首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
动物的伪装方式   总被引:1,自引:0,他引:1  
伪装是动物防御性体色最重要的功能之一,能减少被捕食者检测和识别的风险。本文综述了隐蔽、乔装、运动炫和运动伪装等4种伪装方式的研究进展,并指出当前研究中存在的一些问题,以期为动物伪装进化的研究提供参考。  相似文献   

4.
杨运清YANG  Yun-Qing 《遗传》1993,15(6):17-19
本文探讨了用一种特殊形式资料估计遗传力的方法,亦可作为为扩大样本含量,充分利用不同来源且形式不同资料合并估计遗传力的方法。  相似文献   

5.
一种作物种植的气候适应性模糊综合评价方法的探讨   总被引:2,自引:0,他引:2  
提出了一种作物种植的气候适应性的模糊综合评价方法.作物种植的气候适应性可定义为一定地理环境下,其自然气候条件能满足作物生长所需适宜气候条件的能力.在相同的地理环境下,作物种植的气候适应性因作物种类不同而表现不一,并可表示为该地理环境提供的自然气候条件对不同作物生长所需适宜气候条件的满足程度.作物种植的气候适应性的模糊综合评价包括以下主要步骤:确定影响作物种植的主要气候因子,确定各因子的权重,建立评价因子集并确定气候因子评价标准、建立评价矩阵和计算作物生长气候适应性等.采用该方法对武夷山北坡不同海拔高度柑桔和茶树种植的气候适应性进行了综合评价.  相似文献   

6.
7.
8.
利用ISSR分子标记技术和筛选出的22条ISSR引物,对24个不同地理种源杉木的DNA进行扩增,共扩增出188条谱带,其中多态条带173条,占总数的92.0%.经计算,平均位点的有效等位基因是13408,Nei's基因多样性指数是0.2154,Shannon多态性信息指数为0.3458,表明不同杉木种源间具有较高的遗传多样性.通过UPGMA法聚类分析,可把24个种源杉木分为五个类群:中带东区生态型、中带东南区生态型、中带中区生态型、南带生态型和北带生态型,表明杉木地理种源遗传距离聚类呈现出一定的地域性分布规律.  相似文献   

9.
10.
11.
12.
《Current biology : CB》2020,30(11):2139-2145.e5
  1. Download : Download high-res image (153KB)
  2. Download : Download full-size image
  相似文献   

13.
Implications of Two Different Types of Diffusion for Biological Membranes   总被引:1,自引:0,他引:1  
AS it is not widely appreciated that diffusion within complex media can be strikingly and often qualitatively different from that in simple liquids such as water, there is confusion concerning transport processes across biological membranes1,2. We would like to draw attention to some fundamental differences between the diffusion process in simple liquids and that in more complex media-non-porous networks of hydrophobic polymers and biological membranes.  相似文献   

14.
15.
鉴别超氧化物歧化酶类型的定位染色法   总被引:39,自引:0,他引:39  
介绍一种鉴别SOD类型的方法─—聚丙烯酰胺凝胶电泳的定位染色法. 由于不同类型的SOD对抑制剂的表现各异, 电泳后的凝胶经不同的抑制剂处理, 染色, 结果展示在凝胶上, CuZn-SOD酶带在H2O2或CN-的作用下消失, Mn-SOD在CHCl3-CH3OH作用下消失, Fe-SOD在H2O2或. CHCl3-CH3CH2OH作用下失活, 从酶带消失或存活的情况, 可以判断SOD的类型.  相似文献   

16.
《CMAJ》1963,88(26):1306
  相似文献   

17.

Background

Osteoarthritis (OA) is the most common form of arthritis and has become an increasingly important public-health problem. However, the pathogenesis of OA is still unclear. In recent years, its correlation with mtDNA haplogroups attracts much attention. We aimed to perform a meta-analysis to investigate the association between mtDNA haplogroups and OA.

Methods

Published English or Chinese literature from PubMed, Web of Science, SDOS, and CNKI was retrieved up until April 15, 2014. Case-control or cohort studies that detected the frequency of mtDNA haplogroups in OA patients and controls were included. The quality of the included studies was evaluated by the Newcastle-Ottawa Scale (NOS) assessment. A meta-analysis was conducted to calculate pooled odds ratio (OR) with 95% confidence interval (CI) through the random or fixed effect model, which was selected based on the between-study heterogeneity assessed by Q test and I2 test. Subgroup analysis was performed to explore the origin of heterogeneity.

Results

A total of 6 case-control studies (10590 cases and 7161 controls) with an average NOS score of 6.9 were involved. For the analysis between mtDNA haplogroup J and OA, random model was selected due to high heterogeneity. No significant association was found initially (OR = 0.73, 95%CI: 0.52–1.03), however, once any study from UK population was removed the association emerged. Further subgroup analysis demonstrated that there was a significant association in Spain population (OR = 0.57, 95%CI: 0.46–0.71), but not in UK population. Also, subgroup analysis revealed that there was a significant correlation between cluster TJ and OA in Spain population (OR = 0.70, 95%CI: 0.58–0.84), although not in UK population. No significant correlation was found between haplogroup T/cluster HV/cluster KU and OA.

Conclusions

Our current meta-analysis suggests that mtDNA haplogroup J and cluster TJ correlate with the risk of OA in Spanish population, but the associations in other populations require further investigation.  相似文献   

18.
Photosensitivity plays an essential role in the response of plants to their changing environments throughout their life cycle. In soybean [Glycine max (L.) Merrill], several associations between photosensitivity and maturity loci are known, but only limited information at the molecular level is available. The FT3 locus is one of the quantitative trait loci (QTL) for flowering time that corresponds to the maturity locus E3. To identify the gene responsible for this QTL, a map-based cloning strategy was undertaken. One phytochrome A gene (GmPhyA3) was considered a strong candidate for the FT3 locus. Allelism tests and gene sequence comparisons showed that alleles of Misuzudaizu (FT3/FT3; JP28856) and Harosoy (E3/E3; PI548573) were identical. The GmPhyA3 alleles of Moshidou Gong 503 (ft3/ft3; JP27603) and L62-667 (e3/e3; PI547716) showed weak or complete loss of function, respectively. High red/far-red (R/FR) long-day conditions enhanced the effects of the E3/FT3 alleles in various genetic backgrounds. Moreover, a mutant line harboring the nonfunctional GmPhyA3 flowered earlier than the original Bay (E3/E3; PI553043) under similar conditions. These results suggest that the variation in phytochrome A may contribute to the complex systems of soybean flowering response and geographic adaptation.FLOWERING represents the transition from the vegetative to the reproductive phase in plants. Various external cues, such as photoperiod and temperature, are known to initiate plant flowering under the appropriate seasonal conditions. Of these cues, light is the most important, being received by several photoreceptors, including the red light (R) and the far-red light (FR)-absorbing phytochromes and the blue/UV-A absorbing cryptochromes and phototorpins (Chen et al. 2004).Phytochrome is the best characterized of these photoreceptors. All higher plant phytochromes are thought to exist as specific dimer combinations (Sharrock and Clack 2004), with each monomer being attached to a light-absorbing linear tetrapyrrole, phytochromobilin. The phytochrome apoproteins are synthesized within the cytosol and assemble autocatalytically with a chromophore to form the phytochrome holoproteins. The R-absorbing form (Pr) is thought to be inactive but is then converted to the active FR-absorbing form (Pfr) by R absorption. The absorption of light triggers the transfer of the phytochrome to the nucleus, where it regulates gene expression. In most plant species, the phytochrome apoproteins are encoded by a small gene family. Type I phytochrome is degraded in the light and is abundant in dark-grown seedlings, whereas type II phytochrome is relatively stable in the light (reviewed by Bae and Choi 2008). In Arabidopsis, five phytochromes (PhyA–E) have been characterized (Clack et al. 1994; Quail et al. 1995). PhyA is type I and is responsible for the very low fluence response and high irradiance response, whereas the other phytochromes are type II and are responsible for red-far/red reversible low fluence response (reviewed by Whitelam et al. 1998).It is well known that mutations in the phytochrome A gene affect the photoperiodic control of flowering. In Arabidopsis, a phyA mutant flowered later in either long-day or short-day conditions with a night break (Johnson et al. 1994; Reed et al. 1994). In rice, combinations of mutant alleles of phytochrome genes conferred various effects on the flowering phenotype. For example, the phyA phyB and phyA phyC double mutants grown under natural-day-length conditions showed earlier flowering phenotypes than wild-type plants (Takano et al. 2005). In pea, a long-day plant, loss- or gain-of-function phyA mutants displayed late or early flowering phenotypes, respectively (Weller et al. 1997, 2001). It is likely that photoperiodic response via phyA signaling is important for crop adaptation to a wide range of growing conditions.In soybean [Glycine max (L.) Merrill], several maturity loci, designated as E loci (Cober et al. 1996a), have been characterized by classical methods. These are E1 and E2 (Bernard 1971), E3 (Buzzell 1971), E4 (Buzzell and Voldeng 1980), E5 (McBlain and Bernard 1987), E6 (Bonato and Vello 1999), and E7 (Cober and Voldeng 2001). Of these, the E1, E3, and E4 loci have been suggested to be related to photoperiod sensitivity under various light conditions (Saidon et al. 1989; Cober et al. 1996b; Abe et al. 2003). In previous studies, using the same populations as in this study, three flowering-time quantitative trait loci (QTL)—FT1, FT2, and FT3 loci—were identified and considered to be identical with the maturity loci E1, E2, and E3, respectively (Yamanaka et al. 2001; Watanabe et al. 2004). Although many loci related to soybean flowering and maturity have been identified, and some candidate genes were recognized using near isogenic lines (NILs) (Tasma and Shoemaker 2003), most of the genes responsible for these loci have not yet been isolated except for the E4 gene. Liu et al. (2008) reported an association between phytochrome A and photoperiod sensitivity. A retrotransposon sequence inserted into the exon of the e4 allele conferred an early flowering phenotype under long-day conditions extended by incandescent lighting.A relationship between the E3 gene and some photoreceptor genes was suggested from different photosensitivity responses of various soybean NILs (Cober et al. 1996a). Cober and Voldeng (1996) also reported a linkage relationship between the E3 and Dt1 loci, which is related to a determinate or indeterminate growth habit phenotype. Additionally, Molnar et al. (2003) reported that Satt229, on linkage group (LG) L, was a proximal simple sequence repeat (SSR) marker to the E3 loci. According to the Soybean Genome Database (Shultz et al. 2006a,b, 2007; http://soybeangenome.siu.edu/) and the Legume Information System (LIS; http://www.comparative-legumes.org/), there are numerous QTL and >60 loci associated with various agronomic traits in the region between Dt1 and Satt373 (∼30–40 cM). This extremely large number of QTL may be the result of linkage between the Dt1 and E3 loci because both loci can affect many aspects of plant morphology. Among these QTL, several associations with the E3 gene have been reported (Mansur et al. 1996; Orf et al. 1999; Funatsuki et al. 2005; Kahn et al. 2008).To identify the genes responsible for the target QTL, fine mapping and map-based cloning strategies are necessary (Salvi and Tuberosa 2005). QTL analysis using intercross-derived populations, such as F2 and recombinant inbred lines (RILs), have some limitations in genome resolution (10–30 cM) because of the simultaneous segregation of several loci affecting the same trait (Kearsey and Farquhar 1998). Additional strategies are therefore required to locate QTL more precisely. The use of NILs that differ at a single QTL is an effective approach for fine mapping and characterization of an individual locus (Salvi and Tuberosa 2005). However, the development of NILs through repeated backcrossing is time-consuming and laborious (Tuinstra et al. 1997). The use of a residual heterozygous line (RHL), as proposed by Yamanaka et al. (2004), and which is derived from RIL, is a powerful tool for precisely evaluating QTL (Haley et al. 1994). An RHL harbors a heterozygous region where the target QTL is located and a homozygous background in most other regions of the genome. Tuinstra et al. (1997) used a similar term, heterogeneous inbred family, for a selfed RHL population to identify the QTL associated with seed weight in sorghum.This RHL strategy has already been used to identify loci underlying resistance to pathogens in soybean (Njiti et al. 1998; Meksem et al. 1999; Triwitayakorn et al. 2005). After identification of the target loci, novel DNA markers tightly linked to the loci were developed using the amplified fragment length polymorphism (AFLP) method (Meksem et al. 2001a,b). Physical contigs, screened by sequence-characterized amplified region (SCAR) markers converted from these AFLP fragments, are ideal sources for identifying candidate genes for the target traits (Ruben et al. 2006).The aim of this study is to characterize the FT3 locus using a map-based cloning strategy and to confirm the gene responsible for the E3/FT3 locus by allelism tests through comparisons of gene sequences and photosensitivity of several alleles.  相似文献   

19.
Wolbachia-like microorganisms have been implicated in unidirectional cytoplasmic incompatibility between strains of Drosophila simulans. Reduced egg eclosion occurs when females from uninfected strains (type W) are crossed with males from infected strains (type R). Here we characterize a third incompatibility type (type S) which is also correlated with the presence of Wolbachia-like microorganisms. Despite the fact that the symbionts cannot be morphologically distinguished, we observed complete bidirectional incompatibility between R and S strains. This indicates that the determinants of incompatibility are different in the two infected types. S/W incompatibility is unidirectional and similar to R/W incompatibility. A worldwide survey of D. simulans strains showed that type S incompatibility was found only in insular populations which harbor the mitochondrial type SiI. Both W and R types were found among mainland and island populations harboring the worldwide mitochondrial type SiII. Type S incompatibility could be involved in the reinforcement of the geographical isolation of SiI populations.  相似文献   

20.
The soil bacterium Frankia of the Actinomycetales, capable of forming N2-fixing symbiotic root nodules on a diverse array of actinorhizal plants, has several morphological forms when grown in pure culture. Fresh hydrated preparations of whole cells, hyphae, and spores were all infective on seedlings of Casuarina at different dilutions. Desiccated hyphae showed no infection capacity, while desiccated spores remained infective, although at a reduced level. On the basis of most-probable-number statistics, spore suspensions were 3 orders of magnitude more infective than hyphae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号