telomere-fluorescence in situ hybridization (Telo-FISH) on metaphase chromosomes that ATR deficiency causes telomere instability both in primary human fibroblasts from Seckel syndrome patients and in HeLa cells. The telomere aberrations resulting from ATR deficiency (i.e. sister telomere fusions and chromatid-type telomere aberrations) are mainly generated during and/or after telomere replication, and involve both leading and lagging strand telomeres as shown by chromosome orientation-FISH (CO-FISH). Moreover, we show that ATR deficiency strongly sensitizes cells to the G-quadruplex ligand 360A, enhancing sister telomere fusions and chromatid-type telomere aberrations involving specifically the lagging strand telomeres. Altogether, these data reveal that ATR plays a critical role in telomere maintenance during and/or after telomere replication in human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号