首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It is reported that chitinase1 increases in Alzheimer’s disease (AD). However, the alteration of chitinase1 in the progress of AD is still unclear. Thus, we designed the present study to detect chitinase1 level in different stages of APP/PS1 double transgenic mice. Experimental models were APP/PS1 double transgenic mice with 4, 12 and 22 months. Cognitive function was detected by Morris water maze test in APP/PS1 mice as well as controls. ELISA and the quantitative RT-PCR were used to detect chitinase1 level in different groups. The study displayed that expression of chitinase1 gradually increased in a time-dependent manner in APP/PS1 mice, while there were no statistical differences among the wild-type mice in varies ages. Moreover, chitnase1 increased significantly in APP/PS1 mice aged 12 and 22 months compared with the age matched wild-type group, respectively. However, no difference of chitnase1 was found between 4 months-old APP/PS1 mice and wild-type mice. Comparing with the age matched wild type group, the consequences of mRNA on the increase in chitnase1 is in accordance with protein in APP/PS1 mice. Furthermore, Morris water maze showed that 4 months-old APP/PS1 mice have normal spatial learning and impaired spatial memory; both spatial learning and spatial memory in 12 and 22 months-old APP/PS1 mice were declined. Time-dependent increase of chitnase1 in APP/PS1 double transgenic mice indicates that the level of chitinase1 is associated with decline of cognition. Therefore, chitinase1 might be a biomarker of disease progression in AD.  相似文献   

2.
目的采用两种水迷宫对拟阿尔茨海默病小鼠学习记忆功能进行比较。方法将小鼠分为正常对照组、模型组及给药组。用Morris水迷宫和MS-2水迷宫自动控制仪分别测试各组小鼠的学习记忆能力。结果在Morris水迷宫测试中,模型组与对照组,给药组与模型组比较,逃避潜伏期均有显著性差异(P〈0.01),在MS-2水迷宫自动控制仪测试中,模型组与对照组比较有明显差异(P〈0.05),而给药组与模型组比较,游出水迷路的时间均有所减少,但没有显著性差异(P〉0.05)。结论Morris水迷宫和MS-2水迷宫自动控制仪测试方法均能反映动物学习和记忆功能,而前者能更敏感地反映出动物的学习记忆能力。因此,Morris水迷宫应为实验首选,当然在实验需要时,两种水迷宫最好结合使用,以得到客观的结果。  相似文献   

3.
Eclalbasaponin II derived from Eclipta prostrata L. (Asteraceae) has been reported to have anti-fibrotic, anti-bacterial and autophagic activities, but its effect on cognitive function has not been investigated. We studied the effect of eclalbasaponin II on cholinergic blockade-induced memory impairment in mice using the passive avoidance, Y-maze, and Morris water maze tasks. Eclalbasaponin II (10 or 20 mg/kg, p.o.) significantly ameliorated the cognitive dysfunction induced by scopolamine in the passive avoidance, Y-maze, and the Morris water maze tasks. To identify the mechanism of the memory-ameliorating effect of eclalbasaponin II, acetylcholinesterase (AChE) activity assay, Western blot analysis and electrophysiology were conducted. Eclalbasaponin II inhibited the AChE activity in ex vivo study, and the administration of eclalbasaponin II and its metabolite, echinocystic acid, increased the phosphorylation levels of memory-related signaling molecules, including protein kinase B (Akt) and glycogen synthase kinase-3β (GSK-3β), in the hippocampus. Although eclalbasaponin II did not affect hippocampal long term potentiation (LTP), echinocystic acid significantly enhanced hippocampal LTP formation (30 μM). These results suggest that eclalbasaponin II ameliorates cholinergic blockade-induced cognitive impairment via AChE inhibition, LTP formation and the activation of Akt-GSK-3β signaling, and that eclalbasaponin II may be a useful to treat cognitive impairment derived from cholinergic dysfunction.  相似文献   

4.
Wu W  Yu LC 《Regulatory peptides》2004,120(1-3):119-125
The present study was performed to explore the role of oxytocin (OT) in spatial learning and memory in the nucleus basalis of Meynert (NBM) of rats. The latency, distance and swimming path to find the platform were tested by Morris water maze and recorded by a video camera connected to a computer. Intra-NBM injections of 2 or 10 nmol of OT, but not 0.2 nmol of OT, induced significant increase on the latency of spatial learning. Rats receiving intra-NBM administrations of 2 or 10 nmol of OT showed a more random search pattern. There were no significant changes in the swimming speed in Morris water maze test after the injection of OT. Furthermore, the impaired effect of OT on the latency of spatial learning was blocked by intra-NBM injection of the selective OT antagonist Atosiban, indicating that the effect of OT was mediated by OT receptor in the NBM of rats. Moreover, there were no influences of OT or Atosiban on the retention performance in rats. The results suggest that OT plays an inhibitory role in spatial learning in the NBM; the effect is mediated by OT receptor.  相似文献   

5.
Alzheimer’s disease (AD) is the most prevalent type of dementia in elderly people. There are decreased melatonin levels in the serum of AD patients, and melatonin supplements are able to reverse AD pathology and memory deficits in many animal experiments and clinical trials. However, the underlying mechanism regarding how melatonin rescues the AD-like memory/synaptic disorder remains unknown. Here, we use the Morris water maze, step-down inhibitory avoidance task, in vivo long-term potentiation recording, and Golgi staining and report that intraperitoneal injection of melatonin (1 mg/kg/day) for 14 days in rats effectively reverses the memory and synaptic impairment in scopolamine-induced amnesia, a well-recognized dementia animal model. Using real-time polymerase chain reaction and western blotting experiments, we further determined that melatonin rescues the EPACs/miR-124/Egr1 signal pathway, which is important in learning and memory, as reported recently. Our studies provide a novel underlying epigenetic mechanism for melatonin to attenuate the synaptic disorder and could benefit drug discovery in neurodegenerative diseases.  相似文献   

6.
The aim was to investigate the effect of the arborvitae seed on cognitive function and α7-nicotinic acetylcholine receptor (α7nAChR) protein expression of the hippocampus in model rats with Alzheimer’s disease (AD). Thirty-six adult Wistar rats were randomly divided into the control, test, and drug groups. A dose of Aβ1–40 was injected into the rats’ hippocampus in the test and drug groups and the control rats were injected with the same amount of normal saline. After the model was successful, the rats in the control and test groups were gavaged with sodium carboxymethyl cellulose (500 mg/kg) and the rats in the drug group were gavaged with arborvitae seed powder (500 mg/kg) for 15 days. The Morris water maze test was used for cognitive function. The effect of arborvitae seed on α7nAChR protein immunoreactivity on the hippocampus neurons was studied by the immunohistochemistry method. Behavioral tests showed that the mean escape latencies and search time of the test group were obviously longer than the control and drug groups. The percentage of the search distance of the test group was shorter than that of the control and drug groups. The immunohistochemistry results are as follows: α7nAChR-positive cells and optical density in the hippocampus of the rats in the test group are less than that of the rats in the control and drug groups (all P < 0.01). Arborvitae seed can treat AD by increased expression of α7nAChR.  相似文献   

7.
Electroacupuncture (EA) has demonstrated therapeutic potential for the treatment of Alzheimer's disease (AD). A previous study reported that N-myc downstream-regulated gene 2 (NDRG2) was upregulated in the brain of patients with AD. In the present study, we investigated the effects of repeated EA administration on reference memory impairment and the role of NDRG2 in an amyloid precursor protein (APP)/presenilin-1 (PS1) double transgenic mouse model. Age-matched wild-type and transgenic mice were treated with EA (once per day for 30 min) for 4 weeks (four courses of 5 days EA administration and 2 days rest) beginning at 10 months of age. At seven and ten postnatal months of age and following a 4-week EA treatment regime, mice received training in the Morris water maze (MWM) and a probe test. Brain tissue was analyzed via Western blot and double-label immunofluorescence. Beginning at 7 months of age, APP/PS1 mice began to exhibit deficits in reference memory in the MWM test, an impairment associated with upregulation of glial fibrillary acidic protein (GFAP) and NDRG2. Four weeks of EA administration significantly ameliorated cognitive impairments and suppressed GFAP and NDRG2 upregulation. In conclusion, our findings demonstrated that EA administration can alleviate reference memory deficits and suppress NDRG2 upregulation in an AD transgenic mouse model. This study provides supportive evidence for EA as an effective therapeutic intervention for AD, as well as NDRG2 as a novel target for AD treatment.  相似文献   

8.
Lithium (Li) and lamotrigine (LTG) have neuroprotective properties. However, the exact therapeutic mechanisms of these drugs have not been well understood. We investigated the antioxidant properties of Li (40 and 80 mg/kg/day) and LTG (20 and 40 mg/kg/day) in a rat model of global cerebral ischemia based on permanent bilateral occlusion of the common carotid arteries (BCAO). Nitric oxide (NO), malondialdehyde (MDA), glutathione (GSH), glutathione reductase (GSH-R), catalase (CAT) and superoxide dismutase (SOD) levels were measured as an indicator of oxidative–nitrosative stress in both prefrontal cortex (PFC) and hippocampus after 28 days of treatment. The spatial learning disability was also assessed at the end of the study by Morris water maze (MWM) test. All oxidative–nitrosative parameters were found to be higher in the groups under treatment than in sham. Both drugs caused a decrease in PFC NO and MDA elevation, meanwhile the increase in GSH, GSH-R, CAT and SOD levels was significantly more evident in treated groups. We also found higher PFC GSH-R and hippocampal SOD levels in BCAO + Li (80 mg/day) treated group when compared with BCAO + LTG 40 mg/day. MWM test data showed a similar increase in spatial learning ability in all groups under treatment. We found no other statistical difference in comparison of treated groups with different dosages. Our findings suggested that Li and LTG treatments may decrease spatial learning memory deficits accompanied by lower oxidative–nitrosative stress in global cerebral ischemia. Both drugs may have potential benefits for the treatment of vascular dementia in clinical practice.  相似文献   

9.
Anacyclus pyrethrum (A. pyrethrum) has been reported to exhibit anticonvulsant activity. In the present study, the effect of hydro-alcoholic extract of A. pyrethrum root (HEAP) on pentylenetetrazole (PTZ) induced kindling, spatial memory, oxidative stress and rho kinase (ROCK II) was assessed. Male albino mice (25–30 g) were used in the study. PTZ (35 mg/kg, i.p. on alternate days) was injected to induce kindling and PTZ (70 mg/kg, i.p) challenge was given 7 days post-kindling. HEAP was administered orally daily in the doses of 100, 250 and 500 mg/kg along with PTZ injections during the kindling process and continued till PTZ challenge post kindling. Spatial memory was assessed using Morris water maze test. Oxidative stress parameters [malondialdehyde (MDA) and reduced glutathione (GSH)] and ROCK II expression were estimated in whole brain at the end of the study. Pre-treatment with HEAP (250 and 500 mg/kg) showed significant increase in the myoclonic jerk latency and delay in the development of kindling. A significant decrease in mortality was observed at higher doses of HEAP (250 and 500 mg/kg). Pre-treatment with HEAP significantly increased the number of platform crossings and decreased the escape latency, as opposed to the PTZ group, thus showing protection against memory deficit. HEAP pre-treatment also attenuated the oxidative stress induced by PTZ kindling. PTZ induced kindling increased the ROCK II expression whereas, HEAP pre-treatment attenuated the increase in ROCK II expression. To conclude, HEAP pre-treatment showed antiepileptic effect and also showed protection against cognitive impairment by decreasing oxidative stress and ROCK II expression in PTZ kindled mice.  相似文献   

10.
Subchronic effect of a weak combined magnetic field (MF), produced by superimposing a constant component, 42 µT and an alternating MF of 0.08 µT, which was the sum of two frequencies of 4.38 and 4.88 Hz, was studied in olfactory bulbectomized (OBE) and transgenic Tg (APPswe, PSEN1) mice, which were used as animal models of sporadic and heritable Alzheimer’s disease (AD) accordingly. Spatial memory was tested in a Morris water maze on the following day after completion of training trials with the hidden platform removed. The amyloid-β (Aβ) level was determined in extracts of the cortex and hippocampus of mice using a specific DOT analysis while the number and dimensions of amyloid plaques were detected after their staining with thioflavin S in transgenic animals. Exposure to the MFs (4 h/day for 10 days) induced the decrease of Aβ level in brain of OBE mice and reduced the number of Aβ plaques in the cortex and hippocampus of Tg animals. However, memory improvement was revealed in Tg mice only, but not in the OBE animals. Here, we suggest that in order to prevent the Aβ accumulation, MFs could be used at early stage of neuronal degeneration in case of AD and other diseases with amyloid protein deposition in other tissues.  相似文献   

11.
This ERP study used electrophysiological technique to examine how individual differences in the speed of working memory updating influence the use of syntactic and semantic information during on-line sentence argument interpretation, and the time course of that working memory updating effect. The basic structure of the experimental sentences was “Noun + Verb + adverb + ‘le’ + a two-character word”, with the Noun being the sentence initial argument. This initial argument is animate or inanimate and the following verb disambiguates it as an agent or patient. The results at the initial argument revealed that, the quick-updating group elicited a larger positivity over the frontal cortex (within 500–800 ms post-noun onset) as compared with the slow-updating group. At the following disambiguating verb, the slow-updating group only showed a word order effect, indicating that the patient-first condition elicited a larger P600 (within 500–1,000 ms post-verb onset) than the agent-first one; for the quick-updating group, at the early stage of processing, the patient-first sentences elicited a larger N400 (within 300–500 ms post-verb onset) than the agent-first ones only when the initial argument was inanimate; however, at the late stage, the patient-first sentences elicited an enhanced P600 (within 800–1,000 ms post-verb onset) only when the initial argument was animate. These results suggested that the speed of working memory updating not only influences the maintenance of sentence argument when the contents of working memory change but also influences the efficiency of integrating that argument with the verb at a late time point. When integrating the argument with the disambiguating verb, individuals with quick-updating ability can combine multiple sources of information (both noun animacy and word order), and conduct rapid and fine-grained two-stage processing; individuals with slow-updating ability, however, only rely on one dominant source of information types (word order), and conducted slow and course-grained processing.  相似文献   

12.
Exposure to intermittent hypoxia (IH) is associated with cognitive impairments and oxidative stress in brain regions involved in learning and memory. In earlier studies, erythropoietin (EPO) showed a neuroprotective effect in large doses. The aim of the present study was to explore the effect of smaller doses of EPO, such as those used in the treatment of anemia, on IH-induced cognitive deficits and hippocampal oxidative stress in young rats. The effect of concurrent EPO treatment (500 and 1,000 IU/kg/day ip) on spatial learning and memory deficits induced by long-term exposure to IH for 6 weeks was tested using the Morris water maze (MWM) test and the elevated plus maze (EPM) test. Moreover, the effect on hippocampal glutamate and oxidative stress were assessed. Exposure to IH induced a significant impairment of spatial learning and cognition of animals in both MWM and EPM performance parameters. Moreover, hippocampal glutamate and thiobarbituric acid reactive substances (TBARS) increased while antioxidant defenses (GSH and GSH-Px) decreased. EPO in the tested doses significantly reduced the IH-induced spatial learning deficits in both MWM and EPM tests and dose-dependently antagonized the effects of IH on hippocampal glutamate, TBARS, GSH levels, and GSH-Px activity. Treatment with EPO in moderate doses that used for anemia, concurrently with IH exposure can antagonize IH-induced spatial learning deficits and protect hippocampal neurons from IH-induced lipid peroxidation and oxidative stress-induced damage in young rats, possibly through multiple mechanisms involving a potential antioxidative effect.  相似文献   

13.
β-Amyloid (Aβ) is the main component of amyloid plaques developed in the brain of patients with Alzheimer's disease (AD). The increasing burden of Aβ in the cortex and hippocampus is closely correlated with memory loss and cognition deficits in AD. Recently, leptin, a 16 kD peptide derived mainly from white adipocyte tissue, has been appreciated for its neuroprotective function, although less is known about the effects of leptin on spatial memory and synaptic plasticity. The present study investigated the neuroprotective effects of leptin against Aβ-induced deficits in spatial memory and in vivo hippocampal late-phase long-term potentiation (L-LTP) in rats. Y maze spontaneous alternation was used to assess short term working memory, and the Morris water maze task was used to assess long term reference memory. Hippocampal field potential recordings were performed to observe changes in L-LTP. We found that chronically intracerebroventricular injection of leptin (1 μg) effectively alleviated Aβ1–42 (20 μg)-induced spatial memory impairments of Y maze spontaneous alternation and Morris water maze. In addition, chronic administration of leptin also reversed Aβ1–42-induced suppression of in vivo hippocampal L-LTP in rats. Together, these results suggest that chronic leptin treatments reversed Aβ-induced deficits in learning and memory and the maintenance of L-LTP.  相似文献   

14.
Sleep deprivation (SD) is associated with cognitive deficits. It was found to affect the hippocampus region of the brain by impairing memory formation. This impairment is suggested to be caused by elevation in oxidative stress in the body, including the brain during SD. It was hypothesized that the methanolic extract of the fruits of Arbutus andrachne L. (Ericaceae) will prevent chronic SD-induced impairment of hippocampal memory via its antioxidative properties. The methanolic extract of the fruits of A. andrachne was evaluated for its beneficial properties to reverse SD-induced cognitive impairment in rats. Animals were sleep deprived for 8 weeks using a multiple platform model. The extract was administered i.p. at three doses (50, 200, and 500 mg/kg). Behavioral studies were conducted to test the spatial learning and memory using radial arm water maze (RAWM). In addition, the hippocampus was dissected to analyze the following oxidative stress markers: glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG, glutathione peroxidase (GPx), and catalase. Chronic SD impaired short- and long-term memories (P < 0.05). Treatment of animals with A. andrachne fruit extract at all doses prevented long-term memory impairment induced by SD while such treatment prevented short-term memory impairment only at 200 and 500 mg/kg dose levels. Moreover, A. andrachne fruit extract normalized the reduction in the hippocampus GSH/GSSG ratio and activity of GPx, and catalase (P < 0.05) induced by chronic sleep deprivation. Chronic sleep deprivation impaired both short- and long-term memory formation, while methanolic extract of A. andrachne fruits reversed this impairment, probably through normalizing oxidative stress in the hippocampus.  相似文献   

15.
Hyperlipidemia is a major, modifiable risk factor for atherosclerosis and cardiovascular disease. In the present study, we have focused on the effect of different doses of geraniol (GOH) on the lipid profile and lipid metabolizing enzymes in atherogenic diet (AD) fed hamsters. Male Syrian hamsters were grouped into seven: group 1 were control animals; group 2 were animals fed GOH alone (200 mg/kg b.w); group 3 were animals fed AD (10 % coconut oil, 0.25 % cholesterol, and 0.25 % cholic acid); group 4 were animals fed AD + corn oil (2.5 ml/kg b.w); and groups 5, 6, and 7 were fed AD as in group 3 + different doses of GOH (50, 100, and 200 mg/kg b.w), respectively, for 12 weeks. At the end of the experimental period, animals were sacrificed by cervical dislocation and various assays were performed in the plasma and tissues. The AD hamsters showed marked changes in lipid profile and lipid metabolizing enzymes. However, supplementation with GOH counteracted the hyperlipidemia by inhibiting HMG CoA reductase and suppressing lipogenesis. The antihyperlipidemic efficacy of GOH was found to be effective at the dose of 100 mg/kg b.w. This study illustrates that GOH is effective in lowering the risk of hyperlipidemia in AD fed hamsters.  相似文献   

16.
探究香水莲花提取物(Nymphaea hybrid extract,NHE)对东莨菪碱诱导记忆障碍小鼠的学习记忆能力的影响。采用腹腔注射东莨菪碱建立记忆障碍模型,Morris水迷宫实验测定小鼠空间学习和记忆能力。水迷宫实验结束后,断头处死小鼠,进行生化指标的测定。结果表明,与模型组小鼠相比,NHE干预后,小鼠的逃避潜伏期明显缩短(P <0. 01),目标象限停留时间百分比和穿越平台次数增加(P <0. 05或P <0. 01),小鼠海马和皮质区的SOD和GSH-PX活力显著升高(P <0. 01或P <0. 05),MDA含量极显著降低(P <0. 01),ACh E活性显著降低(P <0. 01),ACh含量增加(P <0. 01或P <0. 05)。同时,免疫印迹结果表明,NHE能够改善东莨菪碱引起小鼠海马和皮质中ERK、CREB磷酸化水平和BDNF蛋白表达的减少。综上,香水莲花提取物可以提高东莨菪碱诱导的记忆障碍小鼠的学习记忆能力,具体机制涉及缓解大脑的氧化应激损伤,平衡胆碱能系统,激活ERK-CREB-BDNF信号通路。  相似文献   

17.
Evolvulus alsinoides, also known as Shankpushapi, is a commonly used traditional medicine for enhancing memory. We evaluated the in vitro free radical scavenging and enzymes [acetylcholinesterase, butyrylcholinestrase, glycogen synthase kinase-3-β (GSK-3-β), rho kinase (ROCK II), prolyl endopeptidase (PEP), catechol-O-methyl transferase (COMT) and lipoxygenase (LOX)] inhibitory activities of aqueous and hydro-alcoholic extracts of E. alsinoides. Hydro-alcoholic extract of E. alsinoides demonstrated more free radical scavenging activity as compared to aqueous extract. Hydro-alcoholic extract also showed higher cholinesterase, GSK-3-β, ROCK II, PEP, COMT and LOX enzyme inhibitory activities as compared to aqueous extract. Phytochemical analysis revealed more flavanoids in hydro-alcoholic extract as compared to aqueous extract but no significant difference in phenolic content of the two extracts was observed. Based on in vitro data, hydro-alcoholic extract (100, 300 and 500 mg/kg, p.o.) was selected for in vivo study in intracerebroventricularly injected streptozotocin (STZ) induced cognitive impairment in male Wistar rats. Elevated plus maze, passive avoidance and Morris water maze were used for assessment of cognitive function on 14th, 21st and 28th day after STZ injection. Oxidative stress parameters (malondialdehyde, reduced glutathione, nitric oxide levels and superoxide dismutase activity), cholinergic dysfunction and rho kinase (ROCK II) expression were studied in cerebral cortex and hippocampus of rat brain at the end of the study. Hydro-alcoholic extract of E. alsinoides dose dependently prevented STZ induced cognitive impairment by reducing the oxidative stress, improving cholinergic function and preventing the increase in rho kinase expression. The results suggest an anti-Alzheimer potential of hydro-alcoholic extract of E. alsinoides.  相似文献   

18.
Evidence indicates that the degeneration of basal forebrain cholinergic neurons may represent an important factor underlying the progressive cognitive decline characterizing Alzheimer’s disease (AD). However, the nature of the relationship between cholinergic depletion and AD is not fully elucidated. This study aimed at clarifying some aspects of the relation existing between deficits in cerebral energy metabolism and degeneration of cholinergic system in AD, by investigating the neuronal metabolic activity of several cortical areas after depletion of basal forebrain cholinergic neurons. In cholinergically depleted rats, we evaluated the neuronal metabolic activity by assaying cytochrome oxidase (CO) activity in frontal, parietal and posterior parietal cortices at four different time-points after unilateral injection of 192 IgG-saporin in the nucleus basalis magnocellularis. Unilateral depletion of cholinergic cells in the basal forebrain induced a bilateral decrease of metabolic activity in all the analyzed areas. Frontal and parietal cortices showed decreased metabolic activity even 3 days after the lesion, when the cholinergic degeneration was still incomplete. In posterior parietal cortex metabolic activity decreased only 7 days after the lesion. The possible molecular mechanisms underlying these findings were also investigated. Real-time PCR showed an increase of CO mRNA levels at 3, 7 and 15 days after the lesion both in frontal and parietal cortices, followed by normalization at 30 days. Western Blot analysis did not show any change in CO protein levels at any time-point after the lesion. Our findings support a link between metabolic deficit and cholinergic hypofunctionality characterizing AD pathology. The present model of cholinergic hypofunctionality provides a useful means to study the complex mechanisms linking two fundamental and interrelated phenomena characterizing AD from the early stages.  相似文献   

19.
The nucleus basalis magnocellularis (nBM) provides the primary source of cholinergic input to the cortex. Neonatal lesions of the nBM produce transient reductions in cholinergic markers, persistent abnormalities in cortical morphology, and spatial navigation impairments in adult mice. The present study examined sex differences in the effects of an electrolytic nBM lesion on postnatal day 1 (PND 1) in mice on behavior and neurochemistry in adulthood. Mice were lesioned on PND 1 and tested at 8 weeks of age on a battery of behavioral tests including passive avoidance, cued and spatial tasks in the Morris water maze, simple and delayed nonmatch to sample versions of an odor discrimination task, and locomotor activity measurements. Following behavioral testing, mice were sacrificed for either morphological assessment or neurochemical analysis of a cholinergic marker or catecholamines. There were no lesion or sex differences in acquisition or retention of passive avoidance, performance of the odor discrimination tasks, or activity levels. Control mice showed a robust sex difference in performance of the spatial water maze task. The lesion produced a slight cued but more dramatic spatial navigation deficit in the water maze which affected only the male mice. Neurochemical analyses revealed no lesion-induced changes in either choline acetyltransferase activity or levels of norepinephrine or serotonin at the time of testing. The subsequent report shows a sex difference in lesion-induced changes in cortical morphology which suggests that sexually dimorphic cholinergic influences on cortical development are responsible for the behavioral deficits seen in this study. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 582–594, 1998  相似文献   

20.
目的:探究ZLA对神经元型AChE的抑制活性及其对中枢胆碱能神经功能障碍导致的学习记忆功能减退的改善作用。方法:通过体外实验观察ZLA对神经元型AChE活性的影响;通过ex vivo实验观察ZLA体内AChE抑制活性;利用Morris水迷宫行为学实验探讨ZLA对东莨菪碱诱发的小鼠学习记忆功能障碍的改善作用。结果:ZLA明显抑制人SH-SY5Y神经元细胞和小鼠海马神经元来源的AChE活性。另外,ZLA腹腔注射后以剂量依赖性方式抑制小鼠脑内AChE活性。Morris水迷宫实验结果显示,ZLA显著改善东莨菪碱引起的学习和记忆功能障碍。结论:ZLA能够抑制神经元型AChE活性并具有促智作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号