首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amphibian disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has contributed to the decline of Chiricahua leopard frogs (Rana chiricahuensis), a federally threatened species native to the Southwestern United States. We characterized immunogenetic variability in R. chiricahuensis by sequencing an expressed Major Histocompatibility Complex (MHC) class IIβ gene across 13 natural populations in Arizona, USA, as well as 283 individuals that were captive reared from two egg masses. We recovered a total of five class IIβ MHC alleles compared to 84 alleles previously characterized in eight natural populations of the Arizona congener R. yavapaiensis, demonstrating reduced MHC diversity in R. chiricahuensis. One allele was fixed in five populations but none of the R. chiricahuensis alleles were closely related to R. yavapaiensis allele Q, which is significantly associated with chytridiomycosis resistance in laboratory trials. Nine of 13 R. chiricahuensis population localities were Bd positive, and bearing allele RachDRB*04 was the best genetic predictor of an individual being infected with Bd. A total of three class IIβ alleles were recovered from captive reared individuals, which were released to two natural population localities followed by recapture surveys to assess MHC-based survival over winter, the time when chytridiomycosis outbreaks are most severe. At one site, all released animals were fixed for a single allele and MHC-based survival could not be assessed. At the second site, fewer than half of the released but all of the recaptured individuals were homozygous for RachDRB*05, indicating that MHC genotype is important in determining Bd survival under natural field conditions. We conclude that the limited MHC variation in R. chiricahuensis is likely the consequence rather than the cause of natural selection favoring alleles that promote survival in the face of Bd. Our study highlights that preserving even low levels of functional genetic variation may be essential for population persistence, and that local disease adaptation may present as a reduction in genetic diversity. These finding also suggest that for populations that have declined due to a specific infectious pathogen, MHC-based genetically-informed reintroduction approaches may enhance species recovery efforts.  相似文献   

2.
Genetic diversity of major histocompatibility complex (MHC) genes is linked to reduced pathogen susceptibility in amphibians, but few studies also examine broad spatial and temporal patterns of MHC and neutral genetic diversity. Here, we characterized range-wide MHC diversity in the Northern leopard frog, Rana pipiens, a species found throughout North America that is experiencing disease-related declines. We used previously sequenced neutral markers (mitochondrial DNA and microsatellites), sequenced an expressed MHC class IIß gene fragment, and measured infection prevalence and intensity of the global fungal pathogen Batrachochytrium dendrobatidis (Bd) across 14 populations. Four populations were sampled across two decades, enabling temporal comparisons of selection and demography. We recovered 37 unique MHC alleles, including 17 that were shared across populations. Phylogenetic and population genetic patterns between MHC and neutral markers were incongruent, and five MHC codon positions associated with peptide binding were under positive selection. MHC heterozygosity, but not neutral marker heterozygosity, was a significant factor explaining spatial patterns of Bd prevalence, whereas only environmental variables predicted Bd intensity. MHC allelic richness (AR) decreased significantly over time but microsatellite-based AR did not, highlighting a loss of functional immunogenetic diversity that may be associated with Bd selective pressures. MHC supertype 4 was significantly associated with an elevated risk of Bd infection, whereas one supertype 2 allele was associated with a nearly significant reduced risk of Bd. Taken together, these results provide evidence that positive selection contributes to MHC class IIß evolution in R. pipiens and suggest that functional MHC differences across populations may contribute to disease adaptation.Subject terms: Genetic variation, Immunogenetics  相似文献   

3.
4.
Pathogen evasion of the host immune system is a key force driving extreme polymorphism in genes of the major histocompatibility complex (MHC). Although this gene family is well characterized in structure and function, there is still much debate surrounding the mechanisms by which MHC diversity is selectively maintained. Many studies have investigated relationships between MHC variation and specific pathogens, and have found mixed support for and against the hypotheses of heterozygote advantage, frequency-dependent or fluctuating selection. Few, however, have focused on the selective effects of multiple parasite types on host immunogenetic patterns. Here, we examined relationships between variation in the equine MHC gene, ELA-DRA, and both gastrointestinal (GI) and ectoparasitism in plains zebras (Equus quagga). Specific alleles present at opposing population frequencies had antagonistic effects, with rare alleles associated with increased GI parasitism and common alleles with increased tick burdens. These results support a frequency-dependent mechanism, but are also consistent with fluctuating selection. Maladaptive GI parasite ‘susceptibility alleles’ were reduced in frequency, suggesting that these parasites may play a greater selective role at this locus. Heterozygote advantage, in terms of allele mutational divergence, also predicted decreased GI parasite burden in genotypes with a common allele. We conclude that an immunogenetic trade-off affects resistance/susceptibility to parasites in this system. Because GI and ectoparasites do not directly interact within hosts, our results uniquely show that antagonistic parasite interactions can be indirectly modulated through the host immune system. This study highlights the importance of investigating the role of multiple parasites in shaping patterns of host immunogenetic variation.  相似文献   

5.
Ontogenetic changes in disease susceptibility have been demonstrated in many vertebrate taxa, as immature immune systems and limited prior exposure to pathogens can place less developed juveniles at a greater disease risk. By causing the disease chytridiomycosis, Batrachochytrium dendrobatidis (Bd) infection has led to the decline of many amphibian species. Despite increasing knowledge on how Bd varies in its effects among species, little is known on the interaction between susceptibility and development within host species. We compared the ontogenetic susceptibility of post-metamorphic green and golden bell frogs Litoria aurea to chytridiomycosis by simultaneously measuring three host-pathogen responses as indicators of the development of the fungus—infection load, survival rate, and host immunocompetence—following Bd exposure in three life stages (recently metamorphosed juveniles, subadults, adults) over 95 days. Frogs exposed to Bd as recently metamorphosed juveniles acquired higher infection loads and experienced lower immune function and lower survivorship than subadults and adults, indicating an ontogenetic decline in chytridiomycosis susceptibility. By corresponding with an intrinsic developmental maturation in immunocompetence seen in uninfected frogs, we suggest these developmental changes in host susceptibility in L. aurea may be immune mediated. Consequently, the physiological relationship between ontogeny and immunity may affect host population structure and demography through variation in life stage survival, and understanding this can shape management targets for effective amphibian conservation.  相似文献   

6.
Major histocompatibility complex (MHC) genes encode proteins that present pathogen-derived antigens to T-cells, initiating the adaptive immune response in vertebrates. Although populations with low MHC diversity tend to be more susceptible to pathogens, some bottlenecked populations persist and even increase in numbers despite low MHC diversity. Thus, the relative importance of MHC diversity versus genome-wide variability for the long-term viability of populations after bottlenecks and/or under high inbreeding is controversial. We tested the hypothesis that genome-wide inbreeding (estimated using microsatellites) should be more critical than MHC diversity alone in determining pathogen resistance in the self-fertilizing fish Kryptolebias marmoratus by analysing MHC diversity and parasite loads in natural and laboratory populations with different degrees of inbreeding. Both MHC and neutral diversities were lost after several generations of selfing, but we also found evidence of parasite selection acting on MHC diversity and of non-random loss of alleles, suggesting a possible selective advantage of those individuals with functionally divergent MHC, in accordance with the hypothesis of divergent allele advantage. Moreover, we found that parasite loads were better explained by including MHC diversity in the model than by genome-wide (microsatellites) heterozygosity alone. Our results suggest that immune-related overdominance could be the key in maintaining variables rates of selfing and outcrossing in K. marmoratus and other mixed-mating species.  相似文献   

7.
Batrachochytrium dendrobatidis (Bd) is a fungus that causes the disease chytridiomycosis and is associated with widespread amphibian declines. Populations vary in their susceptibility to Bd infections, and the virulence of the infecting lineage can also vary. Both of these factors may manifest as a differential physiological stress response. In addition, variation in disease susceptibility across amphibian populations may be influenced by immunosuppression caused by chronic stress imposed by environmental factors. Here, we use a non-invasive water-borne hormone technique to assess stress levels (corticosterone) of free-living tadpole populations that are infected by Bd. We found that corticosterone release rates were higher in infected populations of two species of tadpoles (Alytes obstetricans and A. muletensis) than in an uninfected population for both species. The relationship between corticosterone and the intensity of infection differed between species, with only the infected A. obstetricans population showing a significant positive correlation. The higher corticosterone release rates found in A. obstetricans may be an outcome of infection by a highly virulent lineage of Bd (BdGPL), whereas A. muletensis is infected with a less virulent lineage (BdCAPE). These results suggest that different lineages of Bd impose different levels of stress on the infected animals, and that this may influence survival. The next step is to determine whether higher corticosterone levels make individuals more susceptible to Bd or if Bd infections drive the higher corticosterone levels.  相似文献   

8.
9.
Epizootic disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) is a major driver of amphibian declines, yet many amphibians declined before the pathogen was described. The Relict Leopard Frog, Rana onca (=Lithobates onca), was nearly extinct, with the exception of populations within a few geothermal springs. Growth of Bd, however, is limited by high water temperature, and geothermal springs may have provided refuge during outbreaks of chytridiomycosis. We conducted field surveys and laboratory experiments to assess the susceptibility of R. onca to Bd. In the field, we found Bd at one of the two areas where remnant populations of R. onca still occur, but not in the other. In the laboratory, we infected juvenile frogs from these two areas with two hypervirulent Bd isolates associated with declines in other ranid species. In our experiments, these Bd isolates did not affect survivorship of R. onca and most infections (64%) were cleared by the end of the experiments. We propose that R. onca either has inherent resistance to Bd or has recently evolved such resistance. These results may be important for conservation efforts aimed at establishing new populations of R. onca across a landscape where Bd exists. Resistance, however, varies among life stages, and we also did not assess Bd from the local environment. We caution that the resistance we observed for young frogs under laboratory conditions may not translate to the situation for R. onca in the wild.  相似文献   

10.
The extraordinary polymorphism of major histocompatibility complex (MHC) genes is considered a paradigm of pathogen‐mediated balancing selection, although empirical evidence is still scarce. Furthermore, the relative contribution of balancing selection to shape MHC population structure and diversity, compared to that of neutral forces, as well as its interaction with other evolutionary processes such as hybridization, remains largely unclear. To investigate these issues, we analyzed adaptive (MHC‐DAB gene) and neutral (11 microsatellite loci) variation in 156 brown trout (Salmo trutta complex) from six wild populations in central Italy exposed to introgression from domestic hatchery lineages (assessed with the LDH gene). MHC diversity and structuring correlated with those at microsatellites, indicating the substantial role of neutral forces. However, individuals carrying locally rare MHC alleles/supertypes were in better body condition (a proxy of individual fitness/parasite load) regardless of the zygosity status and degree of sequence dissimilarity of MHC, hence supporting balancing selection under rare allele advantage, but not heterozygote advantage or divergent allele advantage. The association between specific MHC supertypes and body condition confirmed in part this finding. Across populations, MHC allelic richness increased with increasing admixture between native and domestic lineages, indicating introgression as a source of MHC variation. Furthermore, introgression across populations appeared more pronounced for MHC than microsatellites, possibly because initially rare MHC variants are expected to introgress more readily under rare allele advantage. Providing evidence for the complex interplay among neutral evolutionary forces, balancing selection, and human‐mediated introgression in shaping the pattern of MHC (functional) variation, our findings contribute to a deeper understanding of the evolution of MHC genes in wild populations exposed to anthropogenic disturbance.  相似文献   

11.
Amphibians are experiencing the greatest decline of any vertebrate class and a leading cause of these declines is a fungal pathogen, Batrachochytrium dendrobatidis (Bd), which causes the disease chytridiomycosis. Captive assurance colonies are important worldwide for threatened amphibian species and may be the only lifeline for those in critical threat of extinction. Maintaining disease free colonies is a priority of captive managers, yet safe and effective treatments for all species and across life stages have not been identified. The most widely used chemotherapeutic treatment is itraconazole, although the dosage commonly used can be harmful to some individuals and species. We performed a clinical treatment trial to assess whether a lower and safer but effective dose of itraconazole could be found to cure Bd infections. We found that by reducing the treatment concentration from 0.01-0.0025% and reducing the treatment duration from 11-6 days of 5 min baths, frogs could be cured of Bd infection with fewer side effects and less treatment-associated mortality.  相似文献   

12.
Selection pressure from parasites is thought to be a major force shaping the extreme polymorphism of the major histocompatibility complex (MHC) genes, but the modes and consequences of selection remain unclear. Here, we analyse MHC class II and microsatellite diversity in 16 guppy (Poecilia reticulata) populations from two islands (Trinidad and Tobago) that have been separated for at least 10 ky. Within-population MHC diversity was high, but allele sharing was limited within islands and even lower between islands, suggesting relatively fast turnover of alleles. Allelic lineages strongly supported in phylogenetic analyses tended to be island-specific, suggesting rapid lineage sorting, and an expansion of an allelic lineage private to Tobago was observed. New alleles appear to be generated locally at a detectably high frequency. We did not detect a consistent signature of local adaptation, but FST outlier analysis suggested that balancing selection may be the more general process behind spatial variation in MHC allele frequencies in this system, particularly within Trinidad. We found no evidence for divergent allele advantage within populations, or for decreased genetic structuring of MHC supertypes compared to MHC alleles. The dynamic and complex nature of MHC evolution we observed in guppies, coupled with some evidence for balancing selection shaping MHC allele frequencies, are consistent with Red Queen processes of host-parasite coevolution.Subject terms: Population genetics, Evolutionary genetics  相似文献   

13.
Demography, migration and natural selection are predominant processes affecting the distribution of genetic variation among natural populations. Many studies use neutral genetic markers to make inferences about population history. However, the investigation of functional coding loci, which directly reflect fitness, is critical to our understanding of species'' ecology and evolution. Immune genes, such as those of the Major Histocompatibility Complex (MHC), play an important role in pathogen recognition and provide a potent model system for studying selection. We contrasted diversity patterns of neutral data with MHC loci, ELA-DRA and -DQA, in two southern African plains zebra (Equus quagga) populations: Etosha National Park, Namibia, and Kruger National Park, South Africa. Results from neutrality tests, along with observations of elevated diversity and low differentiation across populations, supported previous genus-level evidence for balancing selection at these loci. Despite being low, MHC divergence across populations was significant and may be attributed to drift effects typical of geographically separated populations experiencing little to no gene flow, or alternatively to shifting allele frequency distributions driven by spatially variable and fluctuating pathogen communities. At the DRA, zebra exhibited geographic differentiation concordant with microsatellites and reduced levels of diversity in Etosha due to highly skewed allele frequencies that could not be explained by demography, suggestive of spatially heterogeneous selection and local adaptation. This study highlights the complexity in which selection affects immune gene diversity and warrants the need for further research on the ecological mechanisms shaping patterns of adaptive variation among natural populations.  相似文献   

14.
Understanding factors that influence host–pathogen interactions is key to predicting outbreaks in natural systems experiencing environmental change. Many amphibian population declines have been attributed to an amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd). While this fungus is widespread, not all Bd‐positive populations have been associated with declines, which could be attributed to differences in pathogen virulence or host susceptibility. In a laboratory experiment, we examined the effects of Bd isolate origin, two from areas with Bd‐associated amphibian population declines (El Copé, Panama, and California, USA) and two from areas without Bd‐related population declines (Ohio and Maine, USA), on the terrestrial growth and survival of American toad (Anaxyrus americanus) metamorphs reared in larval environments with low or high intraspecific density. We predicted that (1) Bd isolates from areas experiencing declines would have greater negative effects than Bd isolates from areas without declines, and (2) across all isolates, growth and survival of smaller toads from high‐density larval conditions would be reduced by Bd exposure compared to larger toads from low‐density larval conditions. Our results showed that terrestrial survival was reduced for smaller toads exposed to Bd with variation in the response to different isolates, suggesting that smaller size increased susceptibility to Bd. Toads exposed to Bd gained less mass, which varied by isolate. Bd isolates from areas with population declines, however, did not have more negative effects than isolates from areas without recorded declines. Most strikingly, our study supports that host condition, measured by size, can be indicative of the negative effects of Bd exposure. Further, Bd isolates’ impact may vary in ways not predictable from place of origin or occurrence of disease‐related population declines. This research suggests that amphibian populations outside of areas experiencing Bd‐associated declines could be impacted by this pathogen and that the size of individuals could influence the magnitude of Bd's impact.  相似文献   

15.
Many amphibians have declined globally due to introduction of the pathogenic fungus Batrachochytrium dendrobatidis (Bd). Hundreds of species, many in well-protected habitats, remain as small populations at risk of extinction. Currently the only proven conservation strategy is to maintain species in captivity to be reintroduced at a later date. However, methods to abate the disease in the wild are urgently needed so that reintroduced and wild animals can survive in the presence of Bd. Vaccination has been widely suggested as a potential strategy to improve survival. We used captive-bred offspring of critically endangered booroolong frogs (Litoria booroolongensis) to test if vaccination in the form of prior infection improves survival following re exposure. We infected frogs with a local Bd isolate, cleared infection after 30 days (d) using itraconazole just prior to the onset of clinical signs, and then re-exposed animals to Bd at 110 d. We found prior exposure had no effect on survival or infection intensities, clearly showing that real infections do not stimulate a protective adaptive immune response in this species. This result supports recent studies suggesting Bd may evade or suppress host immune functions. Our results suggest vaccination is unlikely to be useful in mitigating chytridiomycosis. However, survival of some individuals from all experimental groups indicates existence of protective innate immunity. Understanding and promoting this innate resistance holds potential for enabling species recovery.  相似文献   

16.
Chytrid fungus Batrachochytrium dendrobatidis (Bd), an emerging disease, has been decimating amphibian populations around the world for several decades. We quantified aspects of larval fitness, adaptive (major histocompatibility complex) diversity and neutral (microsatellite) diversity in natterjack toad (Bufo calamita) populations in two regions of north-west England. Toads in region one had no evidence of chytrid infection, whereas in region two there was a substantial prevalence of Bd. Larval fitness (growth rate, time to metamorphosis and survival) of B. calamita did not differ between the regions. Genetic diversity at microsatellite loci was much higher in the infected than in the uninfected region, but the converse was true of MHC diversity indicating that genetic drift was unlikely to explain the differences in MHC between the regions. Furthermore, MHC allele frequencies varied significantly between Bd-infected and uninfected populations. Microsatellite diversity was not a robust indicator of larval fitness in these toad populations while MHC genotype frequencies varied in a way that was consistent with directional selection in response to pathogen prevalence. The acquired immune defences may therefore play an important role in determining the susceptibility of amphibian species to chytridiomycosis.  相似文献   

17.
Threatening processes, such as disease, can drive major changes in population demographics of the host. Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), has led to the decline of at least 500 amphibian species across the globe and has been shown to truncate host age structure by lowering adult survival rates. This results in heavy reliance on annual recruitment and the inability to recover in the event of periodic recruitment failure. We used skeletochronology to determine the age structure, growth, and survival rates of populations of an endangered amphibian, Litoria raniformis, with endemic chytridiomycosis, across two climatically disparate regions in south‐eastern Australia: semi‐arid and temperate. Contrary to predictions, populations in the semi‐arid region (in which chytrid prevalence is substantially lower due to high temperatures) displayed a more truncated age structure than populations in the temperate study regions. Maximum recorded age was only two years in the semi‐arid region compared with up to four years in the temperate region. Wetland hydroperiod and average seasonal air temperature were correlated with age, and males had a slightly higher survival rate than females (0.31 for males and 0.27 for females). Despite the previously documented differences in chytrid prevalence between the two climatic regions, water availability and wetland hydroperiods appear the over‐riding determinants of the age structure and survival rates of L. raniformis. Targeted management which ensures water availability and improves survival of 1‐year‐old frogs into their second and third breeding season would reduce the impact of stochastic events on L. raniformis, and this may be true for numerous frog species susceptible to chytridiomycosis.  相似文献   

18.
Aim Rapidly evolving pathogens may exert diversifying selection on genes involved in host immune defence including those encoding antimicrobial peptides (AMPs). Amphibian skin peptides are one important defence against chytridiomycosis, an emerging infectious disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd). We examined the population‐level variation in this innate immune defence to understand its relationship with disease dynamics. Location Queensland, Australia. Methods We examined skin peptide defences in five geographically distinct populations of Australian green‐eyed treefrogs, Litoria genimaculata. Skin peptide samples were collected from 52 frogs from three upland populations that previously declined as chytridiomycosis emerged, but subsequently recovered, and from 34 frogs in two lowland populations that did not decline. Historical samples of skin peptides preceding Bd emergence were not available from any population. Results In general, lowland populations had more effective peptide defences than upland populations. Peptide profiles were similar among populations, although relative amounts of peptides expressed differed significantly among populations and were more variable in the uplands. Infected frogs in upland populations carried a significantly higher infection burden compared to lowland populations. The presence of effective AMPs in the skin of L. genimaculata does not eliminate infection; however, more effective peptide defences may limit infection intensity and the progression of disease. Main conclusions The population bottleneck in upland populations caused by chytridiomycosis emergence did not appear to produce responses to selection for more effective peptide defences against chytridiomycosis compared to lowland populations of L. genimaculata. This does not exclude the possibility that current peptide defences have adapted in response to disease emergence. A suggestive (P < 0.10) interaction between infection status and population indicates that in lowland populations, infected individuals tend to be those with lower relative intensities of AMPs, whereas in the upland populations, infected and uninfected individuals are similar. Thus, both the AMPs and the environment may act to mediate resistance to Bd infection.  相似文献   

19.
The ‘dilution effect’ (DE) hypothesis predicts that diverse host communities will show reduced disease. The underlying causes of pathogen dilution are complex, because they involve non-additive (driven by host interactions and differential habitat use) and additive (controlled by host species composition) mechanisms. Here, we used measures of complementarity and selection traditionally employed in the field of biodiversity–ecosystem function (BEF) to quantify the net effect of host diversity on disease dynamics of the amphibian-killing fungus Batrachochytrium dendrobatidis (Bd). Complementarity occurs when average infection load in diverse host assemblages departs from that of each component species in uniform populations. Selection measures the disproportionate impact of a particular species in diverse assemblages compared with its performance in uniform populations, and therefore has strong additive and non-additive properties. We experimentally infected tropical amphibian species of varying life histories, in single- and multi-host treatments, and measured individual Bd infection loads. Host diversity reduced Bd infection in amphibians through a mechanism analogous to complementarity (sensu BEF), potentially by reducing shared habitat use and transmission among hosts. Additionally, the selection component indicated that one particular terrestrial species showed reduced infection loads in diverse assemblages at the expense of neighbouring aquatic hosts becoming heavily infected. By partitioning components of diversity, our findings underscore the importance of additive and non-additive mechanisms underlying the DE.  相似文献   

20.
Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a skin disease responsible for the global decline of amphibians. Frog species and populations can vary in susceptibility, but this phenomenon remains poorly understood. Here, we investigated serotonin in the skin of infected and uninfected frogs. In more susceptible frog populations, skin serotonin rose with increasing infection intensity, but decreased in later stages of the disease. The more resistant population maintained a basal level of skin serotonin. Serotonin inhibited both Bd sporangial growth and Jurkat lymphocyte proliferation in vitro. However, serotonin accumulates in skin granular glands, and this compartmentalisation may prevent inhibition of Bd growth in vivo. We suggest that skin serotonin increases in susceptible frogs due to pathogen excretion of precursor tryptophan, but that resistant frogs are able to control the levels of serotonin. Overall, the immunosuppressive effects of serotonin may contribute to the susceptibility of frogs to chytridiomycosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号