首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
F9 line embryonal carcinoma cells were induced to differentiate into neural direction by long-term treatment of monolayer cultures with retinoic acid and dibutyryl cyclic AMP. Bi- and multi-polar cells appeared, expressing acetylcholinesterase and neurofilament proteins but not markers of glial differentiation including GFA-protein. Nerve growth factor combined with both retinoic acid and dibutyryl cyclic AMP greatly enhanced the development of neuron-like morphology and induced expression of immunoreactivity to tyrosine hydroxylase as well as to Leu-encephalin-like peptides. Similarly, serotonin-like immunofluorescence but not substance P-like immunoreactivity was demonstrable in such cultures. In addition, synaptic-like vesicles were often found in the processes. Analysis of matrix expression in neuronally differentiated F9 cells revealed marked increase in laminin production, as judged by immunofluorescence and immuno-electron microscopy, but no demonstrable intracellular staining for fibronectin or type IV collagen. The results with neuronal cells contrast with the expression of all the three matrix components in endodermally differentiating F9 cells in the same cultures.  相似文献   

5.
F9 embryonal carcinoma cells were induced to form a variety of differentiated cell types in monolayer culture. Cells with the morphological, histochemical and immunocytochemical properties of parietal and visceral endoderm, neurones and adipocytes were identified. Cells expressing Thy-1 antigen and large, multinucleated cells expressing cytoplasmic fibronectin were also observed. Various cell types were found together in colonies derived from individual F9 cells, allowing us to conclude that F9 cells are pluripotent in vitro.  相似文献   

6.
The ability of retinoic acid (RA) to induce differentiation in embryonal carcinoma (EC) cells was examined by growing mouse F9 cells in a medium containing 1 μM RA. The altered properties of the cells became apparent after a lag period of approx. 24 h and were fully expressed after 5 days. The RA-induced phenotype was characterized by changes in cell morphology, slowing of the rate of cell multiplication, reduced DNA and protein synthesis, altered pattern of polypeptide synthesis and changes in cell surface components. The slowing of cell multiplication and general reduction in the rate of protein synthesis was paralleled by changes in the relative rates at which different polypeptides were synthesized. Two-dimensional gel electrophoretic analysis of [35S]methioninelabelled cell proteins showed an altered relative synthesis of at least fifty polypeptides. The relative rate of synthesis of two components of the cytoskeleton identified as vimentin and tropomyosin were shown to increase.  相似文献   

7.
8.
The effects of species loss on ecosystems depend on the community’s functional diversity (FD). However, how FD responds to environmental changes is poorly understood. This applies particularly to higher trophic levels, which regulate many ecosystem processes and are strongly affected by human-induced environmental changes. We analyzed how functional richness (FRic), evenness (FEve), and divergence (FDiv) of important generalist predators—epigeic spiders—are affected by changes in woody plant species richness, plant phylogenetic diversity, and stand age in highly diverse subtropical forests in China. FEve and FDiv of spiders increased with plant richness and stand age. FRic remained on a constant level despite decreasing spider species richness with increasing plant species richness. Plant phylogenetic diversity had no consistent effect on spider FD. The results contrast with the negative effect of diversity on spider species richness and suggest that functional redundancy among spiders decreased with increasing plant richness through non-random species loss. Moreover, increasing functional dissimilarity within spider assemblages with increasing plant richness indicates that the abundance distribution of predators in functional trait space affects ecological functions independent of predator species richness or the available trait space. While plant diversity is generally hypothesized to positively affect predators, our results only support this hypothesis for FD—and here particularly for trait distributions within the overall functional trait space—and not for patterns in species richness. Understanding the way predator assemblages affect ecosystem functions in such highly diverse, natural ecosystems thus requires explicit consideration of FD and its relationship with species richness.  相似文献   

9.
The proteins in the syntaxin family are known to mediate fusion of cytoplasmic vesicles to the target membrane, yet subpopulations of certain syntaxins, including syntaxin4, translocate across the cell membrane in response to external stimuli. Here, we show that extracellularly presented syntaxin4 impacts cell behavior and differentiation in teratocarcinoma F9 cells. While undifferentiated F9 cells extruded a small subpopulation of extracellular syntaxin4 at the lateral cell membrane, the induction of differentiation with all-trans retinoic acid (RA) abolished this localized expression pattern. We found that the cells that were stimulated in a non-directional fashion by extracellular syntaxin4 displayed a flattened shape and retained a substrate-bound morphology even under a long-term, serum-starved cultivation. Such a cellular response was also elicited by a circular peptide composed of the potential functional core of syntaxin4 (AIEPQK; amino acid residues 103~108) (ST4n1). While the proliferation and metabolism were not affected in these cells, cell–cell interaction became weakened and the expression of vinculin, a regulator of both intercellular and cell-substrate adhesion molecules, was altered. We also found that the expressions of several differentiation markers were up-regulated in cells stimulated with extracellular syntaxin4 and that syntaxin3, another family member, was most prominent. Intriguingly, forced expression of syntaxin3 induced the spread morphology in F9 cells, indicating that syntaxin3 partly mediates the function of extracellular syntaxin4. These results demonstrate the involvement of a non-directional stimulation of extracellular syntaxin4 in the functional and morphological differentiation of F9 cells.  相似文献   

10.
Retinoic acid (RA) induces F9 cells, the mouse teratocarcinoma cells, to differentiate into primitive endoderm and further into visceral and parietal endoderm depending on the culture conditions. To elucidate the instructive mechanisms involved in the differentiation steps we investigated the effects of Wnt-signaling members, Wnt3a and β-catenin, on the differentiation of F9 cells and β-catenin-deficient F9 cells (βT cells). RA up-regulated the expression of differentiation markers for primitive, visceral and parietal endoderm in F9 cells but not for visceral endoderm in βT cells. Wnt3a or leukemia inhibitory factor (LIF) inhibited the RA-induced differentiation in F9 cells. LIF but not Wnt3a could inhibit differentiation in βT cells. RA evoked ZO-1α+ signals at cell-to-cell contacts in F9 cells in a Wnt3a sensitive manner. The results suggest that Wnt3a inhibits differentiation into endoderm through a pathway involving β-catenin, and β-catenin might be necessary in the process leading from primitive to visceral endoderm in F9 cells.  相似文献   

11.
We have previously demonstrated that three potent iron chelators, hinokitiol, dithizone and deferoxamine, induce differentiation of F9 embryonal carcinoma cells, as do other well-known morphogens such as retinoic acid (RA) and sodium butyrate (NaB). In this study, we compared the patterns of cell proliferation, cell death and cell cycle arrest during the process of differentiation induced by these five agents. When F9 cells were cultured with the agents at their individual differentiation-inducing concentrations, cell proliferation was rapidly inhibited by treatment with the iron chelators and NaB. In contrast, RA did not influence the rate of increase of cell number at the concentration of 1 microm. The three chelators also caused a marked reduction in cell viability, and the treated cells exhibited internucleosomal DNA fragmentation, whereas cells treated with NaB showed no apoptotic characteristics. RA induced apoptosis weakly at 1 microm and strongly at higher concentrations. In addition, all the iron chelators hindered cell cycle progression, resulting in an arrest at the G1-S interface or S phase. The phenomena observed in chelator-treated cells were considerably different from those in RA- or NaB-treated cells. It is concluded that the three iron chelators cause both severe apoptotic cell death and cell cycle arrest of proliferating F9 cells via cellular iron deprivation, and that this apoptotic change may be independent of the process of differentiation.  相似文献   

12.
Molecular clones complementary to the mRNA species for the A, B1 and B2 chains of murine laminin were identified by hybrid-selection and in vitro translation. Northern blot analysis demonstrated that the three clones, p59 (A), p2 (B1) and p16 (B2) hybridized to mRNA species 9.8, 6.0, and 8.0 kb in length, respectively. The three clones were used as probes to monitor the steady-state levels of laminin mRNA species during differentiation of F9 embryonal carcinoma cells induced by treatment with retinoic acid and dibutyryl cyclic AMP. The steady-state levels of the three mRNA species appeared to increase in a coordinate manner. Undetectable levels at the beginning of induction were followed by a dramatic increase in the levels of the three mRNA species between 48 and 72 h. The kinetics parallel the increase in laminin synthesis and the striking morphological changes previously reported.  相似文献   

13.
F9 teratocarcinoma stem cells treated with retinoic acid (RA) and dibutyryl cAMP (but2 cAMP) differentiate into embryonic parietal endoderm. Using heparin-affinity chromatography, endothelial cell proliferation assays, immunoprecipitation, and Western analysis with antibodies specific for acidic and basic fibroblast growth factors (FGFs), we detected biologically active FGF in F9 cells only after differentiation. A bovine basic FGF cDNA probe hybridized to 2.2-kb mRNAs in both F9 stem and parietal endoderm cells and to a 3.8-kb mRNA in F9 stem cells. A genomic DNA probe for acidic FGF hybridized to a 5.8-6.0-kb mRNA in both F9 stem and parietal endoderm cells, and to a 6.0-6.3-kb mRNA only in parietal endoderm cells. Although these FGF mRNAs were present in the stem cells, we could find no evidence that F9 stem cells synthesized FGFs, whereas differentiated F9 cells synthesized both acidic and basic FGF-like proteins. We conclude that biologically active factors with properties characteristic of acidic and basic FGF are expressed by F9 parietal endoderm cells after differentiation. Differentiating embryonic parietal endoderm thus may serve as a source of FGF molecules in the developing blastocyst, where these factors appear to play a central role in subsequent embryogenesis.  相似文献   

14.
15.
F9 mouse teratocarcinoma stem cells differentiate into parietal endoderm cells in the presence of retinoic acid, dibutyryl cyclic AMP, and theophylline (RACT). When F9 cells are exposed to 2-5 mM sodium butyrate plus RACT, they fail to differentiate. Differentiation is assessed by induction of laminin and collagen IV mRNA, the synthesis of laminin, collagen IV and plasminogen activator proteins, and alterations in cell morphology. Butyrate inhibits differentiation only when added within 8 hr after retinoic acid addition. Thus an early event in retinoid action on F9 cells is butyrate-sensitive. The population doubling time and cell cycle distribution of F9 cells are not altered within the first 24 hr after butyrate addition, suggesting that butyrate does not inhibit differentiation by inhibition of growth or normal cycling. However, butyrate does inhibit histone deacetylation in F9 cells, and this could be the mechanism by which butyrate inhibits differentiation.  相似文献   

16.
Undifferentiated F9 cells transfected with plasmids encoding adenovirus E1a gene products underwent radical morphological changes. They ceased to express the SSEA-1 stem cell marker antigen and started to express a number of the characteristics of the differentiated state that is induced in F9 cells by treatment with retinoic acid. In particular, they expressed keratin intermediate filaments and acquired the ability to synthesise simian virus 40 tumor antigens after virus infection. The transfected cells expressed the E1a proteins, and this expression was necessary to induce the phenotypic changes, since a coisogenic plasmid encoding only a truncated 70-amino-acid E1a polypeptide and the transfection procedure itself did not detectably after the morphology or marker expression of the F9 stem cells. The phenotypic change was induced by both 13S and 12S cDNA plasmids. We discuss these results in the context of known E1a functions and with reference to the other oncogenes and external factors that can cause F9 cell differentiation.  相似文献   

17.
To study the relationship between compaction and differentiation in aggregates of F9 embryonal carcinoma cells, a subline was developed which grows mostly uncompacted in monolayer culture in medium containing a low concentration of calcium (about 0.05 mM). When these cells were trysinized and cultured in suspension in the same medium, they formed loose, open aggregates, which failed to differentiate into embryoid bodies after exposure to 10 nM retinoic acid, confirming the requirement of compaction for differentiation. If, after culture for 3 days, the uncompacted F9 aggregates were exposed to additional calcium (4 nM), all compacted within an hour. The number of days necessary for aggregates to acquire this ability to compact rapidly was reduced if the monolayer of cells from which the aggregates were derived had been exposed to additional calcium to cause compaction for several days prior to trypsinization and aggregation. Next, treatment of the compacted F9 aggregates with 10 nM retinoic acid was followed by differentiation into embryoid bodies. The number of days required for this was also reduced if the aggregates were formed from previously compacted cells, presumably because compaction of the aggregates occurred sooner. The acceleration in compaction and differentiation in aggregates formed from previously compacted cells suggests that some of the proteins important for compaction, which are synthesized in a monolayer of compacted cells, persist through trypsinization and are carried over from monolayer to aggregates. Alternatively, an inhibitor of compaction is decreased in the compacted monolayer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The cell membrane mucin MUC1 is over-expressed and aberrantly glycosylated in many cancers, and cancer-associated MUC1 glycoforms represent potential targets for immunodiagnostic and therapeutic measures. We have recently shown that MUC1 with GalNAcalpha1-O-Ser/Thr (Tn) and NeuAcalpha2-6GalNAcalpha1-O-Ser/Thr (STn) O-glycosylation is a cancer-specific glycoform, and that Tn/STn-MUC1 glycopeptide-based vaccines can override tolerance in human MUC1 transgenic mice and induce humoral immunity with high specificity for MUC1 cancer-specific glycoforms (Sorensen AL, Reis CA, Tarp MA, Mandel U, Ramachandran K, Sankaranarayanan V, Schwientek T, Graham R, Taylor-Papadimitriou J, Hollingsworth MA, et al. 2006. Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology. 16:96-107). In order to further characterize the immune response to Tn/STn-MUC1 glycoforms, we generated monoclonal antibodies with specificity similar to the polyclonal antibody response found in transgenic mice. In the present study, we define the immunodominant epitope on Tn/STn-MUC1 glycopeptides to the region including the amino acids GSTA of the MUC1 20-amino acid tandem repeat (HGVTSAPDTRPAPGSTAPPA). Most other MUC1 antibodies are directed to the PDTR region, although patients with antibodies to the GSTA region have been identified. A panel of other MUC1 glycoform-specific monoclonal antibodies was included for comparison. The study demonstrates that the GSTA region of the MUC1 tandem repeat contains a highly immunodominant epitope when presented with immature short O-glycans. The cancer-specific expression of this glycopeptide epitope makes it a prime candidate for immunodiagnostic and therapeutic measures.  相似文献   

19.
20.
The visceral endoderm of the mouse embryo is a polarized epithelium which has recently been shown to express villin, a major actin binding component of absorptive epitheliums. We report here that villin is induced during differentiation of aggregates of the mouse embryonal carcinoma F9, an in vitro system widely used to study extraembryonic endoderm differentiation. Identical results were obtained with a variant of F9 which carries an immortalizing vector. Villin is coexpressed with F-actin and with alpha-foetoprotein, in most of the visceral endoderm-like cells lining the aggregates. This system is potentially useful to study (i) the induction of villin expression and (ii) the establishment of polarity in the visceral endoderm epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号