首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of specific ligand by linearly associating enzyme system M in equilibrium to M2 in equilibrium to M3 in equilibrium... has been discussed. It is assumed that ligand is bound in the region of the contact of monomers and free monomer retains the subsites for specific ligand binding. The character of the dependences of the amount of bound ligand on enzyme and ligand concentrations and the influence of specific ligand on the distribution between oligomeric enzyme forms have been analysed. The high concentrations of specific ligand provoke the dissociation of enzyme oligomers because of occupation of both subsites in monomeric form. The situation is discussed when a specific ligand is the substrate which is converted to the product in an intact binding site located in the region of the contact of monomers. The inhibitory effect of high substrate concentrations has been interpreted, taking into account the blocking of the association of inactive monomers into active oligomers.  相似文献   

2.
The kinetic behaviour of human erythrocyte phosphofructokinase has been analyzed over a relative wide range of enzyme concentration (0.01 -- 1.7 mug/ml). The kinetic cooperativity which becomes apparent when the enzymic reaction rate is plotted versus the fructose 6-phosphate concentration decreases with increasing enzyme concentration. Simultaneously, a decrease of the half-saturation concentration for fructose 6-phosphate [S]0.5 is observed. Maximum velocity passes through a maximum at increasing enzyme concentrations. Sets of curves representing specific enzymic activity of phosphofructokinase versus enzyme concentration obtained at various fixed concentrations of fructose 6-phosphate and ATP are analyzed. The shapes of these curves are interpreted in terms of an association model of human erythrocyte phosphofructokinase, in which an inactive dimer (Mr 190000) and active multimers of the dimeric form are involved. The conclusion is drawn that the sigmoidal shape of the plots of the enzymic reaction rate versus fructose 6-phosphate concentration is partially caused by a displacement of the equilibrium between different states of association of phosphofructokinase to multimers by this substrate. On the other hand, the inhibition of the enzyme by high concentrations of ATP may be partially caused by a shift of this equilibrium to the state of the inactive dimer.  相似文献   

3.
The thermal stability of rabbit skeletal muscle glycogen phosphorylase b was characterized using enzymological inactivation studies, differential scanning calorimetry, and analytical ultracentrifugation. The results suggest that denaturation proceeds by the dissociative mechanism, i.e., it includes the step of reversible dissociation of the active dimer into inactive monomers and the following step of irreversible denaturation of the monomer. It was shown that glucose 1-phosphate (substrate), glucose (competitive inhibitor), AMP (allosteric activator), FMN, and glucose 6-phosphate (allosteric inhibitors) had a protective effect. Calorimetric study demonstrates that the cofactor of glycogen phosphorylase-pyridoxal 5'-phosphate-stabilizes the enzyme molecule. Partial reactivation of glycogen phosphorylase b preheated at 53 degrees C occurs after cooling of the enzyme solution to 30 degrees C. The fact that the rate of reactivation decreases with dilution of the enzyme solution indicates association of inactive monomers into active dimers during renaturation. The allosteric inhibitor FMN enhances the rate of phosphorylase b reactivation.  相似文献   

4.
A theoretical analysis has been made of dependencies of specific enzymatic activity (a) on the concentration of the enzyme for associating enzyme systems, in which the association of protein molecules leads to the formation of linear associates of an unlimited length (M in equilibrium M2 in equilibrium M3 in equilibrium ...) and is accompanied by steric shielding of active centers, and also for systems of the type 2 M in equilibrium D in equilibrium D2 in equilibrium D3 in equilibrium ... (M is an inactive monomer and D is an active dimer), in which the specific enzymatic activity of the dimer does not depend on the degree of association. For both models an analysis has been made of the S-shape of the curves of the dependence of a on the concentration of the substrate. Experimental data for glutamate dehydrogenase from ox liver and phosphofructokinase from rabbit skeletal muscles have been used as illustrations.  相似文献   

5.
Homomeric pyruvate decarboxylase (E.C 4.1.1.1) from yeast consists of dimers and tetramers under physiological conditions, a K(d) value of 8.1 microM was determined by analytical ultracentrifugation. Dimers and monomers of the enzyme could be populated by equilibrium denaturation using urea as denaturant at defined concentrations and monitored by a combination of optical (fluorescence and circular dichroism) and hydrodynamic methods (analytical ultracentrifugation). Dimers occur after treatment with 0.5 M urea, monomers with 2.0 M urea independent of the protein concentration. The structured monomers are catalytically inactive. At even higher denaturant concentrations (6 M urea) the monomers unfold. The contact sites of two monomers in forming a dimer as the smallest enzymatically active unit are mainly determined by aromatic amino acids. Their interactions have been quantified both by structure-theoretical calculations on the basis of the X-ray crystallography structure, and experimentally by binding of the fluorescent dye bis-ANS. The contact sites of two dimers in tetramer formation, however, are mainly determined by electrostatic interactions. Homomeric pyruvate decarboxylase (PDC) is activated by its substrate pyruvate. There was no difference in the steady-state activity (specific activity) between dimers and tetramers. The activation kinetics of the two oligomeric states, however, revealed differences in the dissociation constant of the regulatory substrate (K(a)) by one order of magnitude. The tetramer formation is related to structural consequences of the interaction transfer in the activation process causing an improved substrate utilization.  相似文献   

6.
The reactivation of the homodimeric enzyme triosephosphate isomerase (TPI) was studied in reverse micelles. The enzyme was denatured in conventional aqueous mixtures with guanidine hydrochloride and transferred to reverse micelles formed with cetyltrimethylammonium bromide, hexanol, n-octane and water. In the transfer step, denatured TPI monomers distributed in single micelles, and guanidine hydrochloride was diluted more than 100 times. Under optimal reactivation conditions, 100% of the enzyme activity could be recovered. The rate of appearance of the catalytic activity increased with the concentration of protein, which indicated that catalysis required the formation of the dimer. The rate of TPI reactivation also increased with increasing protein concentration in the system with denatured TPI covalently derivatized at the catalytic site with the substrate analogue 3-chloroacetol phosphate. Thus, reactivation could take place via the formation of dimers composed of an inactive and an active subunit. Reactivation critically depended on the amount of water in the reverse micelles. The plot of the extent of reactivation versus the amount of water (2.5-7.0%) was markedly sigmoidal. Less than 20% reactivation took place with water concentrations below 3.5%, due to the formation (in less than 30 s) of stable inactive structures. The results indicate that reverse micelles provide a useful system to probe the events involved in the transformation of unfolded monomers to polymeric enzymes.  相似文献   

7.
Methionyl-tRNA synthetase (MetRS) has been described as a free monomeric or oligomeric enzyme; or included in a multienzyme complex. Moreover, on limited tryptic digestion, it can generate shorter forms. So, when purified from wheat-germ lysate, the possible presence of proteases able to hydrolyse this enzyme was investigated. When extraction was performed with sulfhydryl-blocking reagents, an active monomeric MetRS of Mr 105,000 was purified. This enzyme form was identical to the structure exhibiting methionyl-tRNA synthetase activity in multienzyme complexes. Without this inhibitor, MetRS was purified as an active dimeric form of Mr 165,000 with identical subunits of Mr 82,000. A protease inhibited by sulfhydryl-blocking reagents and included in a complex of Mr 2.10(6) was isolated from this wheat-germ lysate. This protease was able to hydrolyse different proteins (albumin, casein), but was without activity for a trypsin substrate, such as N-alpha-benzoyl-DL-arginine p-nitroanilide. When added to a solution of Mr-105,000 MetRS, it yielded an inactive peptide of Mr 20,000, containing numerous charged amino acids and a protein of Mr 82,000, able to give an active dimeric enzyme of Mr 165,000. Amino acid analysis of this last form, indicated an identical structure with the active dimeric MetRS of Mr 165,000, purified in the absence of protease inhibitors. Moreover, the affinity for methionine was the same for the monomeric enzyme of Mr 105,000 and the dimeric form of Mr 165,000, probably because proteolysis did not affect the catalytic domain. When enzymic activity of the proteolyzed form (Mr 2 x 82,000) was studied versus enzyme concentration, a decrease in specific activity, at low concentrations, was seen. This phenomenon was analysed on the basis of the existence of an equilibrium between an active dimer and two inactive monomers. With the active monomeric form of Mr 105,000, no change in specific activity with decreasing enzyme concentration occurred.  相似文献   

8.
A homohexameric molecule of Escherichia coli pyrophosphatase is arranged as a dimer of trimers, with an active site present in each of its six monomers. Earlier we reported that substitution of His(136) and His(140) in the intertrimeric subunit interface splits the molecule into active trimers (Velichko, I. S., Mikalahti, K., Kasho, V. N., Dudarenkov, V. Y., Hyyti?, T., Goldman, A., Cooperman, B. S., Lahti, R., and Baykov, A. A. (1998) Biochemistry 37, 734-740). Here we demonstrate that additional substitutions of Tyr(77) and Gln(80) in the intratrimeric interface give rise to moderately active dimers or virtually inactive monomers, depending on pH, temperature, and Mg(2+) concentration. Successive dissociation of the hexamer into trimers, dimers, and monomers progressively decreases the catalytic efficiency (by 10(6)-fold in total), and conversion of a trimer into dimer decreases the affinity of one of the essential Mg(2+)-binding sites/monomer. Disruptive substitutions predominantly in the intratrimeric interface stabilize the intertrimeric interface and vice versa, suggesting that the optimal intratrimeric interaction is not compatible with the optimal intertrimeric interaction. Because of the resulting "conformational strain," hexameric wild-type structure appears to be preformed to bind substrate. A hexameric triple variant substituted at Tyr(77), Gln(80), and His(136) exhibits positive cooperativity in catalysis, consistent with this model.  相似文献   

9.
Tetrameric cholinesterase from horse serum undergoes concentration-dependent dissociation. The dimer is highly stable so that even on SDS polyacrylamide gels subunit dissociation to the 80-kDa polypeptide chains is incomplete. Glutaraldehyde cross-linking confirms this finding, giving rise to a tetramer: dimer ratio of approximately 1:1. The beta-adrenergic agent isoproterenol acts as an inhibitor of the enzyme with respect to butyrylthiocholine hydrolysis; inhibition kinetics point to a dissociative effect of the ligand as the underlying mechanism (S?ylemez, Z. & Ozer, I. (1985) Comp. Biochem. Physiol. 81c, 433-437). Evidence from sedimentation analysis confirms this hypothetical mechanism: the sedimentation coefficient in the presence of saturating concentrations of both the substrate butyrylthiocholine and the inhibitor isoproterenol shows a 35 +/- 5% decrease; in high speed sedimentation equilibria the weight average molecular mass is shifted from the tetramer (Mr = 312 +/- 12 kDa) to the dimer (Mr = 160 +/- 10 kDa). The transition is complete at isoproterenol concentrations below saturation. Applying glutaraldehyde cross-linking to monitor the particle distribution at varying isoproterenol concentrations confirms the change in quaternary structure in a qualitative way. Enzyme concentrations applied in the present experiments are in the range of the concentration of cholinesterase in horse serum. Therefore the dissociative mechanism of isoproterenol on the enzyme may be of biological significance.  相似文献   

10.
In the model P450 BM3 system, the P450 is fused to its diflavin reductase partner in a single polypeptide. BM3 dimerizes in solution, but the catalytic relevance of the phenomenon was hitherto unknown. We show that BM3 fatty acid hydroxylase specific activity decreases sharply at low enzyme concentrations, consistent with separation of active dimer into inactive monomer. Reductase-dependent specific activities are maintained or enhanced at low concentration, suggesting inter-flavin electron transfer is unaffected. Fatty acid oxidation is reconstituted by mixing inactive oxygenase (A264H) and FMN-depleted (G570D) mutants, demonstrating that inter-monomer (FMN(1)-to-heme(2)) electron transfer supports oxygenase activity in the BM3 dimer.  相似文献   

11.
The molecular weights of different aggregational states of phosphoenolpyruvate carboxylase purified from the leaves of Zea mays have been determined by measurement of the molecular diameter using a Malvern dynamic light scattering spectrometer. Using these data to identify the monomer, dimer, tetramer, and larger aggregate(s) the effect of pH and various ligands on the aggregational equilibria of this enzyme have been determined. At neutral pH the enzyme favored the tetrameric form. At both low and high pH the tetramer dissociated, followed by aggregation to a "large" inactive form. The order of dissociation at least at low pH appeared to be two-step: from tetramer to dimers followed by dimer to monomers. The monomers then aggregate to a large aggregate, which is inactive. The presence of EDTA at pH 8 protected the enzyme against both inactivation and large aggregate formation. Dilution of the enzyme at pH 7 at room temperature results in driving the equilibrium from tetramer to dimer. The presence of malate with EDTA stabilizes the dimer as the predominant form at low protein concentrations. The presence of the substrate phosphoenolpyruvate alone and with magnesium and bicarbonate induced formation of the tetramer, and decreased the dissociation constant (Kd) of the tetrameric form. The inhibitor malate, however, induced dissociation of the tetramer as evidenced by an increase in the Kd of the tetramer.  相似文献   

12.
13.
Ferritin-conjugated specific antibodies have been used to localize beta-galactosidase and both the monomer and active dimer of alkaline phosphatase in frozen thin sections of cells of Escherichia coli O8 strain F515. The even distribution of the ferritin marker throughout cells that had been induced for beta-galactosidase synthesis, frozen, sectioned, and exposed to ferritin-anti-beta-galactosidase conjugate showed that this enzyme was present throughout the cytoplasm of these cells. Frozen thin sections of cells that had been derepressed for the synthesis of alkaline phosphatase were exposed to both ferritin-anti-alkaline phosphatase monomer and ferritin-anti-alkaline phosphatase dimer conjugates, and the ferritin markers showed a peripheral distribution of both the monomer and the dimer of this enzyme. This indicates that alkaline phosphatase is present only in the peripheral regions of the cell and argues against the existence of a cytoplasmic pool of inactive monomers of this enzyme. This peripheral location of both the monomers and dimers of alkaline phosphatase supports the developing concensus that this enzyme is, like other wall-associated enzymes, synthesized in association with the cytoplasmic membrane and vectorially transported to the periplasmic area, where it assumes its tertiary and quaternary structure and acquires its enzymatic activity.  相似文献   

14.
The monomeric and dimeric forms of bovine cytochrome c oxidase (EC 1.9.3.1) were obtained from gel filtration chromatography on Ultrogel AcA 34 and analyzed. Both species contained all 12-13 subunits described for this enzyme. In the dimer 320 molecules [3H]dodecyl-beta-D-maltoside were bound per heme aa3 and in the monomer 360 molecules per heme aa3. The monomers contained 10 mol of tightly bound phospholipid/mol heme aa3 and the dimers 14. Sedimentation coefficients of 15.5-18 S for the dimer and 9.6 S for the monomer were calculated from sucrose density centrifugation analysis and analytical centrifugation. By the laser beam light-scattering technique a Stokes radius of 70 A for the dimeric detergent-lipid-protein complex was measured. From those parameters and the densitometric determined partial specific volumes of the detergent and the enzyme, the molecular weights of 400,000 for the protein moiety of the dimer and 170,000-200,000 for the monomer were calculated. Under very low ionic strength conditions the monomer/dimer equilibrium was found to be dependent on the protein concentration. At low enzyme concentrations (10(-9) M) monomers were predominant, whereas at concentrations above 5 X 10(-6) M the amounts of dimers and higher aggregates were more represented. The cytochrome c oxidase activity, measured spectrophotometrically and analyzed by Eadie-Hofstee plot, was biphasic as a function of cytochrome c concentration for the dimeric enzyme. Pure monomers gave monophasic kinetics. The data, fitting with a homotropic negative cooperative mechanism for the dimer of cytochrome c oxidase, are discussed and compared with other described mechanisms.  相似文献   

15.
Decapping is a central step in eukaryotic mRNA turnover and in gene expression regulation. The human scavenger decapping enzyme, DcpS, catalyses cap hydrolysis following mRNA degradation. DcpS is a dimeric enzyme, with two active sites. Crystal structures suggest that DcpS must undergo significant conformational changes upon ligand binding, but the mechanism of this transition is unknown. Here, we report two long timescale (20 ns) molecular dynamics simulations of the apo-form of DcpS. The dimer is observed to undergo a strikingly cooperative motion, with one active site closing while the other opens. The amplitude of the conformational change is 6-21 A and the apparent timescale is 4-13 ns. These findings indicate that the crystallographically observed symmetric conformation of apo-form of DcpS is only a minor conformation in solution. The simulations also show that active sites are structurally connected via the domain-swapped dimer structure of the N-terminal domain, even in the absence of a bound ligand. These findings suggest a functional reason for the enzyme existing as a dimer, and may be widely relevant, also for other dimeric proteins.  相似文献   

16.
Sedimentation equilibrium analysis demonstrated that preparations of bovine lipoprotein lipase contain a complex mixture of dimers and higher oligomers of enzyme protein. Enzyme activity profiles from sedimentation equilibrium as well as from gel filtration indicated that activity is associated almost exclusively with the dimer fraction. To explore if the enzyme could be dissociated into active monomers, 0.75 M guanidinium chloride was used. Sedimentation velocity measurements demonstrated that this treatment led to dissociation of the lipase protein into monomers. Concomitant with dissociation, there was an irreversible loss of catalytic activity and a moderate change in secondary structure as detected by circular dichroism. The rate of inactivation increased with decreasing concentrations of active lipase, but addition of inactive lipase protein did not slow down the inactivation. This indicates that reversible interactions between active species precede the irreversible loss of activity. The implication is that dissociation initially leads to a monomer form which is in reversible equilibrium with the active dimer, but which decays rapidly into an inactive form, and is therefore not detected as a stable component in the system.  相似文献   

17.
Although having highly similar primary to tertiary structures, the different guanidino kinases exhibit distinct quaternary structures: monomer, dimer or octamer. However, no evidence for communication between subunits has yet been provided, and reasons for these different levels of quaternary complexity that can be observed from invertebrate to mammalian guanidino kinases remain elusive. Muscle creatine kinase is a dimer and disruption of the interface between subunits has been shown to give rise to destabilized monomers with slight residual activity; this low activity could, however, be due to a fraction of protein molecules present as dimer. CK monomer/monomer interface involves electrostatic interactions and increasing salt concentrations unfold and inactivate this enzyme. NaCl and guanidine hydrochloride show a synergistic unfolding effect and, whatever the respective concentrations of these compounds, inactivation is associated with a dissociation of the dimer. Using an interface mutant (W210Y), protein concentration dependence of the NaCl-induced unfolding profile indicates that the active dimer is in equilibrium with an inactive monomeric state. Although highly similar to muscle CK, horse shoe crab (Limulus polyphemus) arginine kinase (AK) is enzymatically active as a monomer. Indeed, high ionic strengths that can monomerize and inactivate CK, have no effect on AK enzymatic activity or on its structure as judged from intrinsic fluorescence data. Our results indicate that expression of muscle creatine kinase catalytic activity is dependent on its dimeric state which is required for a proper stabilization of the monomers.  相似文献   

18.
The rate of the insulin-degrading enzyme (IDE)-catalyzed hydrolysis of the fluorogenic substrate 2-aminobenzoyl-GGFLRKHGQ-ethylenediamine-2,4-dinitrophenyl is increased 2-7-fold by other peptide substrates but not by peptide non-substrates. This increased rate is attributed to a decrease in Km with little effect on Vmax. An approximately 2.5-fold increase in the rate of amyloid beta peptide hydrolysis is produced by dynorphin B-9. However, with insulin as substrate, dynorphin B-9 is inhibitory. Immunoprecipitation of differentially tagged IDE and gel filtration analysis were used to show that IDE exists as a mixture of dimers and tetramers. The equilibrium between dimer and tetramer is concentration-dependent, with the dimer the more active form. Bradykinin shifted the equilibrium toward dimer. Activation of substrate hydrolysis is not seen with a mixed dimer of IDE containing one active subunit and one subunit that is catalytically inactive and deficient in substrate binding. On the other hand, a mixed dimer containing one active subunit and one subunit that is catalytically inactive but binds substrate with normal affinity is activated by peptides. These findings suggest that peptides bind to one subunit of IDE and induce a conformational change that shifts the equilibrium to the more active dimer as well as activates the adjacent subunit. The selective activation of IDE toward amyloid beta peptide relative to insulin suggests the potential for development of compounds that increase IDE activity toward amyloid beta peptide as a therapeutic intervention for the treatment of Alzheimer's disease.  相似文献   

19.
The severe acute respiratory syndrome (SARS) 3C-like protease consists of two distinct folds, namely the N-terminal chymotrypsin fold containing the domains I and II hosting the complete catalytic machinery and the C-terminal extra helical domain III unique for the coronavirus 3CL proteases. Previously the functional role of this extra domain has been completely unknown, and it was believed that the coronavirus 3CL proteases share the same enzymatic mechanism with picornavirus 3C proteases, which contain the chymotrypsin fold but have no extra domain. To understand the functional role of the extra domain and to characterize the enzyme-substrate interactions by use of the dynamic light scattering, circular dichroism, and NMR spectroscopy, we 1) dissected the full-length SARS 3CL protease into two distinct folds and subsequently investigated their structural and dimerization properties and 2) studied the structural and binding interactions of three substrate peptides with the entire enzyme and its two dissected folds. The results lead to several findings; 1) although two dissected parts folded into the native-like structures, the chymotrypsin fold only had weak activity as compared with the entire enzyme, and 2) although the chymotrypsin fold remained a monomer within a wide range of protein concentrations, the extra domain existed as a stable dimer even at a very low concentration. This observation strongly indicates that the extra domain contributes to the dimerization of the SARS 3CL protease, thus, switching the enzyme from the inactive form (monomer) to the active form (dimer). This discovery not only separates the coronavirus 3CL protease from the picornavirus 3C protease in terms of the enzymatic mechanism but also defines the dimerization interface on the extra helical domain as a new target for design of the specific protease inhibitors. Furthermore, the determination of the preferred solution conformation of the substrate peptide S1 together with the NMR differential line-broadening and transferred nuclear Overhauser enhancement study allows us to pinpoint the bound structure of the S1 peptide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号