首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The influence of the bacteriophage phi X174 (phi X) C protein on the replication of bacteriophage phi X174 DNA has been examined. This small viral protein, which is required for the packaging of phi X DNA into proheads, inhibits leading strand DNA synthesis. The inhibitory effect of the phi X C protein requires a DNA template bearing an intact 30-base pair (bp) phi X origin of DNA replication that is the target site recognized by the phi X A protein. Removal of nucleotides from the 3' end of this 30-bp conserved origin sequence prevents the inhibitory effects of the phi X C protein. Leading strand replication of supercoiled DNA substrates containing the wild-type phi X replication origin results in the production of single-stranded circular DNA as well as the formation of small amounts of multimeric and sigma structures. These aberrant products are formed when the termination and reinitiation steps of the replication pathway reactions are skipped as the replication fork moves through the origin sequence. Replication carried out in the presence of the phi X C protein leads to a marked decrease in these aberrant structures. While the exact mechanism of action of the phi X C protein is not clear, the results presented here suggest that the phi X C protein slows the movement of the replication fork through the 30-bp origin sequence, thereby increasing the fidelity of the termination and reinitiation reactions. In keeping with the requirement for the phi X C protein for efficient packaging of progeny phi X DNA into proheads, the phi X C protein-mediated inhibition of leading strand synthesis is reversed by the addition of proteins essential for phi X bacteriophage formation. Incubation of plasmid DNA substrates bearing mutant 30 base pair phi X origin sequences in the complete packaging system results in the in vitro packaging and production of infectious particles in a manner consistent with the replication activity of the origin under study.  相似文献   

2.
The DNA sequence of 30 nucleotides which surrounds the origin of viral strand DNA replication is highly conserved amongst the icosahedral single-stranded DNA bacteriophages. The A gene of these phages encodes a protein which is required for initiation and termination of viral strand DNA synthesis and acts as a nicking-closing activity specifically within this 30-nucleotide sequence. A system of purified Escherichia coli host proteins and phi X174 gene A protein has been developed which specifically replicates in vitro the viral strand of phi X174 from RF (replicative form) I template DNA and yields single-stranded circular DNA products (RF leads to SS(c) DNA replication system). Recombinant plasmids carrying inserts derived from phage phi X174 or G4 DNA which range in length from 49 to 1175 base pairs and contain the 30-nucleotide conserved sequence have been shown to support phi X A protein-dependent DNA synthesis in vitro in this replication system. We report here that insertion of the 30-nucleotide sequence alone into pBR322 allows the resulting recombinant plasmids to support phi X A protein-dependent in vitro DNA synthesis as efficiently as phi X174 template DNA in the RF leads to SS(c) replication system. The 30-nucleotide sequence functions as a fully wild type DNA replication origin as determined by the rate of DNA synthesis and the structure of resulting DNA products. Furthermore, the DNA sequence requirements for nicking of RF I DNA by the phi X A protein and for supporting replication origin function have been partially separated. Homology to positions 1, 29, and 30 of the 30-nucleotide conserved sequence are not required for cleavage of RF I DNA by the A protein; homology to position 1 but not 29 or 30 is required for efficient DNA replication.  相似文献   

3.
Gene A of the phi X174 genome codes for two proteins, A and A* (Linney, E.A., and Hayashi, M.N. (1973) Nature New Biol. 245, 6-8) of molecular weights 60,000 and 35,000, respectively. The phi X A* protein is formed from a natural internal initiator site within the A gene cistron while the phi X A protein is the product of the entire A gene. These two proteins have been purified to homogeneity as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Previous studies have shown that the phi X A protein is an endonuclease which specifically introduces a discontinuity in the A cistron of the viral strand of supertwisted phi XRFI DNA. In addition to this activity, the phi X A protein also causes relaxation of supertwisted phi XRFI DNA and formation of a phi XRFH DNA . phi X A protein complex which has a discontinuity in the A cistron of the viral strand. This isolatable complex supports DNA synthesis when supplemented with extracts of uninfected Escherichia coli which lack phi X A protein and phi XRFI DNA. The phi XRFII DNA . phi X A protein complex can be attacked by exonuclease III but is not susceptible to attack by E. coli DNA polymerase I, indicating that the 5'-end of the complex is blocked. Attempts to seal the RFII structure generated from the phi XRFII DNA . phi X A protein complex with T4 DNA ligase in the presence or absence of DNA polymerase were unsuccessful. The phi X A protein does not act catalytically in the cleavage of phi XRFI DNA. Under conditions leading to the quantitative cleavage of phi XRFI DNA, the molar ratio of phi XRFI DNA to added phi X A protein was approximately 1:10. At this molar ratio, cross-linking experiments with dimethyl suberimidate yielded 10 distinct protein bands which were multiples of the monomeric phi X A protein. In the absence of DNA or in the presence of inactive DNA (phi XRFII DNA) no distinct protein bands above a trimer were detected. We found it possible in vitro to form a phi XRFII DNA . phi X A protein complex with wild-type phi XRFI DNA (phi X A gene+) and with phi XRFI DNA isolated from E. coli (su+) infected with phage phi X H90 (an am mutant in the phi X A gene). Thus, in vitro, in contrast to in vivo studies, phi X A protein is not a cis acting protein. The purified phi X A* protein does not substitute for the phi X A protein in in vitro replication of phi XRFI DNA nor does it interfere with the action of the phi X A protein which binds only to supertwisted phi XRFI DNA. In contrast, the phi X A* protein binds to all duplex DNA preparations tested. This property prevents nucleases of E. coli from hydrolyzing duplex DNAs to small molecular weight products.  相似文献   

4.
DNA polymerase alpha and models for proofreading.   总被引:4,自引:2,他引:2       下载免费PDF全文
Using a modified system to measure fidelity at an amber site in phi X174, we have employed DNA polymerase alpha to test different mechanisms for proofreading. DNA polymerase alpha does not exhibit the characteristics of "kinetic proofreading" seen with procaryotic polymerases. Polymerase alpha shows no evidence for a "next nucleotide" effect, and added deoxynucleoside monophosphates do not alter fidelity. Pyrophosphate, which increases error rates with a procaryotic polymerase, appears to weakly improve polymerase alpha fidelity. DNA polymerase alpha does exhibit a dramatic increase in error rate in the presence of a deoxycytidine thiotriphosphate (dCTP alpha S), but this enhanced mutagenesis also occurs under conditions where kinetic proofreading should be otherwise defeated. This particular effect with dCTP alpha S appears specific for DNA polymerase alpha and is not seen with the other polymerases tested.  相似文献   

5.
The fidelity with which wild type T4 DNA polymerase copies phi X174 amber 3 plus strand DNA at position 587 in vitro has been measured. Synthesis is initiated by hybridizing to the template a HaeIII restriction fragment whose 3'-OH terminus is 83 nucleotides from the amber 3 site. Based on gel electrophoresis of product DNA molecules and genetic marker rescue data, T4 DNA polymerase copies significantly beyond the mutant site. Transfection analysis shows that the A X T leads to G X C mutation at position 587 occurs 10- to 100-fold less frequently with T4 DNA polymerase than with E. coli DNA polymerase I. The aberrant incorporation of cytosine opposite adenine at position 587 by the T4 polymerase alone is occurring at a frequency not greater than about 10(-7) which, for this particular locus, may be similar to the fidelity exhibited by the T4 accessory proteins plus the polymerase comprising the replication complex. A comparison of the accuracy of mutator L56 and antimutator L141 T4 DNA polymerases relative to wild type shows at most a 2- to 4-fold decrease and increase, respectively, in fidelity. When compared to 10- to 1000-fold effects on mutation frequencies that these same mutant alleles have in vivo, these results suggest that the wide range in expression of mutator and antimutator phenotypes in vivo may be dependent on an abnormal interaction of the aberrant DNA polymerases with other protein components of the replication complex.  相似文献   

6.
The intracellular presence of a recombinant plasmid containing the intercistronic region between the genes H and A of bacteriophage phi X174 strongly inhibits the conversion of infecting single-stranded phi X DNA to parental replicative-form DNA. Also, transfection with single-stranded or double-stranded phi X174 DNA of spheroplasts from a strain containing such a "reduction" plasmid shows a strong decrease in phage yield. This phenomenon, the phi X reduction effect, was studied in more detail by using the phi X174 packaging system, by which plasmid DNA strands that contain the phi X(+) origin of replication were packaged as single-stranded DNA into phi X phage coats. These "plasmid particles" can transduce phi X-sensitive host cells to the antibiotic resistance coded for by the vector part of the plasmid. The phi X reduction sequence in the resident plasmid strongly affected the efficiency of the transduction process, but only when the transducing plasmid depended on primosome-mediated initiation of DNA synthesis for its conversion to double-stranded DNA. The combination of these results led to a model for the reduction effect in which the phi X reduction sequence interacted with an intracellular component that was present in limiting amounts and that specified the site at which phi X174 replicative-form DNA replication takes place. The phi X reduction sequence functioned as a viral incompatibility element in a way similar to the membrane attachment site model for plasmid incompatibility. In the DNA of bacteriophage G4, a sequence with a similar biological effect on infecting phages was identified. This reduction sequence not only inhibited phage G4 propagation, but also phi X174 infection.  相似文献   

7.
A new system for studying the molecular mechanisms of mutation by carcinogens is described. The system involves (a) site-specific modification of the essential gene G in phi X174 replicative form DNA by a combination of chemical and enzymatic steps; (b) production of mutant virus carrying a change at a single preselected site by transfection of spheroplasts with the site modified phi X174 DNA; (c) detection and propagation of mutants using a host carrying the plasmid, p phi XG, that rescues all type of gene G mutants by complementation; (d) identification of the mutation in the progeny virus by isolating and sequencing mutant phi X174 DNA in the region that carried the parental, site-specific change. To demonstrate that this system is operational, we have produced a previously unknown phi X174 gene G mutant carrying a C leads to T base change at position 2401 of the viral (plus) strand. This preplanned, nonsense (amber) mutant was obtained by changing G to A at the appropriate position in a chemically synthesized, octadeoxynucleotide, minus strand primer; elongating this enzymatically with Escherichia coli DNA polymerase I (larger fragment) (lacking 5' leads to 3' exonuclease activity) to a 17-mer; and repriming to obtain the site-modified phi X174 replicative form DNA enzymatically with E. coli DNA polymerase I (large fragment) and T4 DNA ligase. After transfection of spheroplasts with the heteroduplex DNA, the lysate was screened for mutant virus with permissive (carrying p phi XG) and nonpermissive (without p phi XG) host cells. About 1% of the progeny virus were mutants. Out of 15 isolates, 11 were suppressible by an amber Su1+ (serine) or an ochre Su8+ (glutamine) suppressor. The other 4 isolates were not suppressed at all. Replicative form DNA produced from one of the suppressible mutants was shown (by sequencing) to contain the expected C leads to T change at the preselected site in the viral strand. Replicative form DNA from one of the nonsuppressible mutants was partially sequenced. No change was found at or around position 2401. The nature of the mutation(s) in these isolates is still unknown. The occurrence of mutations outside the preselected sites represent a potential problem for our projected studies, but additional data is required before the problem can be fully evaluated. In spite of this, it should be possible to study, in vivo, the biological effects of any site-specific modification (including covalent modifications by carcinogens) that can be introduced into gene G of phi X174 DNA via a synthetic, oligonucleotide primer.  相似文献   

8.
DNA polymerase-alpha and -beta were fractionated from the chromatin of regenerating liver of young and old mice. The DNA polymerases were resolved from each other and partially purified by DEAE-cellulose, phosphocellulose, and DNA-cellulose column chromatography. No significant age-related difference in the kinetics of heat inactivation was observed for either DNA polymerase. No age-dependent difference was found in the fidelity with which these enzymes copied phi X174 DNA. These results suggest that the functional properties of these DNA polymerases do not change with age as is postulated in some theories of aging.  相似文献   

9.
The synthetic DNA fragment (formula, see text) (corresponding to nucleotides 4299-4314 of the phi X DNA sequence) was cloned into either the AmpR gene or the KmR gene of plasmid pACYC 177. The DNA sequence of the KmR gene around the insertion site was determined by nucleotide sequence analysis of the pACYC 177 FnudII restriction DNA fragment N6 (345 b.p.). Of five selected plasmid DNAs, which contained inserted DNA sequences in the antibiotic resistance genes, the nucleotide sequences at and around these insertions were determined. Two recombinant plasmids (pFH 704 and pFH 614) contain the hexadecamer sequence in tandem (tail-to-tail and tail-to-head). In the recombinant plasmids pFH 812, pFH 903 and pFH 807 the DNA sequence homology with the phi X origin region was 14 (No. 4300-4313), 16 (No. 4299-4314) and 20 nucleotides (No. 4299-4318), respectively. None of the supercoiled recombinant plasmid DNAs is nicked upon incubation with phi X gene A protein. Moreover, the recombinant plasmid RFI DNAs cannot act as substitutes for phi X RFI DNA in the in vitro (+) strand synthesizing system. It has been shown earlier that single-stranded DNA, which contains the decamer sequence CAACTTGATA is efficiently nicked by the phi X gene A protein. The present results indicate that for nicking of double-stranded supercoiled DNA nucleotide sequence homology with the phi X origin region of more than 20 nucleotides is required. These results suggest a model for initiation of phi X RF DNA replication, which involves the presence of the recognition sequence CAACTTGATA of the phi X gene A protein as well as a second specific nucleotide sequence which is required for the binding of the phi X gene A protein. This binding causes local unwinding of the DNA double helix and exposure of the recognition sequence in a single-stranded form, which then can be nicked by phi X gene A protein.  相似文献   

10.
The occurrence of a RecA-like activity similar to the one detected in the fibroblast cell line GM1492 derived from a patient suffering from the autosomal recessive disease Bloom's syndrome has been investigated in cell extracts of different origin. The formation of D-loop containing joint molecules from phi X174 RFI DNA and fragments of phi X174 single-stranded DNA by partially purified extracts was measured by a filter binding assay. The RecA-like activity, dependent on ATP and Mg2+, was detected at an elevated level only in the human and rodent cell lines, GM1492 and CHO respectively. The level of activity in DNA-cellulose-purified cell extracts from these cell lines was 4-7-fold higher compared to normal human fibroblasts. Low levels of activity were also detected in extracts from two additional Bloom's syndrome fibroblast cell lines, Fanconi's anemia fibroblasts, virus- (Epstein-Barr virus, Simian virus 40) transformed human cells and human placenta. Cell extracts from rat testis, spleen and calf thymus were also of low activity.  相似文献   

11.
The fidelity of DNA polymerase-alpha-primase from calf thymus has been analyzed by measuring mutagenesis in vitro and by site-specific nucleotide misinsertion and mispair extension. Using the phi X174 am3 DNA reversion assay errors are detected at the amber3 site only when both dATP and dCTP are significantly biased during in vitro copying reactions. Analysis of these products on DNA sequencing gels reveals pause sites due to the slow extension of mispaired 3' termini. Measurements of misinsertion rates opposite template A show that the rates of dAMP or dCMP misinsertion are similar and occur 40-50 times more rapidly than dGMP misinsertion. The rate of extension from an A:C mispair is 100- and 400-fold greater than from an A:A mispair and an A:G mispair, respectively. Nucleotide misinsertions to generate all 12 possible mispairs have been measured kinetically on phi X174 DNA templates that contain either A, C, G, or T at position 587. Misinsertion frequencies range from 1/4000 to 1/10(6) depending on the mispairs generated. Extension from all 12 different mispairs was examined by starting with oligonucleotide primers that contain different 3'-terminal mispairs. Rates of extension from mispairs are 10(3) to 10(6) times slower than from correctly paired bases. Extension frequencies were purine:pyrimidine greater than pyrimidine:pyrimidine greater than purine:purine. Lack of extension of misincorporated bases suggests the involvement of exonucleolytic proofreading to enable continued DNA synthesis and to guarantee the high fidelity of eucaryotic DNA replication.  相似文献   

12.
In the preceeding paper (Brown, D. R., Roth, M. J., Reinberg, D., and Hurwitz, J. (1984) J. Biol. Chem. 259, 10545-10555), it was shown that following bacteriophage phi X174 (phi X) DNA synthesis in vitro using purified proteins, the phi X A protein could be detected covalently linked to nascent 32P-labeled DNA. This phi X A protein-[32P]DNA complex was the product of the reinitiation reaction. The phi X A protein-[32P]DNA complex could be trapped as a protein-32P-oligonucleotide complex by the inclusion of ddGTP in reaction mixtures. In this report, the structure of the phi X A protein-32P-oligonucleotide complex has been analyzed. The DNA sequence of the oligonucleotide bound to the phi X A protein has been determined and shown to be homologous to the phi X (+) strand sequence immediately adjacent (3') to the replication origin. The phi X A protein was directly linked to the 5' position of a dAMP residue of the oligonucleotide; this residue corresponded to position 4306 of the phi X DNA sequence. The phi X A protein-32P-oligonucleotide complex was exhaustively digested with either trypsin or proteinase K and the 32P-labeled proteolytic fragments were analyzed. Each protease yielded two different 32P-labeled peptides in approximately equimolar ratios. The two 32P-labeled peptides formed after digestion with trypsin (designated T1 and T2) and with proteinase K (designated PK1 and PK2) were isolated and characterized. Digestion of peptide T1 with proteinase K yielded a product which co-migrated with peptide PK2. In contrast, peptide T2 was unaffected by digestion with proteinase K. These results suggest that the phi X A protein contains two active sites that are each capable of binding covalently to DNA. The peptide-mononucleotide complexes T1-[32P]pdA and T2-[32P]pdA were isolated and subjected to acid hydrolysis in 6.0 N HCl. In each case, the major 32P-labeled products were identified as [32P] phosphotyrosine and [32P]Pi. This indicates that each active site of the phi X A protein participates in a phosphodiester linkage between a tyrosyl moiety of the protein and the 5' position of dAMP.  相似文献   

13.
A novel DNA polymerase induced by Bacillus subtilis phage phi 29.   总被引:4,自引:2,他引:2       下载免费PDF全文
K Watabe  J Ito 《Nucleic acids research》1983,11(23):8333-8342
A novel DNA polymerase induced by Bacillus subtilis bacteriophage phi 29 has been identified. This polymerase can be separated from host DNA polymerase, by fractionation of extracts prepared from phage infected cells, using phosphocellulose chromatography. The isolated polymerase prefers poly(dA)oligo(dT) as template. The DNA polymerase isolated from the cells infected with a gene 2 temperature sensitive mutant (ts2) showed greater heat-lability than that induced by wild type phi 29. The ts2 DNA polymerase was also thermolabile for its activity in the formation of a covalent complex between phi 29 terminal protein and dAMP, the initiation step of phi 29 DNA replication. These findings indicate that gene 2 is the structural gene for a phi 29 DNA polymerase required for the complex formation step of DNA initiation.  相似文献   

14.
phi29 DNA polymerase is a multifunctional enzyme, able to incorporate and to proofread misinserted nucleotides, maintaining a very high replication fidelity. Since both activities are functionally separated, a mechanism is needed to guarantee proper coordination between synthesis and degradation, implying movement of the DNA primer terminus between polymerization and 3'-5' exonuclease active sites. Using single-turnover conditions, we have demonstrated that phi29 DNA polymerase edits the polymerization errors using an intramolecular pathway; that is, the primer terminus travels from one active site to the other without dissociation from the DNA. On the other hand, by using chemical tags, we could infer a difference in length of only one nucleotide to contact the primer strand when it is in the polymerization mode versus the editing mode. Using the same approach, it was estimated that phi29 DNA polymerase covers a DNA region of ten nucleotides, as has been measured in other polymerases using different techniques.  相似文献   

15.
Enzymatic mechanisms of DNA replication have been investigated using small bacteriophages as probes to illuminate the cellular systems upon which they must rely during infection. Conversion of the circular, single-stranded DNAs of phages M13, G4, and phi X174 to their duplex forms has revealed the participation of diverse ways to start a new chain and a complex DNA polymerase III holoenzyme upon which all these systems depend for chain elongation. The phi X174 system, which is the most exacting and revealing of the host chromosomal replication pattern, includes at least twenty polypeptides for making the viral DNA into a duplex and multiplying the duplex. Resolution and purification of these numerous proteins is in train and their reconstitution into a "replisome"-like structure is envisioned.  相似文献   

16.
The frequency of reversion of phi X174 amber mutants to wild-type, resulting from in vitro DNA synthesis catalyzed by eucaryotic DNA polymerase-alpha or -beta, varies over a 10- to 1000-fold range. This variation is dependent on the relative ratio of deoxyribonucleotide substrates present during in vitro DNA synthesis. The effect is observed at two different loci in the genome and with several different DNA polymerases. In addition, the effect is observed using an unfractionated cellular extract. These results provide support for the hypothesis that altered nucleotide pools cause mutations in mammalian cells by decreasing the fidelity of DNA synthesis.  相似文献   

17.
The phi X174am16 revertant system has been used to investigate the influence of alpha-thio-dNTPs and of Mn2+ on the fidelity of the 9S DNA polymerase alpha from calf thymus. Upon substituting dGTP by alpha-thio-dGTP during the in vitro replication, a nearly tenfold decrease in the frequency of G:G and G:T mispairs is observed. The formation of all other mispairs is not changed in the presence of the corresponding alpha-thio-dNTP. Mn2+ at concentrations of 0.5 mM does not influence the frequencies of the mispairs. The expression rate of errors formed during in vitro replication in the (-) strand has been determined for all mispairs detectable in the phi Xam16 system. The (-) strand expression of G:T, T:T and C:T mismatches is about 50%, whereas for A:G, G:G and C:A mismatches it is clearly below 50%. We conclude that the different base-base mismatches are repaired with different efficiencies.  相似文献   

18.
The oligodeoxyribonucleotides, pCCCAGCCTCAA, which is complementary to nucleotides 5274--4284 of bacteriophage phi X174 viral DNA , and pCCCAGCCTAAA, which corresponds to the same sequence with a C leads to A change at the ninth nucleotide, were synthesized enzymatically. The second of these oligonucleotides was used as a primer for E. coli DNA polymerase I, from which the 5'-exonculease has been removed by proteolysis (Klenow enzyme), on wild-type phi X174 viral DNA template. After ligation, this yielded closed circular heteroduplex DNA with a G, A mismatch at nucleotide 5276. Transfection of E. coli spheroplasts with the heteroduplex DNA produced phage mutated at this nucleotide (G leads to T in the viral DNA) with high efficiency (13%). The mutant DNA, which corresponds to the gene B mutant am16, was reverted (T leads to G) by the wild type oligonucleotide with an efficiency of 19%. The nucleotide changes were established by sequence determination of the mutated viral DNA using the enzymatic terminator method. The production of specific transversion mutations, together with a previous demonstration of specific transition mutations (1), established that short enzymatically synthesized oligodeoxyribonucleotides can be used to induce any class of single nucleotide replacement with high efficiency and thus provide a powerful tool for specific genetic manipulations in circular genomes like that of phi X174.  相似文献   

19.
Replicative DNA polymerases achieve insertion fidelity by geometric selection of a complementary nucleotide followed by induced fit: movement of the fingers subdomain toward the active site to enclose the incoming and templating nucleotides generating a binding pocket for the nascent base pair. Several residues of motif B of DNA polymerases from families A and B, localized in the fingers subdomain, have been described to be involved in template/primer binding and dNTP selection. Here we complete the analysis of this motif, which has the consensus "KLX2NSXYG" in DNA polymerases from family B, characterized by mutational analysis of conserved leucine, Leu384 of phi 29 DNA polymerase. Mutation of Leu384 into Arg resulted in a phi 29 DNA polymerase with reduced nucleotide insertion fidelity during DNA-primed polymerization and protein-primed initiation reactions. However, the mutation did not alter the intrinsic affinity for the different dNTPs, as shown in the template-independent terminal protein-deoxynucleotidylation reaction. We conclude that Leu384 of phi 29 DNA polymerase plays an important role in positioning the templating nucleotide at the polymerization active site and in controlling nucleotide insertion fidelity. This agrees with the localization of the corresponding residue in the closed ternary complexes of family A and family B DNA polymerases, contributing to form the binding pocket for the nascent base pair. As an additional effect, mutant polymerase L384R was strongly reduced in DNA binding, resulting in reduced processivity during polymerization.  相似文献   

20.
Gene A protein of bacteriophage phi X174 plays a role as a site-specific endonuclease in the initiation and termination of phi X rolling circle DNA replication. To clarify the sequence requirements of this protein we have studied the cleavage of single-stranded restriction fragments from phi X and G4 viral DNAs using purified gene A protein. The results show that in both viral DNAs cleavage occurs at the origin and at one additional site which shows striking sequence homology with the origin region. During rolling circle replication the single-stranded viral DNA tail is covered with single-stranded DNA binding (SSB) protein. Therefore, we have also studied the effect of SSB on phi X gene A protein cleavage. In these conditions only single-stranded fragments containing the complete or almost complete origin region of 30 bases are cleaved, whereas cleavage at the additional sites of phi X or G4 viral DNAs does not occur. A model for termination of rolling circle replication which is based on these findings is presented. Finally, we present evidence that the second product of gene A, the A* protein, cleaves phi X viral DNA at the additional cleavage site in the presence of SSB, not only in vitro but also in vivo. The functional significance of this cleavage in vivo is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号