首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BackgroundFuture infectious disease epidemics are likely to disproportionately affect countries with weak health systems, exacerbating global vulnerability. To decrease the severity of epidemics in these settings, lessons can be drawn from the Ebola outbreak in West Africa. There is a dearth of literature on public perceptions of the public health response system that required citizens to report and treat Ebola cases. Epidemiological reports suggested that there were delays in diagnosis and treatment. The purpose of our study was to explore the barriers preventing Sierra Leoneans from trusting and using the Ebola response system during the height of the outbreak.MethodsUsing an experienced ethnographer, we conducted 30 semi-structured in-depth interviews in public spaces in Ebola-affected areas. Participants were at least age 18, spoke Krio, and reported no contact in the recent 21 days with an Ebola-infected person. We used inductive coding and noted emergent themes.FindingsMost participants feared that calling the national hotline for someone they believed had Ebola would result in that person’s death. Many stated that if they developed a fever they would assume it was not Ebola and self-medicate. Some thought the chlorine sprayed by ambulance workers was toxic. Although most knew there was a laboratory test for Ebola, some erroneously assumed the ubiquitous thermometers were the test and most did not understand the need to re-test in the presence of Ebola symptoms.ConclusionFears and misperceptions, related to lack of trust in the response system, may have delayed care-seeking during the Ebola outbreak in Sierra Leone. Protocols for future outbreak responses should incorporate dynamic, qualitative research to understand and address people’s perceptions. Strategies that enhance trust in the response system, such as community mobilization, may be particularly effective.  相似文献   

2.
3.
4.
BackgroundExperimental treatments for Ebola virus disease (EVD) might reduce EVD mortality. There is uncertainty about the ability of different clinical trial designs to identify effective treatments, and about the feasibility of implementing individually randomised controlled trials during an Ebola epidemic.ConclusionsThe MSA discards ineffective treatments quickly, while reliably providing evidence concerning effective treatments. The MSA is appropriate for the clinical evaluation of EVD treatments.  相似文献   

5.

Background

The Ebola outbreak in West Africa has infected at least 27,443 individuals and killed 11,207, based on data until 24 June, 2015, released by the World Health Organization (WHO). This outbreak has been characterised by extensive geographic spread across the affected countries Guinea, Liberia and Sierra Leone, and by localized hotspots within these countries. The rapid recognition and quantitative assessment of localised areas of higher transmission can inform the optimal deployment of public health resources.

Methods

A variety of mathematical models have been used to estimate the evolution of this epidemic, and some have pointed out the importance of the spatial heterogeneity apparent from incidence maps. However, little is known about the district-level transmission. Given that many response decisions are taken at sub-national level, the current study aimed to investigate the spatial heterogeneity by using a different modelling framework, built on publicly available data at district level. Furthermore, we assessed whether this model could quantify the effect of intervention measures and provide predictions at a local level to guide public health action. We used a two-stage modelling approach: a) a flexible spatiotemporal growth model across all affected districts and b) a deterministic SEIR compartmental model per district whenever deemed appropriate.

Findings

Our estimates show substantial differences in the evolution of the outbreak in the various regions of Guinea, Liberia and Sierra Leone, illustrating the importance of monitoring the outbreak at district level. We also provide an estimate of the time-dependent district-specific effective reproduction number, as a quantitative measure to compare transmission between different districts and give input for informed decisions on control measures and resource allocation. Prediction and assessing the impact of control measures proved to be difficult without more accurate data. In conclusion, this study provides us a useful tool at district level for public health, and illustrates the importance of collecting and sharing data.  相似文献   

6.
The 2014–2015 Ebola outbreak is the largest and most widespread to date. In order to estimate ongoing transmission in the affected countries, we estimated the weekly average number of secondary cases caused by one individual infected with Ebola throughout the infectious period for each affected West African country using a stochastic hidden Markov model fitted to case data from the World Health Organization. If the average number of infections caused by one Ebola infection is less than 1.0, the epidemic is subcritical and cannot sustain itself. The epidemics in Liberia and Sierra Leone have approached subcriticality at some point during the epidemic; the epidemic in Guinea is ongoing with no evidence that it is subcritical. Response efforts to control the epidemic should continue in order to eliminate Ebola cases in West Africa.  相似文献   

7.
8.
The explosive outbreak of Ebola virus disease (EVD) in West Africa in 2014 appeared to have lessened in 2015, but potentially continues be a global public health threat. A simple mathematical model, the Richards model, is utilized to gauge the temporal variability in the spread of the Ebola virus disease (EVD) in West Africa in terms of its reproduction number R and its temporal changes via detection of epidemic waves and turning points during the 2014 outbreaks in the three most severely affected countries; namely, Guinea, Liberia, and Sierra Leone. The results reveal multiple waves of infection in each of these three countries, of varying lengths from a little more than one week to more than one month. All three countries exhibit marginally fluctuating reproduction numbers during June-October before gradually declining. Although high mobility continues between neighboring populations of these countries across the borders, outbreak in these three countries exhibits decidedly different temporal patterns. Guinea had the most waves but maintained consistently low transmissibility and hence has the smallest number of reported cases. Liberia had highest level of transmission before October, but has remained low since, with no detectable wave after the New Year. Sierra Leone has gradually declining waves since October, but still generated detectable waves up to mid-March 2015, and hence has cumulated the largest number of cases—exceeding that of Guinea and Liberia combined. Analysis indicates that, despite massive amount of international relief and intervention efforts, the outbreak is persisting in these regions in waves, albeit more sparsely and at a much lower level since the beginning of 2015.  相似文献   

9.
The recent outbreak of Ebola Virus Disease (EVD) in West Africa has ravaged many lives. Effective containment of this outbreak relies on prompt and effective coordination and communication across various interventions; early detection and response being critical to successful control. The use of information and communications technology (ICT) in active surveillance has proved to be effective but its use in Ebola outbreak response has been limited. Due to the need for timeliness in reporting and communication for early discovery of new EVD cases and promptness in response; it became imperative to empower the response team members with technologies and solutions which would enable smooth and rapid data flow. The Open Data Kit and Form Hub technology were used in combination with the Dashboard technology and ArcGIS mapping for follow up of contacts, identification of cases, case investigation and management and also for strategic planning during the response. A remarkable improvement was recorded in the reporting of daily follow-up of contacts after the deployment of the integrated real time technology. The turnaround time between identification of symptomatic contacts and evacuation to the isolation facility and also for receipt of laboratory results was reduced and informed decisions could be taken by all concerned. Accountability in contact tracing was ensured by the use of a GPS enabled device. The use of innovative technologies in the response of the EVD outbreak in Nigeria contributed significantly to the prompt control of the outbreak and containment of the disease by providing a valuable platform for early warning and guiding early actions.  相似文献   

10.
Carefully calibrated transmission models have the potential to guide public health officials on the nature and scale of the interventions required to control epidemics. In the context of the ongoing Ebola virus disease (EVD) epidemic in Liberia, Drake and colleagues, in this issue of PLOS Biology, employed an elegant modeling approach to capture the distributions of the number of secondary cases that arise in the community and health care settings in the context of changing population behaviors and increasing hospital capacity. Their findings underscore the role of increasing the rate of safe burials and the fractions of infectious individuals who seek hospitalization together with hospital capacity to achieve epidemic control. However, further modeling efforts of EVD transmission and control in West Africa should utilize the spatial-temporal patterns of spread in the region by incorporating spatial heterogeneity in the transmission process. Detailed datasets are urgently needed to characterize temporal changes in population behaviors, contact networks at different spatial scales, population mobility patterns, adherence to infection control measures in hospital settings, and hospitalization and reporting rates.Ebola virus disease (EVD) is caused by an RNA virus of the family Filoviridae and genus Ebolavirus. Five different Ebolavirus strains have been identified, namely Zaire ebolavirus (EBOV), Sudan ebolavirus (SUDV), Tai Forest ebolavirus (TAFV), Bundibugyo ebolavirus (BDBV), and Reston ebolavirus (RESTV). The great majority of past Ebola outbreaks in humans have been linked to three Ebola strains: EBOV, SUDV, and BDBV [1]. The Ebola virus ([EBOV] formerly designated Zaire ebolavirus) derived its name from the Ebola River, located near the epicenter of the first outbreak identified in 1976 in Zaire (now the Democratic Republic of Congo). EVD outbreaks among humans have been associated with direct human exposure to fruit bats—the most likely reservoir of the virus—or through contact with intermediate infected hosts, which include gorillas, chimpanzees, and monkeys. Outbreaks have been reported on average every 1.5 years [2]. Past EVD outbreaks have occurred in relatively isolated areas and have been limited in size and duration (Fig. 1). It has been recently estimated that about 22 million people living in areas of Central and West Africa are at risk of EVD [3].Open in a separate windowFigure 1Time series of the temporal progression of four past EVD outbreaks in Congo (1976, 1995, 2014) [46] and Uganda (2000) [7].An epidemic of EVD (EBOV) has been spreading in West Africa since December 2013 in Guinea, Liberia, and Sierra Leone [8]. A total of 18,603 cases, with 6,915 deaths, have been reported to the World Health Organization as of December 17, 2014 [9]. While the causative strain associated with this epidemic is closely related to that of past outbreaks in Central Africa [10], three key factors have contributed disproportionately to this unprecedented epidemic: (1) substantial delays in detection and implementation of control efforts in a region characterized by porous borders; (2) limited public health infrastructure including epidemiological surveillance systems and diagnostic testing [11], which are necessary for the timely diagnosis of symptomatic individuals, effective isolation of infectious individuals, contact tracing to rapidly identify new cases, and providing supportive care to increase the chances of survival to EVD infection; and (3) cultural practices that involve touching the body of the deceased and the association of illness with witchcraft or conspiracy theories.EBOV is transmitted by direct human-to-human contact via body fluids or indirect contact with contaminated surfaces, but it is not spread through the airborne route. Individuals become symptomatic after an average incubation period of 10 days (range 2–21 days) [12], and infectiousness is increased during the later stages of disease [13]. The characteristic symptoms of EVD are nonspecific and include sudden onset of fever, weakness, vomiting, diarrhea, headache, and a sore throat, while only a fraction of the symptomatic individuals present with hemorrhagic manifestations [14]. The case fatality risk (CFR), calculated as the proportion of deaths among the total number of EVD cases with known outcomes, has been estimated from data of the first 9 months of the epidemic in West Africa at 70.8% (95% CI 68.6–72.8), in broad agreement with estimates from past outbreaks [12].Two important quantities to understand in the transmission dynamics of EVD are the serial interval and the basic reproduction number. The serial interval is defined as the time from illness onset in a primary case to illness onset in a secondary case [15] and has been estimated at 15 days on average for the ongoing epidemic [12]. The basic reproduction number, R 0, quantifies transmission potential at the beginning of an epidemic and is defined as the average number of secondary cases generated by a typical infected individual during the early phase of an epidemic, before interventions are put in place [16]. If R 0 < 1, transmission is not sufficient to generate a major epidemic. In contrast, a major epidemic is likely to occur whenever R 0 > 1. When transmission potential is measured over time t, the effective reproduction number Rt, can be helpful to quantify the time-dependent transmission potential resulting from the effect of control interventions and behavior changes [17]. Estimates of R 0 for the ongoing epidemic in West Africa have fluctuated around 2 with some uncertainty (e.g., [12, 1822]), which are in good agreement with estimates from past EVD outbreaks [23]. R 0 could also vary across regions as a function of the local public health infrastructure (e.g., availability of health care settings and infection control protocols), such that an outbreak may be very unlikely to unfold in developed countries simply as a result of baseline infection control measures in place (i.e., R 0 < 1) while poor countries with extremely weak or absent public health systems may be unable to control an Ebola outbreak (i.e., R 0 > 1).Mathematical models of disease transmission have proved to be useful tools to characterize the transmission dynamics of infectious diseases and evaluate the effects of control intervention strategies in order to inform public health policy [16, 24, 25]. There are a limited number of mathematical models for the transmission and control of EVD, but a number of efforts are underway in the context of the epidemic in West Africa. The transmission dynamics of EVD have been modeled on the basis of the simple compartmental susceptible-exposed-infectious-removed (SEIR) model that assumes a homogenously mixed population [23]. The modeled population can be structured according to the contributions of community, hospital, and unsafe burials to transmission as EVD transmission has been amplified in health care settings with ineffective infection control measures and during unsafe burials [23]. A schematic representation of the main transmission pathways of EVD is shown in Fig. 2.Open in a separate windowFigure 2Schematic representation of the transmission dynamics of Ebola virus disease.A recent study published in PLOS Biology by Drake and colleagues [26] presents an interesting and flexible modeling framework for the transmission and control of EVD in Liberia. Their framework is based on a multi-type branching process model in which “multi-type” refers to the consideration of two types of settings where transmission can occur, while “branching process” is the mathematical term to specify a probabilistic model. For instance, in the case of a single-type branching process, the transmission dynamics are simply described using a single reproduction number, i.e., the average number of secondary cases produced by a single primary case. However, when two types of hosts are considered in the transmission process, two reproduction numbers are needed to characterize within-group mixing (e.g., within-hospital and within-community transmission) and two reproduction numbers characterize transmission between groups (e.g., transmission from hospital to community and vice versa).Drake and colleague’s elegant modeling approach describes EVD transmission according to infection generations by calculating probability distributions of the number of secondary cases that arise in the community via nursing care or during unsafe burials and in health care settings via infections to health care workers and visitors. The model explicitly accounts for the hospitalization rate—the fraction of infectious individuals in the community seeking hospitalization (estimated in this study at 60%). However, the number of effectively isolated infectious individuals is constrained by the number of available beds in treatment centers—which are assumed in this study to operate at twice their regular capacity. It is important to note that the number of beds available to treat EVD patients was severely limited in Liberia prior to mid August 2014 (Fig. 1 in [26]). Moreover, the rate of safe burials that reduces the force of infection is included in their model as an increasing function of time. The model was calibrated by tuning six parameters to fit the trajectories of the number of reported cases in the community and among health care workers during the period 4 July to 2 September 2014 for a total of four infection generations during which the effective reproduction number was estimated to decline on average from about 2.8 to 1.4. The model was able to effectively capture heterogeneity in transmission of EVD in both the community and hospital settings.Drake and colleagues [26] employed their calibrated model to forecast the epidemic trajectory in Liberia from 3 September to 31 December 2014 under different scenarios that account for an increasing fraction of cases seeking hospitalization and a surge in the number of beds available to isolate and treat EVD patients. Their results indicate that allocating 1,700 additional beds (100 new beds every 4 days) in new Ebola treatment centers committed by US aid reduces the mean epidemic size to ~51,000 (60% reduction with respect to the baseline scenario), while epidemic control by mid-March is only plausible through a 4-fold increase in the number of beds committed by US aid and enhancing the hospitalization rate from 60% to 99% for a final epidemic size of 12,285. Moreover, an additional epidemic forecast incorporating data up to 1 December 2014 indicated that containment could be achieved between March and June 2015.Other interventions were not explicitly incorporated in their model because it is difficult to parameterize them in the absence of datasets that permit statistical estimation of their impact on the transmission dynamics. These additional interventions include the use of household protection kits, designed to reduce transmission in the community; improvements in infection control protocols in health care settings that reduce transmission among health care workers; and the impact of rapid diagnostic kits in Ebola treatment centers, which reduce the time to isolation for infectious individuals seeking hospitalization. Increasing awareness and education of the population about the disease could have also yielded further reductions in case incidence by reducing the size of the at-risk susceptible population (Fig. 3) [27]. Nevertheless, some of these effects could have been indirectly captured implicitly by the time-dependent safe burial rate parameter in their model.Open in a separate windowFigure 3Contrasting epidemic growth in the presence and absence of behavior changes that reduce the transmission rate.Importantly, prior models of EVD transmission [23, 28, 29] and the model by Drake and colleagues have not incorporated spatial heterogeneity in the transmission dynamics. In particular, the EVD epidemic in West Africa can be characterized as a set of asynchronous local (e.g., district) epidemics that exhibit sub-exponential growth, which could be driven by a highly clustered underlying contact network or population behavior changes induced by the accumulation of morbidity and mortality rates (see Fig. 4 and [30]). EVD contagiousness is most pronounced in the later and more severe stages of Ebola infection when infectious individuals are confined at home or health care settings and mostly exposed to caregivers (e.g., health care workers, family members) [30]. This characterization would lead to EVD transmission over a network of contacts that is highly clustered (e.g., individuals are likely to share a significant fraction of their contacts), which is associated with significantly slower spread relative to the common random mixing assumption as illustrated in Fig. 5. The development of transmission models that incorporate spatial heterogeneity (e.g., by modeling spatial coupling or human migration) is currently limited by the shortage of detailed datasets from the EVD-affected areas about the geographic distribution of households, health care settings, reporting and hospitalization rates across urban and rural areas, and patterns of population mobility in the region. Some of these limitations may be overcome in the near future. For instance, cell phone data could provide a basis to characterize population mobility in the region at a refined spatial scale.Open in a separate windowFigure 4Representative time series of the cumulative number of EVD cases (in log scale) at the district level in Guinea, Sierra Leone, and Liberia.Open in a separate windowFigure 5Epidemic growth in two populations characterized by two different underlying contact networks.The ongoing epidemic in West Africa offers a unique opportunity to improve our current understanding of the transmission characteristics of EVD in humans. To achieve this goal, it is crucial to collect spatial-temporal data on population behaviors, contact networks, social distancing measures, and education campaigns. Datasets comprising detailed demographic, socio-economic, contact rates, and population mobility estimates in the region (e.g., commuting networks, air traffic) need to be integrated and made publicly available in order to develop highly resolved transmission models, which could guide control strategies with greater precision in the context of the EVD epidemic in West Africa. Although recent data from Liberia indicates that the epidemic is on track for eventual control, the epidemic in Sierra Leone continues an increasing trend, and in Guinea, case incidence roughly follows a steady trend. The potential impact of vaccines should also be incorporated in future modeling efforts as these pharmaceutical interventions are expected to become available in the upcoming months.  相似文献   

11.
12.
The Ebola virus disease (EVD) outbreak in West Africa was unprecedented in scale and location. Limited access to both diagnostic and supportive pathology assays in both resource-rich and resource-limited settings had a detrimental effect on the identification and isolation of cases as well as individual patient management. Limited access to such assays in resource-rich settings resulted in delays in differentiating EVD from other illnesses in returning travellers, in turn utilising valuable resources until a diagnosis could be made. This had a much greater impact in West Africa, where it contributed to the initial failure to contain the outbreak. This review explores diagnostic assays of use in EVD in both resource-rich and resource-limited settings, including their respective limitations, and some novel assays and approaches that may be of use in future outbreaks.  相似文献   

13.
14.
Acta Biotheoretica - Thresholds for disease extinction provide essential information for the prevention and control of diseases. In this paper, a stochastic epidemic model, a continuous-time Markov...  相似文献   

15.
Environmental heterogeneity, spatial connectivity, and movement of individuals play important roles in the spread of infectious diseases. To account for environmental differences that impact disease transmission, the spatial region is divided into patches according to risk of infection. A system of ordinary differential equations modeling spatial spread of disease among multiple patches is used to formulate two new stochastic models, a continuous-time Markov chain, and a system of stochastic differential equations. An estimate for the probability of disease extinction is computed by approximating the Markov chain model with a multitype branching process. Numerical examples illustrate some differences between the stochastic models and the deterministic model, important for prevention of disease outbreaks that depend on the location of infectious individuals, the risk of infection, and the movement of individuals.  相似文献   

16.
BackgroundThe Ebola virus disease (EVD) epidemic has threatened access to basic health services through facility closures, resource diversion, and decreased demand due to community fear and distrust. While modeling studies have attempted to estimate the impact of these disruptions, no studies have yet utilized population-based survey data.ConclusionsWe detected a 30% decreased odds of FBD after the start of EVD in a rural Liberian county with relatively few cases. Because health facilities never closed in Rivercess County, this estimate may under-approximate the effect seen in the most heavily affected areas. These are the first population-based survey data to show collateral disruptions to facility-based delivery caused by the West African EVD epidemic, and they reinforce the need to consider the full spectrum of implications caused by public health emergencies.  相似文献   

17.
18.
对美国卫生与公众服务部所属的国立卫生研究院(NIH)、生物医学高级研究与发展管理局(BARDA)及国防部化学和生物防御项目(CBDP)中针对埃博拉病毒的相关科研部署情况进行了分析.同时,对美国发表的埃博拉病毒相关科研论文及主要药品、疫苗研发受资助情况进行了分析;对应对生物威胁加强政府投入、资源合理分配、发展广谱性应对措施、加强军地协作等建议进行了阐述。  相似文献   

19.
20.
EcoHealth - As the Ebola outbreak in West Africa wanes, it is time for the international scientific community to reflect on how to improve the detection of and coordinated response to future...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号