首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification and cloning of a umu locus in Streptomyces coelicolor A3(2)   总被引:1,自引:0,他引:1  
The umuDC operon of Escherichia coli is required for efficient mutagenesis by UV and many other DNA-damaging agents. E. coli umu mutants are defective in mutagenesis and slightly more sensitive to DNA-damaging agents. The existence of a umuDC analogue in Streptomyces coelicolor was suggested by data of our previous works. We cloned from Streptomyces coelicolor a fragment of DNA homologous to the E. coli umuDC region that is able to complement the E coli umuC122::Tn5 mutation. Therefore our data suggest that S. coelicolor contains a functional umu-like operon.  相似文献   

2.
Expression of the umuDC operon is required for UV and most chemical mutagenesis in Escherichia coli. The DNA which can restore UV mutability to a umuD44 strain and to a umuC122::Tn5 strain of E. coli has been cloned from Salmonella typhimurium TA1538. DNA sequence analysis indicated that the cloned DNA potentially encoded proteins with calculated molecular weights of 15,523 and 47,726 and was an analog of the E. coli umuDC operon. We have termed this cloned DNA the samAB (for Salmonella mutagenesis) operon and tentatively referred to the umuDC operon of S. typhimurium LT2 (C. M. Smith, W. H. Koch, S. B. Franklin, P. L. Foster, T. A. Cebula, and E. Eisenstadt, J. Bacteriol. 172:4964-4978, 1990; S. M. Thomas, H. M. Crowne, S. C. Pidsley, and S. G. Sedgwick, J. Bacteriol. 172:4979-4987, 1990) as the umuDCST operon. The samAB operon is 40% diverged from the umuDCST operon at the nucleotide level. Among five umuDC-like operons so far sequenced, i.e., the samAB, umuDCST, mucAB, impAB, and E. coli umuDC operons, the samAB operon shows the highest similarity to the impAB operon of TP110 plasmid while the umuDCST operon shows the highest similarity to the E. coli umuDC operon. Southern hybridization experiments indicated that (i) S. typhimurium LT2 and TA1538 had both the samAB and the umuDCST operons and (ii) the samAB operon was located in a 60-MDa cryptic plasmid. The umuDCST operon is present in the chromosome. The presence of the two homologous but different umuDC operons may be involved in the poor mutability of S. typhimurium by UV and chemical mutagens.  相似文献   

3.
In Escherichia coli, efficient mutagenesis by UV requires the umuDC operon. A deficiency in umuDC activity is believed to be responsible for the relatively weak UV mutability of Salmonella typhimurium LT2 compared with that of E. coli. To begin evaluating this hypothesis and the evolutionary relationships among umuDC-related sequences, we cloned and sequenced the S. typhimurium umuDC operon. S. typhimurium umuDC restored mutability to umuD and umuC mutants of E. coli. DNA sequence analysis of 2,497 base pairs (bp) identified two nonoverlapping open reading frames spanning 1,691 bp that were were 67 and 72% identical at the nucleotide sequence level to the umuD and umuC sequences, respectively, from E. coli. The sequences encoded proteins whose deduced primary structures were 73 and 84% identical to the E. coli umuD and umuC gene products, respectively. The two bacterial umuDC sequences were more similar to each other than to mucAB, a plasmid-borne umuDC homolog. The umuD product retained the Cys-24--Gly-25, Ser-60, and Lys-97 amino acid residues believed to be critical for RecA-mediated proteolytic activation of UmuD. The presence of a LexA box 17 bp upstream from the UmuD initiation codon suggests that this operon is a member of an SOS regulon. Mu d-P22 inserts were used to locate the S. typhimurium umuDC operon to a region between 35.9 and 40 min on the S. typhimurium chromosome. In E. coli, umuDC is located at 26 min. The umuDC locus in S. typhimurium thus appears to be near one end of a chromosomal inversion that distinguishes gene order in the 25- to 35-min regions of the E. coli and S. typhimurium chromosomes. It is likely, therefore, that the umuDC operon was present in a common ancestor before S. typhimurium and E. coli diverged approximately 150 million years ago. These results provide new information for investigating the structure, function, and evolutionary origins of umuDC and for exploring the genetic basis for the mutability differences between S. typhimurium and E. coli.  相似文献   

4.
We investigated the role of the umuDC and samAB operons in the UV mutability of Salmonella typhimurium. umuDC is located on the chromosome, whereas samAB resides on the virulence plasmid pSLT. Using allele replacement and plasmid curing techniques, we found that UV mutability was eliminated when any of three different umuDC alleles (umuD1, umuC1, or umuD1 umuC1) were on the chromosome even when samAB was present. We conclude that samAB normally does not complement umuDC function in S. typhimurium.  相似文献   

5.
The Escherichia coli umuDC gene products encode DNA polymerase V, which participates in both translesion DNA synthesis (TLS) and a DNA damage checkpoint control. These two temporally distinct roles of the umuDC gene products are regulated by RecA-single-stranded DNA-facilitated self-cleavage of UmuD (which participates in the checkpoint control) to yield UmuD' (which enables TLS). In addition, even modest overexpression of the umuDC gene products leads to a cold-sensitive growth phenotype, apparently due to the inappropriate expression of the DNA damage checkpoint control activity of UmuD(2)C. We have previously reported that overexpression of the epsilon proofreading subunit of DNA polymerase III suppresses umuDC-mediated cold sensitivity, suggesting that interaction of epsilon with UmuD(2)C is important for the DNA damage checkpoint control function of the umuDC gene products. Here, we report that overexpression of the beta processivity clamp of the E. coli replicative DNA polymerase (encoded by the dnaN gene) not only exacerbates the cold sensitivity conferred by elevated levels of the umuDC gene products but, in addition, confers a severe cold-sensitive phenotype upon a strain expressing moderately elevated levels of the umuD'C gene products. Such a strain is not otherwise normally cold sensitive. To identify mutant beta proteins possibly deficient for physical interactions with the umuDC gene products, we selected for novel dnaN alleles unable to confer a cold-sensitive growth phenotype upon a umuD'C-overexpressing strain. In all, we identified 75 dnaN alleles, 62 of which either reduced the expression of beta or prematurely truncated its synthesis, while the remaining alleles defined eight unique missense mutations of dnaN. Each of the dnaN missense mutations retained at least a partial ability to function in chromosomal DNA replication in vivo. In addition, these eight dnaN alleles were also unable to exacerbate the cold sensitivity conferred by modestly elevated levels of the umuDC gene products, suggesting that the interactions between UmuD' and beta are a subset of those between UmuD and beta. Taken together, these findings suggest that interaction of beta with UmuD(2)C is important for the DNA damage checkpoint function of the umuDC gene products. Four possible models for how interactions of UmuD(2)C with the epsilon and the beta subunits of DNA polymerase III might help to regulate DNA replication in response to DNA damage are discussed.  相似文献   

6.
In response to environmentally caused DNA damage, SOS genes are up-regulated due to RecA-mediated relief of LexA repression. In Escherichia coli, the SOS umuDC operon is required for DNA damage checkpoint functions and for replicating damaged DNA in the error-prone process called SOS mutagenesis. In the model soil bacterium Acinetobacter baylyi strain ADP1, however, the content, regulation, and function of the umuDC operon are unusual. The umuC gene is incomplete, and a remnant of an ISEhe3-like transposase has replaced the middle 57% of the umuC coding region. The umuD open reading frame is intact, but it is 1.5 times the size of other umuD genes and has an extra 5' region that lacks homology to known umuD genes. Analysis of a umuD::lacZ fusion showed that umuD was expressed at very high levels in both the absence and presence of mitomycin C and that this expression was not affected in a recA-deficient background. The umuD mutation did not affect the growth rate or survival after UV-induced DNA damage. However, the UmuD-like protein found in ADP1 (UmuDAb) was required for induction of an adjacent DNA damage-inducible gene, ddrR. The umuD mutation specifically reduced the DNA damage induction of the RecA-dependent DNA damage-inducible ddrR locus by 83% (from 12.9-fold to 2.3-fold induction), but it did not affect the 33.9-fold induction of benA, an unrelated benzoate degradation gene. These data suggest that the response of the ADP1 umuDC operon to DNA damage is unusual and that UmuDAb specifically regulates the expression of at least one DNA damage-inducible gene.  相似文献   

7.
Polymorphisms in the umuDC region of Escherichia species.   总被引:5,自引:4,他引:1       下载免费PDF全文
The umuDC operon of Escherichia coli encodes mutagenic DNA repair. The umuDC regions of multiple isolates of E. coli, E. alkalescens, and E. dispar and a single stock of E. aurescens were mapped by nucleotide hybridization. umuDC is located at one end of a conserved tract of restriction endonuclease sites either 12.5 or 14 kilobase pairs long. Rearrangements, including possible deletions, were seen in the polymorphic DNA flanking the conserved tract. Restriction site polymorphisms were not found around the DNA repair gene recA or polA. The junctions of the conserved region contain direct repeats of nucleotide sequences resembling the termini of the Tn3 group of transposons. Possible mechanisms for the generation of these variants are discussed.  相似文献   

8.
9.
The umuDC gene products, whose expression is induced by DNA-damaging treatments, have been extensively characterized for their role in SOS mutagenesis. We have recently presented evidence that supports a role for the umuDC gene products in the regulation of growth after DNA damage in exponentially growing cells, analogous to a prokaryotic DNA damage checkpoint. Our further characterization of the growth inhibition at 30 degrees C associated with constitutive expression of the umuDC gene products from a multicopy plasmid has shown that the umuDC gene products specifically inhibit the transition from stationary phase to exponential growth at the restrictive temperature of 30 degrees C and that this is correlated with a rapid inhibition of DNA synthesis. These observations led to the finding that physiologically relevant levels of the umuDC gene products, expressed from a single, SOS-regulated chromosomal copy of the operon, modulate the transition to rapid growth in E. coli cells that have experienced DNA damage while in stationary phase. This activity of the umuDC gene products is correlated with an increase in survival after UV irradiation. In a distinction from SOS mutagenesis, uncleaved UmuD together with UmuC is responsible for this activity. The umuDC-dependent increase in resistance in UV-irradiated stationary-phase cells appears to involve, at least in part, counteracting a Fis-dependent activity and thereby regulating the transition to rapid growth in cells that have experienced DNA damage. Thus, the umuDC gene products appear to increase DNA damage tolerance at least partially by regulating growth after DNA damage in both exponentially growing and stationary-phase cells.  相似文献   

10.
The products of the SOS-regulated umuDC genes are required for most UV and chemical mutagenesis in Escherichia coli. Recently it has been recognized that UmuC is the founding member of a superfamily of novel DNA polymerases found in all three kingdoms of life. Key findings leading to these insights are reviewed, placing a particular emphasis on contributions made by Bryn Bridges and on his interest in the importance of interactions between the umuDC gene products and the replicative DNA polymerase.  相似文献   

11.
Identification of a umuDC locus in Salmonella typhimurium LT2.   总被引:9,自引:8,他引:1       下载免费PDF全文
The umuDC operon of Escherichia coli is required for efficient mutagenesis by UV light and many other DNA-damaging agents. The existence of a umuDC analog in Salmonella typhimurium has been questioned. With DNA probes to the E. coli umuD and umuC genes, we detected, by Southern blot hybridization, sequences similar to both of these genes in S. typhimurium LT2. We also confirmed that the presence of cloned E. coli umuD enhances the UV mutability and resistance of S. typhimurium. Our data strongly suggest that S. typhimurium contains a functional umuDC operon.  相似文献   

12.
Recovery of aflatoxin B1-induced base substitution mutations in Escherichia coli was almost completely dependent on the presence of the SOS-mutagenesis-enhancing operon mucAB+; the normal E. coli analog, umuDC+, was not sufficient. Yet aflatoxin B1 induced the SOS response, including the umuDC operon, as well as did UV light. Neither preinduction of the SOS response nor the presence of additional copies of umuDC+ allowed the recovery of aflatoxin B1-induced base substitutions. Thus, the premutagenic DNA lesions induced by aflatoxin B1 reveal a functional difference between UmuDC and MucAB. We estimate that in the presence of MucAB the probability that aflatoxin B1-induced DNA lesions will be converted into mutations is increased at least 10-fold.  相似文献   

13.
The Escherichia coli SOS-regulated umuDC gene products participate in a DNA damage checkpoint control and in translesion DNA synthesis. Specific interactions involving the UmuD and UmuD' proteins, both encoded by the umuD gene, and components of the replicative DNA polymerase, Pol III, appear to be important for regulating these two biological activities of the umuDC gene products. Here we show that overproduction of the epsilon proofreading subunit of Pol III suppresses the cold sensitivity normally associated with overexpression of the umuDC gene products. Our results suggest that this suppression is attributable to specific interactions between UmuD or UmuD' and the C-terminal domain of epsilon.  相似文献   

14.
15.
The high fidelity of DNA replication in Escherichia coli is ensured by the alpha (DnaE) and epsilon (DnaQ) subunits of DNA polymerase providing insertion fidelity, 3'-->5' exonuclease proofreading activity, and by the dam-directed mismatch repair system. dnaQ49 is a recessive allele that confers a temperature-sensitive proofreading phenotype resulting in a high rate of spontaneous mutations and chronic induction of the SOS response. The aim of this study was to analyse the mutational specificity of dnaQ49 in umuDC and DeltaumuDC backgrounds at 28 and 37 degrees C in a system developed by J.H. Miller. We confirmed that the mutator activity of dnaQ49 was negligible at 28 degrees C and fully expressed at 37 degrees C. Of the six possible base pair substitutions, only GC-->AT transitions and GC-->TA and AT-->TA transversions were appreciably increased. However, the most numerous mutations were frameshifts, -1G deletions and +1A insertions. All mutations which increased in response to dnaQ49 damage were to a various extent umuDC-dependent, especially -1G deletions. This type of mutations decreased in CC108dnaQ49DeltaumuDC to 10% of the value found in CC108dnaQ49umuDC+ and increased in the presence of plasmids producing UmuD'C or UmuDC proteins. In the recovery of dnaQ49 mutator activity the plasmid harbouring umuD'C genes was more effective than the one harbouring umuDC. Analysis of mutational specificity of pol III with defective epsilon subunit indicates that continuation of DNA replication is allowed past G:T, C:T, T:T (or C:A, G:A, A:A) mismatches but does not allow for acceptance of T:C, C:C, A:C (or A:G, G:G, T:G) (the underlined base is in the template strand).  相似文献   

16.
The umuDC operon of Escherichia coli, a member of the SOS regulon, is required for SOS mutagenesis. Following the posttranslational processing of UmuD to UmuD' by RecA-mediated cleavage, UmuD' acts in concert with UmuC, RecA, and DNA polymerase III to facilitate the process of translesion synthesis, which results in the introduction of mutations. Constitutive expression of the umuDC operon causes an inhibition of growth at 30 degrees C (cold sensitivity). The umuDC-dependent physiological phenomenon manifested as cold-sensitive growth is shown to differ from SOS mutagenesis in two respects. Intact UmuD, the form inactive in SOS mutagenesis, confers a significantly higher degree of cold sensitivity in combination with UmUC than does UmuD'. In addition, umuDC-mediated cold sensitivity, unlike SOS mutagenesis, does not require recA function. Since the RecA protein mediates the autodigestion of UnmD to UmuD', this finding supports the conclusion that intact UmuD is capable of conferring cold sensitivity in the presence of UmuC. The degree of inhibition of growth at 30 degrees C correlates with the levels of UmuD and UmuC, which are the only two SOS-regulated proteins required to observe cold sensitivity. Analysis of the cellular morphology of strains that exhibit cold sensitivity for growth led to the finding that constitutive expression of the umuDC operon causes a novel form of sulA- and sfiC-independent filamentation at 30 degrees C. This filamentation is observed in a strain constitutively expressing the single, chromosomal copy of umuDC and can be suppressed by overexpression of the ftsQAZ operon.  相似文献   

17.
The UmuD and UmuC proteins of Escherichia coli are essential for mutagenesis by UV and most chemicals. Their mode of action is presently unknown. Strains which lack the LexA repressor [lexA(Def)] and contain a pBR322-derived plasmid carrying the umuDC operon overexpress UmuD and UmuC and become cold sensitive (growth at 42 degrees C but not at 30 degrees C). Deletion mapping showed that the umuDC locus on the plasmid is responsible for conferring cold sensitivity. The conditional lethality appeared due to a rapid and reversible inhibition of DNA synthesis at the nonpermissive temperature. Cold sensitivity was enhanced by the increase of NaCl in the medium to 1% and eliminated by 4% ethanol in the medium. Cold sensitivity was partially suppressed by the lon-100 mutation and completely suppressed by the htpR165 mutation.  相似文献   

18.
Multicopy plasmids carrying either the umuDC operon of Escherichia coli or its analog mucAB operon, were introduced into Ames Salmonella strains in order to analyze the influence of UmuDC and MucAB proteins on repair and mutability after UV irradiation. It was found that in uvr+ bacteria, plasmid pICV80:mucAB increased the frequency of UV-induced His+ revertants whereas pSE117:umuDC caused a smaller increase in UV mutagenesis. In delta uvrB bacteria, the protective role of pSE117 against UV killing was weak, and there was a great reduction in the mutant yield. In contrast, in these cells, pICV80 led to a large increase in both cell survival and mutation frequency. These results suggest that in Salmonella, as in E. coli, MucAB proteins mediate UV mutagenesis more efficiently than UmuDC proteins do. Plasmid pICV84:umuD+ C- significantly increased UV mutagenesis of TA2659: delta uvrB cells whereas in them, pICV77:mucA+ B- had no effect on mutability indicating the presence in Salmonella TA2659 of a gene functionally homologous to umuC.  相似文献   

19.
K Hiom  S M Thomas  S G Sedgwick 《Biochimie》1991,73(4):399-405
The alleviation of DNA restriction during the SOS response in Escherichia coli has been further investigated. With the EcoK DNA restriction system UV irradiated wild-type cells show a 10(4)-fold increase in ability to plate non-modified lambda phage and a 3-4 fold increase in transformation by non-modified plasmid DNA. A role for the umuDC genes of E coli in the process of SOS-induced restriction alleviation was identified by showing that a umuC122::Tn5 mutant could alleviate EcoK restriction to only 5% that of wild-type levels. Although umuDC are better characterized for their pivotal role in SOS induced mutagenesis, it is demonstrated here that umu-dependent alleviation of EcoK restriction is a transient process in which umu-dependent mutagenesis plays little part. A second form of SOS induced alleviation of DNA restriction is described in this paper involving the McrA restriction system. The mcrA gene is shown to be encoded within a defective prophage called e14 situated at the 25 min region on the Escherichia coli genetic map. e14 is known to abortively excise from the chromosome after SOS induction and it is demonstrated in this report that mcrA is lost from the genome after SOS induction as part of e14. This results in co-ordinate decrease in the level of McrA restriction within a population of cells.  相似文献   

20.
Mutagenic DNA repair in Escherichia coli is encoded by the umuDC operon. Salmonella typhimurium DNA which has homology with E. coli umuC and is able to complement E. coli umuC122::Tn5 and umuC36 mutations has been cloned. Complementation of umuD44 mutants and hybridization with E. coli umuD also occurred, but these activities were much weaker than with umuC. Restriction enzyme mapping indicated that the composition of the cloned fragment is different from the E. coli umuDC operon. Therefore, a umu-like function of S. typhimurium has been found; the phenotype of this function is weaker than that of its E. coli counterpart, which is consistent with the weak mutagenic response of S. typhimurium to UV compared with the response in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号