首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature compensation of their period is one of the canonical characteristics of circadian rhythms, yet it is not restricted to circadian rhythms. This short review summarizes the evidence for ultradian rhythms, with periods from 1 minute to several hours, that likewise display a strict temperature compensation. They have been observed mostly in unicellular organisms in which their constancy of period at different temperatures, as well as under different growth conditions (e.g., medium type, carbon source), indicates a general homeostasis of the period. Up to eight different parameters, including cell division, cell motility, and energy metabolism, were observed to oscillate with the same periodicity and therefore appear to be under the control of the same central pacemaker. This suggests that these ultradian clocks should be considered as cellular timekeeping devices that in fast-growing cells take over temporal control of cellular functions controlled by the circadian clock in slow-growing or nongrowing cells. Being potential relatives of circadian clocks, these ultradian rhythms may serve as model systems in chronobiolog-ical research. Indeed, mutations have been found that affect both circadian and ultradian periods, indicating that the respective oscillators share some mechanistic features. In the haploid yeast Schizosaccharomyces pombe, a number of genes have been identified where mutation, deletion, or overex-pression affect the ultradian clock. Since most of these genes play roles in cellular metabolism and signaling, and mutations have pleiotropic effects, it has to be assumed that the clock is deeply embedded in cellular physiology. It is therefore suggested that mechanisms ensuring temperature compensation and general homeostasis of period are to be sought in a wider context. (Chronobiology International, 14(5), 469–479, 1997)  相似文献   

2.
The purpose of this experiment was to study the possible role of the gastric antrum and small bowel in the rhythm(s) of plasma gastrin. The cat was used as the laboratory animal. Three groups of cats were provided with a gastric fistula for the study of gastric acid and plasma gastrin rhythms. The first group (N = 7) served as controls. A second group (N = 3) was antrectomized and later subjected to a 80% small bowel resection. Gastric acid secretions were collected every 30 min from 0800 to 2400. Blood samples for determination of gastrin were drawn every 2 hr from 0800 to 2400. In control animals a circadian (i.e. approximately 24 hr) and 3 ultradian (i.e. less than 24 hr) rhythms were detected for acid output. In the antrectomized cats, circadian and ultradian rhythms were documented. After small bowel resection circadian and ultradian rhythms in gastric acid secretion were observed. For plasma gastrin, circadian and ultradian rhythms were found in the control cats. In the antrectomized cats no rhythms were observed. After small bowel resection an ultradian rhythm reappeared in these antrectomized cats. Removal of the antrum in the cat induces disappearance of circadian and ultradian rhythms of plasma gastrin but fails to modify the acid rhythms. Small bowel resection results in the reappearance of an ultradian rhythm for plasma gastrin and a shift in acrophase for the circadian rhythm in acid secretion.  相似文献   

3.
4.
The purpose of this experiment was to study the possible role of the gastric antrum and small bowel in the rhythm(s) of plasma gastrin. The cat was used as the laboratory animal. Three groups of cats were provided with a gastric fistula for the study of gastric acid and plasma gastrin rhythms. The first group (N = 7) served as controls. A second group (N = 3) was antrectomized and later subjected to a 80% small bowel resection. Gastric acid secretions were collected every 30 min from 0800 to 2400. Blood samples for determination of gastrin were drawn every 2hr from 0800 to 2400. In control animals a circadian (i.e.<24hr) and 3 ultradian (i.e.<24 hr) rhythms were detected for acid output. In the antrectomized cats, circadian and ultradian rhythms were documented. After small bowel resection circadian and ultradian rhythms in gastric acid secretion were observed. For plasma gastrin, circadian and ultradian rhythms were found in the control cats. In the antrectomized cats no rhythms were observed. After small bowel resection an ultradian rhythm reappeared in these antrectomized cats. Removal of the antrum in the cat induces disappearance of circadian and ultradian rhythms of plasma gastrin but fails to modify the acid rhythms. Small bowel resection results in the reappearance of an ultradian rhythm for plasma gastrin and a shift in acrophase for the circadian rhythm in acid secretion.  相似文献   

5.
Systems in a chaotic state have apparently random outputs despite a simple underlying kinetic mechanism. For instance, the interaction of two coupled oscillators (the mitotic oscillator and the ultradian clock) can produce chaotic behaviour over a limited range of parameter values. Mathematical modelling shows that physiologically realistic characteristics are thereby exhibited. Cell division cycles of lower eukaryotes (protozoa and yeasts) show both deterministic and stochastic properties. Both dispersion of cell cycle times and quantized values can be generated, as a deterministic chaotic consequence of oscillator interaction rather than from noisy limit cycles. Advantages may stem from chaotic operation; a controlled chaotic attractor could provide multifrequency outputs that determine rhythmic behaviour on different time scales ( e.g. ultradian and circadian) with the facility for rapid state changes from one periodicity to another.  相似文献   

6.
Systems in a chaotic state have apparently random outputs despite a simple underlying kinetic mechanism. For instance, the interaction of two coupled oscillators (the mitotic oscillator and the ultradian clock) can produce chaotic behaviour over a limited range of parameter values. Mathematical modelling shows that physiologically realistic characteristics are thereby exhibited. Cell division cycles of lower eukaryotes (protozoa and yeasts) show both deterministic and stochastic properties. Both dispersion of cell cycle times and quantized values can be generated, as a deterministic chaotic consequence of oscillator interaction rather than from noisy limit cycles. Advantages may stem from chaotic operation; a controlled chaotic attractor could provide multifrequency outputs that determine rhythmic behaviour on different time scales (e.g. ultradian and circadian) with the facility for rapid state changes from one periodicity to another.  相似文献   

7.
We report for the first time that the endogenous, pseudo‐steady‐state, specific intracellular levels of the hydroxyl radical (si‐OH) oscillate in an ultradian fashion (model system: the microalga, Chlorella vulgaris), and also characterize the various rhythm parameters. The ultradian rhythm in the endogenous levels of the si‐OH occurred with an approximately 6 h period in the daily cycle of light and darkness. Further, we expected that the rhythm reset to a shorter period could rapidly switch the cellular redox states that could favor lipid accumulation. We reset the endogenous rhythm through entrainment with UVA radiation, and generated two new ultradian rhythms with periods of approximately 2.97 h and 3.8 h in the light phase and dark phase, respectively. The reset increased the window of maximum lipid accumulation from 6 h to 12 h concomitant with the onset of the ultradian rhythms. Further, the saturated fatty acid content increased approximately to 80% of total lipid content, corresponding to the peak maxima of the hydroxyl radical levels in the reset rhythm. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:673–680, 2014  相似文献   

8.
In this work we attempt to analyze the coupling between the dynamics of biochemical reactions (especially chaotic dynamics), and the geometry of cytoarchitecture (especially fractal ultrastructure), because of its importance and consequences for the ultradian dynamic behaviour of cells. Fractal geometry in intracellular macromolecular assemblies suggests that chaotic dynamics occur during their organization. Non-linear interactions in and between spatial and temporal domains and over wide ranges of scales underlie the emergent properties of complex biological systems.  相似文献   

9.
Recent data has extended a large array of melatonin functions by the discovery of melatonin's involvement in the organization and regulation of the rhythm of intracellular protein synthesis. An ultradian rhythm in total protein synthesis has been detected in primary hepatocyte cultures 5 min after addition of 1-5 nM melatonin to the medium. The melatonin effect was mediated via its receptors (as shown in experiments with luzindole), leading to the cell synchronization as well as the mean rate of protein synthesis rate being increased. The chain of processes synchronizing the oscillation of the rate protein synthesis throughout the hepatocyte population includes Ca2+ fluxes {experiments with BAPTA-AM [1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (acetomethyl ester)]}. Inhibition of protein kinase activity (experiments with H7) inhibited the synchronizing function of melatonin. Activation of protein kinase activity results in a shift of the protein synthesis oscillation; the effect was the same as melatonin added to the culture medium. In another series of experiments, after melatonin was intraperitoneally injected to rat (0.015-0.020 μg/kg), hepatocytes were isolated and cultures established. A synchronizing effect of melatonin in vivo was detected as early as in the estimates from the direct action of melatonin on cell cultures. In the cultures obtained from old rats provided with melatonin, the amplitude of protein synthesis rhythm was enhanced, i.e. cell-cell interactions were increased, as well as rate of the protein synthesis being enhanced.  相似文献   

10.
Carbon dioxide emission (VCO2) taken as an index of respiratory and metabolic exchanges, was continuously recorded during 4-30 consecutive days in 100 quail, 87 chicks, 347 rats, 665 mice and 70 guinea-pigs which were under controlled environmental parameters. Harmonic analysis, fast Fourier transform, chi-square periodograms, peak and trough intervals were computed with VCO2 values obtained with CO2 concentrations sampled every 20 min on the CO2 recordings. In LD 12:12 alternation, circadian rhythms were observed in all quail, chicks, rats and mice, but only in 80% of the guinea-pigs. Ultradian VCO2 rhythms, with periods which show statistically significant interspecies differences, were assessed. For each of the 5 species these computed periods, which were the same in LL and DD, were: 1.17 h for quail and chickens, 1.25 h for rats, 1.50 h for mice and 1.0 h for guinea-pigs. In LD 12:12 these periods were different during L and D in quail, chicks, rats and mice, but not in guinea-pigs. The amplitudes of these ultradian variations were, according to the species, 10-20% of their mean VCO2 levels. These ultradian rhythms persist in the absence (or masking) of circadian rhythms, e.g. in LD 12:12 in 20% of guinea-pigs and in LL in 87% of Japanese quail and in 23% of Sprague-Dawley rats. Moreover, these ultradian rhythms persist during starvation, locomotor activity restraint and ageing. These ultradian VCO2 cycles which are related to rest-activity variations appear to be basic physiological rhythms with a genetic origin.  相似文献   

11.
Restricted feeding during the resting period causes pronounced shifts in a number of peripheral clocks, but not the central clock in the suprachiasmatic nucleus (SCN). By contrast, daily caloric restriction impacts also the light-entrained SCN clock, as indicated by shifted oscillations of clock (PER1) and clock-controlled (vasopressin) proteins. To determine if these SCN changes are due to the metabolic or timing cues of the restricted feeding, mice were challenged with an ultradian 6-meals schedule (1 food access every 4 h) to abolish the daily periodicity of feeding. Mice fed with ultradian feeding that lost <10% body mass (i.e. isocaloric) displayed 1.5-h phase-advance of body temperature rhythm, but remained mostly nocturnal, together with up-regulated vasopressin and down-regulated PER1 and PER2 levels in the SCN. Hepatic expression of clock genes (Per2, Rev-erbα, and Clock) and Fgf21 was, respectively, phase-advanced and up-regulated by ultradian feeding. Mice fed with ultradian feeding that lost >10% body mass (i.e. hypocaloric) became more diurnal, hypothermic in late night, and displayed larger (3.5 h) advance of body temperature rhythm, more reduced PER1 expression in the SCN, and further modified gene expression in the liver (e.g. larger phase-advance of Per2 and up-regulated levels of Pgc-1α). While glucose rhythmicity was lost under ultradian feeding, the phase of daily rhythms in liver glycogen and plasma corticosterone (albeit increased in amplitude) remained unchanged. In conclusion, the additional impact of hypocaloric conditions on the SCN are mainly due to the metabolic and not the timing effects of restricted daytime feeding.  相似文献   

12.
As soon as they hatch, gallinaceous chicks follow broody hens. This matriarchal unit presents a temporal organization of activity. The ontogeny of this ultradian rhythm of activity was followed in Japanese quail during their first 3 weeks of life. Under controlled laboratory conditions, 12 groups of four chicks were recorded using an activity monitoring system. They were observed between the ages of 2 and 17 days. Chicks in groups presented an ultradian rhythm of activity, with a period that increased significantly from 14.3 ± 1.4 minutes when chicks were 2 days old to 26.0 ± 1.9 minutes when they were 16 days old. The increase of ultradian periodicity was particularly pronounced during their first and third weeks of life. Finally, the ultradian period was correlated positively with body weight of the chicks. (Chronobiology International, 17(6), 767-776, 2000)  相似文献   

13.
The resistance of male Wistar rats to acute hypoxia was estimated from the lifetime at an "altitude" of 11.5 km above sea level from 13 to 21 p.m. and in different seasons of a year. Identical types of rhythms (circaseptan, circasemiseptan, infradian, circadian, and ultradian) of geomagnetic activity and lifetime were revealed. It was found that the periods of basal rhythms either coincide or are multiple. It was shown that the rhythms of geomagnetic activity (including nonbasal rhythms) affect lifetime rhythms (especially ultradian rhythms). As the periods of the rhythms decrease, the number of rhythms for both parameters increase (ultradian rhythms are most numerous), and relative differences in the values of periods (they are minimal for ultradian rhythms) and the amplitudes of rhythms decrease.  相似文献   

14.
THE OCCURRENCE AND FUNCTIONS OF ULTRADIAN RHYTHMS   总被引:1,自引:0,他引:1  
Ultradian oscillations with periods between 5 min and 4 h have been described in cell-free extracts, single-celled eukaryotes, cultured cells and embryos. Whereas some of these potentially oscillatory systems (e.g. glycolysis) may only exhibit this type of behaviour rarely if at all in vivo , other ultradian oscillators in lower eukaryotes are rhythms and probably have timekeeping functions. Rhythms with ultradian periods of 10 min to 20 h in oxygen consumption and carbon dioxide production have also been studied in endotherm animals: these rhythms may be modified by variations of environmental parameters and by circadian and infradian synchronizers. Interspecies and interstrain differences strongly suggest that these rhythms are endogenous and have a genetic origin. We suggest that the temporal organization of biochemical and physiological processes facilitates optimization of thermodynamic maintenance of the organism within the random fluctuations of its physicochemical environment and contributes to genetic selection.  相似文献   

15.
Three types of rhythmic movements of Phaseolus vulgaris L. (pole beans) were examined collectively and their characteristics compared. Although the ultradian rhythms of shoot circumnutation and leaf movement, as well as the circadian rhythm of leaf movement, occurred simultaneously, each rhythm could be expressed independently of the other two. Shoot circumnutation and ultradian leaf movements displayed the same period (80 min at 25°C and Q10⋍2), while the period of the circadian leaf movements was not temperature dependent (Q10⋍1). Interaction into the plant between two ultradian rhythms (shoot circumnutation and ultradian leaf movement) with the same period and coexistence in the pulvinus of an ultradian with a circadian rhythm are discussed.  相似文献   

16.
Lloyd D 《Mitochondrion》2003,3(3):139-146
Protonophores have several different perturbative effects on dissolved O2 concentrations in continuous cultures of Saccharomyces cerevisiae. As well as uncoupling energy conservation from mitochondrial electron transport in vivo, they reset ultradian clock-driven respiratory oscillations and produce cell cycle effects. Thus, additions at low concentration (1.25 microM) of either m-chlorocarbonyl-cyanide phenylhydrazone (CCCP) or 5-chloro-3-t-butyl-2-chloro-4(1)-nitrosalicylanilide (S13) led to phase resetting of the 48 min ultradian clock-driven respiratory oscillations. At 2.5 microM CCCP or 4 microM S13, transient inhibition of oscillatory respiration (for 5 h) preceded synchronisation of the cell division cycle seen as a slow (9 h period) wave that enveloped the 48 min oscillation. At still higher concentrations of CCCP (5 microM), the cell division cycle was prolonged by about 7 h, and during this phase, the respiratory oscillation became undetectable. The significance of these observations with respect to the time-keeping functions of the ultradian clock is discussed.  相似文献   

17.
Recent data concerning ultradian (circahoralian) intracellular rhythms are used to assess the biochemical mechanisms of direct cell-cell communication. New results and theoretical considerations suggest a fractal nature of ultradian rhythms and their self-organisation. The fundamental and innate nature of these rhythms relates to their self-similarity at different levels of cell and tissue organisation. They can be detected in cell-free systems as well as in cells and organs in vivo. Such rhythms are a means of finding an optimal state of cell function rather than achieving a state of absolute stability. As a consequence, oscillations, being irregular and numerous by the set of periods, are resilient to functional overload and injury. Recent data on the maintenance of their fractal structure and, especially on the selection of optimal periods are discussed. The positive role of chaotic dynamics is stressed.The ultradian rhythm of protein synthesis in hepatocytes in vitro was used as a marker of direct cell-cell communication. The system demonstrates cell cooperation and synchronisation throughout the cell population, and suggests that the ultradian rhythms are self-organised. These observations also led to the detection of mechanisms of direct cell-cell communication in which extracellular factors have an essential role. Experimental evidence indicated the involvement of gangliosides and/or catecholamines in this large-scale synchronisation of protein synthesis. The response of all, or a major part, of the cell population is important; after the initial trigger effect, a periodic pattern is retained for some time. The influence of Ca2+-dependent protein kinases on protein phosphorylation can be a final step in the phase modulation of rhythms during cell-cell synchronisation.The intercellular medium plays an important role in self-synchronisation of ultradian rhythms between individual cells. Low cooperative activity of hepatocytes of old rats resulted from altered composition of the intercellular medium rather than direct effects of animal and cellular ageing. Similarly, in the whole body, changes in levels of gangliosides and catecholamines in the blood serum, a natural intercellular medium, can be critical events in age-dependent changes of the serum and accordingly cell-cell synchronisation. Hepatocytes of old rats exhibit some of the properties of young cells following an increase in blood serum ganglioside level, as well as, in in vitro conditions, after the addition of gangliosides to the culture medium.Together with data on ultradian functional and metabolic rhythms, all the material reviewed here allows us to propose a mechanism of direct cell-cell cooperation via the medium in which the cells exist, that supplements the nervous and hormonal central regulation of organ functions. Ultradian intracellular rhythms may thus provide a finer framework within which the integrated dynamics of respiration, heart rate, brain activity, and even behavioural patterns, are brought to an optimal functional pattern. Innate and direct cell-cell cooperation may have been employed as a means of intercellular regulation during the course of metazoan evolution, that preceded nervous regulation and is presently retained in mammals.  相似文献   

18.
Both a circadian clock and an ultradian clock (period 4—5 h) have previously been described for the ciliated protozoon Tetrahymena. The present communication demonstrates the existence of yet another cellular clock: an ultradian rhythm with a period of about 30 min. The period was found to be well temperature-compensated over the range studied, i.e., between 19°C and 33°C. Ultradian rhythmicity was initiated by dilution of stationary-phase cultures, which were kept previously in a light-dark cycle, into fresh medium. LD treatment during stationary phase was an absolute requirement, since cultures kept in either LL or DD did not produce the ultradian rhythmicity after refeeding. The clock exerts control over respiration; the observed oscillation in oxygen uptake is just a hand of the clock: after a limitation of oxygen supply had ended, the rhythm resumed with the same phase and period as that in control cultures. The clock exerts temporal control also over cell division; in the refed culture cell division resumed with an oscillation in the number of dividing organisms. The period of this oscillation corresponded to that of the rhythm in respiratory activity, indicating that the same ultradian clock may exert control over different cellular functions. Analysis of a second Tetrahymena strain indicates that period length of the ultradian clock is a strain-specific characteristic.  相似文献   

19.
Daily changes in cognitive performance have been documented, both in time of day/effect paradigm studies and in time‐isolation studies. However, in both types of studies, phenomena such as the “post‐lunch dip” have been found that were difficult to explain in terms of theoretical backgrounds. These phenomena may suggest ultradian rhythms in cognitive performance. A number of studies have also shown ultradian and asymmetric rhythms in activity indices of the brain hemispheres. The aim of this study was to test three hypotheses: the first two assumed that there is a significant ultradian frequency in a component of the endogenous rhythm of processing speed, and the third assumed that the ultradian endogenous rhythms of the processing speed (encoding and recognition) of stimuli addressed to the left brain hemisphere differ in period length from those addressed to right hemisphere. During a 24 h constant‐routine experiment, the memory performance of 30 participants was measured eight times (every 2.5–3 h), starting at 06:30 h. Parallel sets of words and pictures were shown to subjects in a random order in either the left or the right visual field on a computer screen. The participants pressed one of two buttons in response to the picture or word, or when answering a question concerning the meaning of a presented stimulus. Cosinor analysis was applied to individual time series data. Two significant ultradian components were found in a majority of the time series. Dominant periods were analyzed using three factor ANOVA. The results showed an asymmetry between both hemispheres in the frequency of ultradian rhythms in encoding speed.  相似文献   

20.
Effects of hypothalamic lesions on the ultradian and circadian organization of wheel running and feeding were studied in the common vole, Microtus arvalis. Circadian organization broke down within 30 days in continuous darkness in 24% of intact voles (n = 135). Ultradian rhythmicity of feeding (period 2-3 hr) persisted in constant conditions in all intact voles. Following lesions of the suprachiasmatic nuclei (SCN), circadian rhythmicity disappeared when lesions were complete (n = 8) or more extensive than 25% of the total SCN volume (n = 5). Absence of circadian rhythmicity was also found in animals with substantial lesions in the diencephalic paraventricular area (PVA) and in the retrochiasmatic area (RCA) and/or adjacent arcuate nucleus (Arc). Complete loss of ultradian and circadian organization occurred in eight voles with damage to the RCA and/or Arc. In three of these, the SCN was intact. The SCN is a likely candidate for a circadian pacemaker in voles (as in other rodents), while the loss of circadian rhythmicity following PVA and RCA/Arc lesions may be due to destruction of efferent pathways from the SCN. The RCA/Arc area is apparently necessary for the expression of ultradian rhythms. The intact SCN is neither necessary nor sufficient for the generation of ultradian rhythmicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号