首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary More than 100 differentBrassica nucleo-cytoplasmic combinations were analysed for the presence or absence of the 11.3 kb mitochondrial plasmid. Contrary to some previous reports, no close association exists between the presence of the plasmid and cytoplasmic male sterility. Some novel abundant RNAs which copurified withBrassica mitochondria are described.  相似文献   

2.
Summary Mitochondrial (mt) and chloroplast (ct) DNAs from sugar beet carrying normal fertile and different cytoplasmic male sterile (cms) cytoplasms were compared by restriction analysis and for the occurrence of minicircles. One of the cms materials had the Owen cms cytoplasm currently used for hybrid production in sugar beet; the other three cms materials were derived from wild Beta beets. The mtDNAs from two of the latter cms types (C 7051, C 8640) differed from both the Owen and the fertile cytoplasms in fragment patterns seen after restriction enzyme analysis and in minicircle composition. The third cms type (C 8684) differed from the Owen cytoplasm in mini-circle composition, but restriction enzyme analysis revealed no differences. The presence of the different minicircles was confirmed by Southern hybridization using minicircle-specific clones. All bands hybridized as predicted by gel electrophoresis except a band in the cms type C 8640, which migrated in a similar manner as the c.c.c. form of the a minicircle. This band hybridized only faintly to a minicircle a-specific probe and could be removed by treatment with nuclease S1. In contrast to the large mtDNA variation, restriction analysis of ctDNA detected little variation between cytoplasms. The molecular characterization of the new sources of cms supports the results of previous crossings. Two of the cytoplasms are not only of independent origin, but are also most likely functionally different and thus may be of value in future production of hybrid sugar beet varieties.  相似文献   

3.
Summary Mitochondrial DNA was isolated from leaf tissue of both the cytoplasmic male sterile line of Indica rice variety V41, which carries wild abortive (WA) cytoplasm, and from the corresponding maintainer line. In addition to the main mitochondrial DNA, four small plasmid-like DNA molecules were detected in both the male sterile and fertile lines. Restriction analysis of total mitochondrial DNA from the male sterile and fertile lines showed DNA fragments unique to each. Our findings suggest that the four small mitochondrial DNA (mtDNA) molecules are conserved when WA cytoplasm is transferred into different nuclear backgrounds. However, there is no simple correlation between the presence/ absence of small mitochondrial DNA molecules and the expression of WA cytoplasmic male sterility (CMS).  相似文献   

4.
Summary Mitochondrial (mt) DNA of a new type of rye cytoplasm (Gülzow, G) that induces cytoplasmic male sterility (CMS) was analyzed and compared with rye mtDNAs of different origins MtDNA of the G type was easily distinguishable from mtDNA of another CMS source, Pampa (P) type, and from mtDNA of fertile lines with respect to restriction fragment patterns and hybridization with mitochondrial genes. The results of the molecular analyses indicate a close, but not identical relationship between the mtDNA of the G type cytoplasm and that of cv Pluto.  相似文献   

5.
Mitochondrial variability was investigated in natural populations of wild carrot (Daucus carota ssp carota) in different regions: South of France, Greece, and various sites in the Mediterranean Basin and Asia. Total DNA was digested with two restriction endonucleases (EcoRV and HindIII) and probed with three mitochondrial DMA-specific genes (coxI, atp6, and coxII). Twenty-five different mitochondrial types were found in 80 analyzed individuals. Thirteen mitotypes were found among the 7 French populations studied. On average, 4.4 different mitotypes were observed per population, and these mitotypes were well-distributed among the populations. All of the mitochondrial types were specific to a single region. However, the proportion of shared restriction fragments between 2 mitotypes from different regions was not particularly lower than that which occurred among mitotypes from a single region. On the basis of the sexual phenotype [male-sterile (MS) or hermaphrodite] of the plants studied in situ and that of their progeny, 2 mitotypes were found to be highly associated with male sterility. Eighty percent of the plants bearing these mitotypes were MS in situ, and all of these plants produced more than 30% MS plants in their progeny. This association with male sterility was consistent in several populations, suggesting an association with a cytoplasmic male-sterility system. Moreover, these two mitotypes had very similar mitochondrial DNA restriction patterns and were well-differentiated from the other mitotypes observed in wild plants and also from those observed in the two CMS types already known in the cultivated carrot. This suggests that they correspond to a third cytoplasmic sterility.  相似文献   

6.
Endonuclease restriction fragment patterns of Pennisetum americanum L. mitochondrial DNAs (mtDNAs) from a cytoplasmic male-sterile (CMS-A1), fertile revertants and a normal fertile cytoplasm were variable, while chloroplast DNA from those lines lacked variation. Comparisons between mtDNAs of CMS-A1 (parental) and fertile revertant lines revealed the presence of a unique 4.7 kbp PstI fragment in the sterile line that was not detected in any of the revertant lines. A 9.7 kbp PstI fragment was found in all of the revertants, but not in the CMS-A1. Neither of those fragments was found in the normal cytoplasm mtDNA. Hybridization studies revealed two sets of multiple homologies: 1) the 4.7 kbp fragment had homology with a 10.9 kbp and a 13.6 kbp fragment; and 2) the 9.7 kbp fragment was homologous with the 13.6 kbp fragment. The presence of those two repeated mitochondrial sequences on the altered fragments suggests that they may be involved in the recombinational associated events with reversion from CMS to fertility in P. americanum.Florida Agricultural Experiment Station Journal Series No.7797.  相似文献   

7.
Summary 60Co-irradiated protoplasts of the cytoplasmic male-sterile line A-58 CMS (Oryza saliva L.) were electrofused with iodoacetamide (IOA)-treated protoplasts of the fertile (normal) rice cultivar Fujiminori. Seven of the colonies that formed were identified as cytoplasmic hybrids (cybrids): they all had the peroxidase isozymes of the fertile Fujiminori parent, but contained four plasmid-like DNAs (Bl, B2, B3 and B4) from the sterile A-58 CMS parent in their mitochondrial genomes. In addition, digestion of cybrid mtDNA gave a set of restriction fragments that differed from those of the parents.  相似文献   

8.
Summary Mitochondrial DNA (mtDNA) from fertile (N) and possibly new cytoplasmic male sterile (CMS) genotypes was studied in the sugar beet Beta vulgaris L. It was found by restriction endonuclease analysis that BMC-CMS, a cytoplasm that was derived from the wild beet Beta maritima, contained a unique type of mtDNA which is distinguishable from both the N and S-CMS, the only other CMS genotype that is currently availabe in B. vulgaris L. The organization of three genes: coxI, coxII and cob, was analyzed by hybridization with heterologous probes from maize. These genes have a similar structure in N and BMC-CMS that is different from S-CMS. It is concluded that BMC-CMS is a novel CMS genotype in the sugar beet.  相似文献   

9.
10.
Summary A circular supercoiled mitochondrial DNA plasmid P1 (1.45 kb) is shown in both normal fertile plants of Helianthus annuus, and some cytoplasmic male sterile lines (CMS A and CMS P). In contrast, no plasmid is found in some other types of CMS C, I, B and K. A circular supercoiled DNA (P2) of higher molecular weight (1.8 kb) is observed in CMS F. The mitochondrial plasmid P1 was cloned, nick-translated and hybridized with native mitochondrial DNA from different lines of male fertile, CMS or wild Helianthus. No sequence homology has been detected between plasmid DNA P1 and high molecular weight mitochondrial DNA in any line examined. A slight hybridization occurs between plasmids P1 and P2. Thus, there is no apparent relationship between mitochondrial plasmid DNA and CMS or Helianthus species. On the contrary, each Helianthus CMS and male fertile strain can be characterized by digestion fragment patterns (Sal I and Bgl I). Analysis of mitochondrial DNA from wild Helianthus strains indicated a relation between some CMS and the strain from which they were maternally derived, as for example CMS I and H. annuus ssp lenticularis and CMS F and H. petiolaris fallax. On the basis of restriction endonuclease patterns, a CMS phylogenic tree is proposed which illustrates a molecular polymorphism in the mitochondrial genome of Helianthus.  相似文献   

11.
红莲型细胞质雄性不育水稻线粒体DNA的AP-PCR分析   总被引:4,自引:0,他引:4  
为了研究红莲型细胞质雄性不育与线粒体基因组的关系。以水稻红莲型粤泰细胞质雄性不育系A和保持系B及杂种一代F1为材料。应用AP-PCR分析,用10个单引物对其线粒体DNA进行扩增。实验结果表明,不同的引物在3种材料间均有不同程度的差异。为红莲型细胞质雄性不育分子机理的研究提供了线索;此外,在引物6F1的扩增图谱中找到一条在YTA和F1中特异的带TAF6F2,Sounthern分析TAF6F2不育胞质的特异性,可能与红莲型水稻细胞质雄性 不育性状的形成有关。  相似文献   

12.
The mitochondria of chive plants with normal N or male-sterile S cytoplasms have been examined by restriction fragment analysis and Southern hybridizations of mitochondrial DNA (mtDNA) and in organello protein biosynthesis. Restriction fragment patterns of the mtDNA differed extensively between N-and S-cytoplasms. The percentage of fragments with different mobility varied between 44–48% depending on the restriction enzyme used. In contrast to mtDNA, the restriction fragment patterns of the chloropolast DNA from N- and S-cytoplasms were identical. The organization of the analyzed mitochondrial genes coxII, coxIII, nad1 and nad3 was different in N- and S-cytoplasms. Comparison of mitochondrial proteins analyzed by in organello translation revealed an 18-kDa protein present only in S-cytoplasm. The restorer gene X suppressed the synthesis of that protein in S-cytoplasm. Thus, the 18-kDa protein seems to be associated with the cytoplasmic male-sterile phenotype.  相似文献   

13.
付娟  高才昌 《植物学通报》2000,17(5):401-406
本文列出了已发现的高等植物中的线粒体DNA质粒,按分子形状分为线粒体环状DNA质粒和线粒体线状DNA质粒,环状线粒体DNA质粒的特征是分子较小,序列中有正向/反向重复序列,ORF一般较小。线状线粒体DNA质粒的特征是分子较大,末端有重复序列,5’端与蛋白质共价结合,有较长的ORF。还分别介绍了它们的复制机制、转录和起源。质粒间及质粒及核基因组、线粒体基因组、叶绿体基因组的同源性也作了介绍。最后,综  相似文献   

14.
Summary A complete SmaI, XhoI, BamHI restriction map of the maize mitochondrial genome from the T male sterile cytoplasm (cmsT) of maize has been established. The genome exists in the form of a complex multicircular structure as found for the maize normal (N) type (Lonsdale et al. 1984) where the entire sequence complexity with a content of 540 kb can be arranged on a single circular master chromosome. However, most of the repeats (inverted or direct) present in the maize cmsT genome are different from those found in the maize N genome. Recombinational events between these repeats generate a population of circular molecules rather different from the multipartite organization of the N genome. The mitochondrial genes are dispersed throughout the genome. The open reading frame coding for a 13 kDa polypeptide associated with cytoplasmic male sterility (Dewey et al. 1986, 1987) has also been located on the map.  相似文献   

15.
Mitochondrial genome organization and cytoplasmic male sterility in plants   总被引:2,自引:0,他引:2  
Plant mitochondrial genomes are much larger and more complex than those of other eukaryotic organisms. They contain a very active recombination system and have a multipartite genome organization with a master circle resolving into two or more subgenomic circles by recombination through repeated sequences. Their protein coding capacity is very low and is comparable to that of animal and fungal systems. Several subunits of mitochondrial functional complexes, a complete set of tRNAs and 26S, 18S and 5S rRNAs are coded by the plant mitochondrial genome. The protein coding genes contain group II introns. The organelle genome contains stretches of DNA sequences homologous to chloroplast DNA. It also contains actively transcribed DNA sequences having open reading frames. Plasmid like DNA molecules are found in mitochondria of some plants Cytoplasmic male sterility in plants, characterized by failure to produce functional pollen grains, is a maternally inherited trait. This phenomenon has been found in many species of plants and is conveniently used for hybrid plant production. The genetic determinants for cytoplasmic male sterility reside in the mitochondrial genome. Some species of plants exhibit more than one type of cytoplasmic male sterility. Several nuclear genes are known to control expression of cytoplasmic male sterility. Different cytoplasmic male sterility types are distinguished by their specific nuclear genes(rfs) which restore pollen fertility. Cytoplasmic male sterility types are also characterized by mitochondrial DNA restriction fragment length polymorphism patterns, variations in mitochondrial RNAs, differences in protein synthetic profiles, differences in sensitivity to fungal toxins and insecticides, presence of plasmid DNAs or RNAs and also presence of certain unique sequences in the genome. Recently nuclear male sterility systems based on (i) over expression of agrobacterialrol C gene and (ii) anther specific expression of an RNase gene have been developed in tobacco andBrassica by genetic engineering methods.  相似文献   

16.
对水稻BT型和WA型细胞质的雄性不育系,相应保持系和恢复系以及杂种的mtDNA用12个线粒体探针进行了RFLP分析,结果如下(1)BT型和WA型不育系的mtDNA在组织结构上存在差异;(2)不育系的mtDNA与其保持系间存在显著差异,推测mtDNA与水稻的cms有关;(3)atp9探针检测到WA型不育系与F1之间的多态性,Frag36探针检测到BT型不育系与F1之间的多态性,Frag9探针检测到WA型和BT型不育系与其F1之间的多态性,证明核恢复基因影响mtDNA的结构;(4)对mtDNA的结构变异与细胞质雄性不育的关系进行了分析与探讨.  相似文献   

17.
Mitochondrial DNA (mtDNA) from 13 cytoplasmic male-sterile (cms) lines from diverse sources were characterized by Southern blot hybridization to pearl millet and maize mtDNA probes. Hybridization patterns of mtDNA digested with PstI, BamHI, SmaI or XhoI and probed with 13.6-, 10.9-, 9.7- or 4.7-kb pearl millet mtDNA clones revealed similarities among the cms lines 5141 A and ICMA 1 (classified as the S-A1 type of cytoplasm based on fertility restoration patterns), PMC 30A and ICMA 2. The remaining cms lines formed a distinct group, within which three subgroups were evident. Among the maize mitochondiral gene clones used, the coxI probe revealed two distinct groups of cytoplasms similar to the pearl millet mtDNA clones. The atp9 probe differentiated the cms line 81 A4, derived from P. glaucum subsp. monodii, while the coxII gene probe did not detect any polymorphism among the cms lines studied. MtDNA digested with BamHI, PstI or XhoI and hybridized to the atp6 probe revealed distinct differences among the cms lines. The maize atp6 gene clone identified four distinct cytoplasmic groups and four subgroups within a main group. The mtDNA fragments hybridized to the atp6 gene probe with differing intensities, suggesting the presence of more than one copy of the gene in different stoichiometries. Rearrangements involving the coxI and/or rrn18-rrn5 genes (mapped within the pearl millet clones) probably resulted in the S-A1 type of sterility. Rearrangements involving the atp6 gene (probably resulting in chimeric form) may be responsible for male sterility in other cms lines of pearl millet.  相似文献   

18.
19.
Variation in sorghum mitochondrial translation products has enabled fertile (Kafir) cytoplasm to be distinguished from Milo cytoplasmic male sterile cytoplasm and from three alternative sources of cytoplasmic male sterile cytoplasm. Mitochondria from Milo cytoplasm synthesised a 65 000 mol. wt. polypeptide which was not synthesised by those from Kafir cytoplasm. In the cytoplasmic male sterile combination of Kafir nucleus in Milo cytoplasm synthesis of this polypeptide was dramatically increased. Mitochondria from two cytoplasmic male sterile lines (Kafir nucleus in IS1112 cytoplasm and Yellow Feterita nucleus in M35-1 cytoplasm) did not synthesise the 65 000 mol. wt. polypeptide but synthesised additional high molecular weight polypeptides (from 54 000 to 82 000 mol. wt.), the major one being 82 000. Mitochondria from cytoplasm IS1112 were also distinguished by synthesis of an additional 12 000 mol. wt. polypeptide. Mitochondria from the cytoplasmic male sterile line Martin nucleus in 9E cytoplasm synthesised an additional 42 000 mol. wt. polypeptide but did not synthesise a 38 000 mol. wt. polypeptide detected in all other cytoplasms. Immunoprecipitation of mitochondrial translation products with antiserum raised against subunit I of yeast cytochrome oxidase tentatively identified the 38 000 mol. wt. polypeptide as subunit I of sorghum cytochrome oxidase. The 42 000 mol. wt. polypeptide was also immuno-precipitated by this antiserum and thus is probably an altered form of cytochrome oxidase subunit I.Analysis of native mitochondrial DNA by agarose gel electrophoresis revealed the presence of two plasmid-like DNA species of molecular weight 5.3 and 5.7 kb in the cytoplasmic male sterile lines Kafir nucleus in cytoplasm IS1112 and Yellow Feterita nucleus in M35-1 cytoplasm. Thus there is a positive correlation between the synthesis of the 82 000 mol. wt. polypeptide and the presence of the additional DNA species.  相似文献   

20.
Summary Chloroplast (ct) and mitochondrial (mt) DNAs from four cytoplasmic male sterile (cms) and 22 normal fertile sugar beet lines and accessions of wild beets from the genusBeta have been compared with restriction analyses and Southern hybridizations. We have used restriction analyses of ctDNA as a phylogenetic marker to confirm the taxonomic relationships between the different cytoplasms. According to the ctDNA data, all four cms cytoplasms belong to the same taxonomic section,Beta. Restriction patterns of ct and mtDNA from fertile accessions produced analogous trees of similarity and showed a close correlation between the organellar DNA diversity and the accepted taxonomic classification of the species studied. However, the mtDNA restriction profiles of the four cms types differed dramatically from each other and from those of all fertile accessions from the genus. No indication of cytoplasmic introgression was found in any of the four investigated cms types. Southern hybridization to mtDNA revealed variant genomic arrangements in the different fertile and cms cytoplasms, indicating that rearrangement of the mitochondrial genome is a common denominator to the different cms systems inBeta. It may, indeed, be a common property to spontaneously occurring cms in all or most species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号