首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peng WH  Lo KL  Lee YH  Hung TH  Lin YC 《Life sciences》2007,81(11):933-938
This study investigated the effect of berberine (BER) in the mouse forced swim test (FST) and in the tail suspension test (TST), two models predictive of antidepressant activity. We also investigated the antidepressant-like mechanism of BER by the combination of the desipramine [DES, an inhibitor of reuptake of noradrenaline (NA) and serotonin (5-HT)], maprotiline (MAP, selective NA reuptake inhibitor), fluoxetine (FLU, selective 5-HT reuptake inhibitor) and moclobemide [MOC, monoamine oxidase (MAO) A inhibitor). Then we further measured the levels of monoamines [NA, dopamine (DA) and 5-HT) in mice striatum, hippocampus and frontal cortex. The results show that BER (10, 20 mg/kg, p.o.), significantly reduced the immobility time during the FST and the TST. The immobility time after treatment with BER (20 mg/kg, p.o.) in FST was augmented by DES, FLU and MOC, and not affected by MAP. Furthermore, BER (20 mg/kg, p.o.) increased NA and 5-HT levels in the hippocampus and frontal cortex. Our findings support the view that BER exerts antidepressant-like effect. The antidepressant-like mechanism of BER may be related to the increase in NA and 5-HT levels in the hippocampus and frontal cortex.  相似文献   

2.
目的:建立卵巢激素撤除诱发雌性小鼠抑郁样状态模型,并且探讨其可能的神经化学机制。方法:将小鼠分为假手术组,卵巢摘除组,己烯雌酚治疗组和氟西汀治疗组。动物行卵巢摘除术后开始给药,术后两周进行强迫游泳试验及悬尾试验以考察其抑郁样状态,并利用高效液相结合电化学检测测定下丘脑及海马中去甲肾上腺素(NE)、多巴胺(DA)以及五羟色胺(5-HT)的含量。结果:在强迫游泳试验及悬尾试验中,卵巢摘除小鼠较假手术组小鼠不动时间显著延长。神经递质测定显示,卵巢摘除小鼠下丘脑中NE与DA的含量显著降低,海马中NE与5-HT的含量显著降低。给予己烯雌酚或氟西汀治疗对抗了卵巢摘除所诱导的抑郁样状态,并且缓解了神经递质水平的下降。结论:双侧卵巢摘除诱发的小鼠抑郁样状态可以模拟妇女更年期抑郁的某些症状。本研究对于探讨卵巢激素撤除诱发抑郁状态的神经生化机制可能具有重要的意义。  相似文献   

3.
Inosine is an endogenous purine nucleoside, which is formed during the breakdown of adenosine. The adenosinergic system was already described as capable of modulating mood in preclinical models; we now explored the effects of inosine in two predictive models of depression: the forced swim test (FST) and tail suspension test (TST). Mice treated with inosine displayed higher anti-immobility in the FST (5 and 50 mg/kg, intraperitoneal route (i.p.)) and in the TST (1 and 10 mg/kg, i.p.) when compared to vehicle-treated groups. These antidepressant-like effects started 30 min and lasted for 2 h after intraperitoneal administration of inosine and were not accompanied by any changes in the ambulatory activity in the open-field test. Both adenosine A1 and A2A receptor antagonists prevented the antidepressant-like effect of inosine in the FST. In addition, the administration of an adenosine deaminase inhibitor (1 and 10 mg/kg, i.p.) also caused an antidepressant-like effect in the FST. These results indicate that inosine possesses an antidepressant-like effect in the FST and TST probably through the activation of adenosine A1 and A2A receptors, further reinforcing the potential of targeting the purinergic system to the management of mood disorders.  相似文献   

4.
Depression is a major social and health problem worldwide. Compound K (CK), an intestinal metabolite of panaxadiol ginsenosides, has been demonstrated to possess significant pharmacological effects on the central nervous system (CNS). Here, we set up this study to investigate the antidepressant effect of CK, and to explore the potential mechanisms underlying this activity. The behavioral despair model and chronic unpredictable mild stress (CUMS) model were established in mice or rats, respectively. Forced swimming test (FST), tail suspension test (TST) and locomotor activity were performed in mice, while the open-field test, food consumption and sucrose preference were assessed in rats. To investigate the underlying mechanism, the levels of endogenous noradrenaline, dopamine (DA), 5-hydroxytryptamine (5-HT) and their metabolites in the prefrontal cortex (PFC) and hippocampus were detected by HPLC coupled with electron detector. The dopamine degradation enzyme (COMT and MAO) expression was measured by western blot. The BDNF and NGF expression were investigated by immunohistochemical staining analysis. The results showed CK (10, 30 mg/kg) intragastric administration for 14 days significantly shorten the immobility time in FST and TST, which could be partially reversed by a D1 receptor antagonist Sch23390. For CUMS rats, CK alleviated the depressant-like behaviors, including decreased food consumption, spontaneous locomotor activity and lower sucrose preference, while WAY-100635, a 5-HT1A receptor antagonist, could attenuate this effect. In addition, CK increased the levels of 5-HT, DA and their metabolites in the PFC and hippocampus of CUMS rats, and could reverse overexpression of MAOB in PFC and hippocampus. CK also increased the GSH and GPx activity in the hippocampus and PFC. The IHC results revealed the BDNF and NGF expression were increased in CK-treated rats. The obtained results indicate that CK exhibits antidepressant effects in rodents, which may be due to the regulation of monoamine neurotransmitter concentration, enhancement of antioxidant capacity, as well as increase of neurotrophin expression in the CNS.  相似文献   

5.
A mood stabilizing and antidepressant response to lithium is only found in a subgroup of patients with bipolar disorder and depression. Identifying strains of mice that manifest differential behavioral responses to lithium may assist in the identification of genomic and other biologic factors that play a role in lithium responsiveness. Mouse strains were tested in the forced swim test (FST), tail suspension test (TST) and open-field test after acute and chronic systemic and intracerebroventricular (ICV) lithium treatments. Serum and brain lithium levels were measured. Three (129S6/SvEvTac, C3H/HeNHsd and C57BL/6J) of the eight inbred strains tested, and one (CD-1) of the three outbred strains, showed an antidepressant-like response in the FST following acute systemic administration of lithium. The three responsive inbred strains, as well as the DBA/2J strain, displayed antidepressant-like responses to lithium in the FST after chronic administration of lithium. However, in the TST, acute lithium resulted in an antidepressant-like effect only in C3H/HeNHsd mice. Only C57BL/6J and DBA/2J showed an antidepressant-like response to lithium in the TST after chronic administration. ICV lithium administration resulted in a similar response profile in BALB/cJ (non-responsive) and C57BL/6J (responsive) strains. Serum and brain lithium concentrations showed that behavioral results were not because of differential pharmacokinetics of lithium in individual strains, suggesting that genetic factors likely regulate these behavioral responses to lithium. Our results indicate that antidepressant-like responses to lithium in tests of antidepressant efficacy varies among genetically diverse mouse strains. These results will assist in identifying genomic factors associated with lithium responsiveness and the mechanisms of lithium action.  相似文献   

6.
Mitragyna speciosa Korth. leaves have been used for decades as a traditional medicine to treat diarrhea, diabetes and to improve blood circulation by natives of Malaysia, Thailand and other regions of Southeast Asia. Mitragynine is the major active alkaloid in the plant. To date, the role of mitragynine in psychological disorders such as depression is not scientifically evaluated. Hence, the present investigation evaluates the antidepressant effect of mitragynine in the mouse forced swim test (FST) and tail suspension test (TST), two models predictive of antidepressant activity and the effect of mitragynine towards neuroendocrine system of hypothalamic-pituitary-adrenal (HPA) axis by measuring the corticosterone concentration of mice exposed to FST and TST. An open-field test (OFT) was used to detect any association of immobility in the FST and TST with changes in motor activity of mice treated with mitragynine. In the present study, mitragynine at dose of 10 mg/kg and 30 mg/kg i.p. injected significantly reduced the immobility time of mice in both FST and TST without any significant effect on locomotor activity in OFT. Moreover, mitragynine significantly reduced the released of corticosterone in mice exposed to FST and TST at dose of 10 mg/kg and 30 mg/kg. Overall, the present study clearly demonstrated that mitragynine exerts an antidepressant effect in animal behavioral model of depression (FST and TST) and the effect appears to be mediated by an interaction with neuroendocrine HPA axis systems.  相似文献   

7.
8.
The present study was undertaken to investigate the effect of aqueous and ethanolic extracts of T. bellirica on depression in mice using forced swim test (FST) and tail suspension test (TST). The extracts were administered orally for 10 successive days in separate groups of Swiss young male albino mice. Aqueous extract (50, 100 and 200 mg/kg) in a dose-dependent manner and ethanolic extract (100 mg/kg) significantly reduced the immobility time of mice in both FST and TST. The extracts were without any significant effect on locomotor activity of mice. The efficacies of aqueous extract (200 mg/kg) and ethanolic extract (100 mg/kg) were found to be similar to that of imipramine (15 mg/kg, po) and fluoxetine (20 mg/kg, po) administered for 10 successive days. Both extracts reversed reserpine-induced extension of immobility period of mice in FST and TST. Prazosin (62.5 microg/kg, ip; an alpha1-adrenoceptor antagonist), sulpiride (50 mg/kg, ip; a selective D2 receptor antagonist) and p-chlorophenylalanine (100 mg/kg, ip; an inhibitor of serotonin synthesis) significantly attenuated the aqueous and ethanolic extract-induced antidepressant-like effect in TST. Thus, both the aqueous and ethanolic extracts of T. bellirica elicited a significant antidepressant-like effect in mice by interaction with adrenergic, dopaminergic and serotonergic systems.  相似文献   

9.
Yi LT  Li JM  Li YC  Pan Y  Xu Q  Kong LD 《Life sciences》2008,82(13-14):741-751
Apigenin is one type of bioflavonoid widely found in citrus fruits, which possesses a variety of pharmacological actions on the central nervous system. A previous study showed that acute intraperitoneal administration of apigenin had antidepressant-like effects in the forced swimming test (FST) in ddY mice. To better understand its pharmacological activity, we investigated the behavioral effects of chronic oral apigenin treatment in the FST in male ICR mice and male Wistar rats exposed to chronic mild stress (CMS). The effects of apigenin on central monoaminergic neurotransmitter systems, the hypothalamic-pituitary-adrenal (HPA) axis and platelet adenylyl cyclase activity were simultaneously examined in the CMS rats. Apigenin reduced immobility time in the mouse FST and reversed CMS-induced decrease in sucrose intake of rats. Apigenin also attenuated CMS-induced alterations in serotonin (5-HT), its metabolite 5-hydroxyindoleacetic acid (5-HIAA), dopamine (DA) levels and 5-HIAA/5-HT ratio in distinct rat brain regions. Moreover, apigenin reversed CMS-induced elevation in serum corticosterone concentrations and reduction in platelet adenylyl cyclase activity in rats. These results suggest that the antidepressant-like actions of oral apigenin treatment could be related to a combination of multiple biochemical effects, and might help to elucidate its mechanisms of action that are involved in normalization of stress-induced changes in brain monoamine levels, the HPA axis, and the platelet adenylyl cyclase activity.  相似文献   

10.
A number of neurotransmitter systems have been implicated in contributing to the pathology of mood disorders, including those of dopamine (DA), serotonin (5-HT), norepinephrine (NE) and γ-aminobutyric acid (GABA). Rapid eye movement sleep deprivation (REMSD) alters most of the neurotransmitters, which may have adverse behavioural changes and other health consequences like mania and other psychiatric disorders. The exact role of REMSD altered neurotransmitter levels and the manner in which emerging consequences lead to mania-like behaviour is poorly understood. Thus, we sought to verify the levels of neurotransmitter changes after 48, 72 and 96 h of REMSD induced mania-like behaviour in mice. We performed modified multiple platform (MMP) method of depriving the REM sleep and one group maintained as a control. To measure the hyperactivity through locomotion, exploration and behavioural despair, we performed the Open Field Test (OFT) and the Forced Swim Test (FST). Quantitative determinations of DA, 5-HT, NE and GABA concentrations in four distinct brain regions (cerebral cortex, hippocampus, midbrain, and pons) were determined by the spectrofluorimetric method. These experiments showed higher locomotion and increased swimming, struggling/climbing and decreased mobility among REMSD animals as well as disrupted concentrations of the majority of the studied neurotransmitters during REMSD. Our study indicated that REMSD results in mania-like behaviour in mice and associated disruption to neurotransmitter levels, although the exact mechanisms by which these take place remain to be determined.  相似文献   

11.
Many works showed that nerve growth factor (NGF) injected into the brain of animal model emerges potential antidepressant effects. However, this route of administration significantly restricts the application of NGF clinically. Here, we reported that intranasal NGF could provide an alternative to intraventricular injection. The behavioral analysis showed that intranasal administration of NGF reduced the immobility time in forced swimming test (FST) and tail suspension test (TST) in mice. Likewise, intranasal NGF increased the sucrose intake and the locomotor activity in rats after unpredictable chronic mild stress (UCMS). Furthermore, intranasal NGF increased the levels of monoamine neurotransmitters (norepinephrine, dopamine) in the frontal cortex and hippocampus and affected the number of 5-bromodeoxyuridine (BrdU), c-fos and caspase-3 positive neurons in dentate gyrus of hippocampus in rats after UCMS. In summary, intranasal NGF had significant antidepressant effects on animal models of depression and this route of administration may provide a promising way to deliver NGF to brain in a therapeutic perspective.  相似文献   

12.
This study aims to examine the antidepressant-like action of Ghrelin (Ghr), a hormone synthesized predominantly by gastrointestinal endocrine cells and released during periods of negative energy balance, in two behavioral models: tail suspension test (TST), a predictive model of antidepressant activity, and the olfactory bulbectomy (OB), an established animal model of depression. The reduction in the immobility time in the TST was the parameter used to assess antidepressant-like effect of Ghr. The depressive-like behavior in olfactory bulbectomized mice was inferred through the increase in the immobility time in the TST and the hyperlocomotor activity in the open-field test. Ghr produced antidepressant-like effect in TST (0.3 nmol/μl, i.c.v.), and reversed OB-induced depressive-like behavior. In conclusion, these results provide clear evidence that an acute administration of ghrelin produce antidepressant-like effect in the TST and OB.  相似文献   

13.
目的:建立卵巢激素撤除诱发雌性小鼠抑郁样状态模型,并且探讨其可能的神经化学机制。方法:将小鼠分为假手术组,卵巢摘除组,己烯雌酚治疗组和氟西汀治疗组。动物行卵巢摘除术后开始给药,术后两周进行强迫游泳试验及悬尾试验以考察其抑郁样状态,并利用高效液相结合电化学检测测定下丘脑及海马中去甲肾上腺素(NE)、多巴胺(DA)以及五羟色胺(5-HT)的含量。结果:在强迫游泳试验及悬尾试验中,卵巢摘除小鼠较假手术组小鼠不动时间显著延长。神经递质测定显示,卵巢摘除小鼠下丘脑中NE与DA的含量显著降低,海马中NE与5-HT的含量显著降低。给予己烯雌酚或氟西汀治疗对抗了卵巢摘除所诱导的抑郁样状态,并且缓解了神经递质水平的下降。结论:双侧卵巢摘除诱发的小鼠抑郁样状态可以模拟妇女更年期抑郁的某些症状。本研究对于探讨卵巢激素撤除诱发抑郁状态的神经生化机制可能具有重要的意义。  相似文献   

14.
Xiao  Dong  Liu  Li  Li  Yuanjie  Ruan  Jie  Wang  Hanqing 《Neurochemical research》2019,44(9):2044-2056

Depression is a highly debilitating and life-threatening psychiatric disorder. The classical antidepressants are still not adequate due to undesirable side effects. Therefore, the development of new drugs for depression treatment is an urgent strategic to achieving clinical needs. Licorisoflavan A is a bioactive ingredient isolated from Glycyrrhizae Radix and has been recently reported for neuroprotective effects. In this study, the antidepressant-like effect and neural mechanism of licorisoflavan A were explored. In the mice behavioral despair test, we observed that licorisoflavan A exhibited powerful antidepressant-like effect in forced swimming test (FST), tail suspension test (TST), without affecting locomotor activity in open field test (OFT). Additionally, licorisoflavan A administration significantly restored Chronic mild stress (CMS)-induced changes in sucrose preference test (SPT), FST, and TST, without altering the locomotion in OFT. In chronical-stimulated mice, the licorisoflavan A treatment effectively attenuated the expressions of Brain-derived neurotrophic factor (BDNF), tyrosine kinase B (TrkB), the phosphorylations of cAMP response element binding protein (CREB), extracellular signal-regulated kinase (ERK)-1/2, eukaryotic elongation factor 2 (eEF2), mammalian target of rapamycin (mTOR), initiation factor 4E-binding protein 1 (4E-BP-1), and p70 ribosomal protein S6 kinase (p70S6K) in hippocampus of CMS-induced mice. Additionally, licorisoflavan A could reverse the decreases in synaptic proteins post-synaptic density protein 95 (PSD-95) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor subunit glutamate receptor 1 (GluR1) caused by CMS, and its antidepressant-like effect was blocked by the AMPA receptor antagonist NBQX. These findings served as preclinical evidence that licorisoflavan A exerted potent antidepressant-like effects involving BDNF-TrkB pathway and AMPA receptors. Licorisoflavan A might be used as a potential medicine against depression-like disorder.

  相似文献   

15.
Antidepressant-like activity of zinc in the forced swim test (FST) was demonstrated previously. Enhancement of such activity by joint administration of zinc and antidepressants was also shown. However, mechanisms involved in this activity have not yet been established. The present study examined the involvement of the NMDA and AMPA receptors in zinc activity in the FST in mice and rats. Additionally, the influence of zinc on both glutamate and aspartate release in the rat brain was also determined. Zinc-induced antidepressant-like activity in the FST in both mice and rats was antagonized by N-methyl-d-aspartic acid (NMDA, 75 mg/kg, i.p.) administration. Moreover, low and ineffective doses of NMDA antagonists (CGP 37849, L-701,324, d-cycloserine, and MK-801) administered together with ineffective doses of zinc exhibit a significant reduction of immobility time in the FST. Additionally, we have demonstrated the reduction of immobility time by AMPA receptor potentiator, CX 614. The antidepressant-like activity of both CX 614 and zinc in the FST was abolished by NBQX (an antagonist of AMPA receptor, 10 mg/kg, i.p.), while the combined treatment of sub-effective doses of zinc and CX 614 significantly reduces the immobility time in the FST. The present study also demonstrated that zinc administration potentiated a veratridine-evoked glutamate and aspartate release in the rat’s prefrontal cortex and hippocampus. The present study further suggests the antidepressant properties of zinc and indicates the involvement of the NMDA and AMPA glutamatergic receptors in this activity.  相似文献   

16.
Alarin is a newly identified member of the galanin family of peptides. Galanin has been shown to exert regulatory effects on depression. Similar to galanin in distribution, alarin is also expressed in the medial amygdala and hypothalamus, i.e., regions interrelated with depression. However, it remains a puzzle whether alarin is involved in depression. Accordingly, we established the depression-like mouse model using behavioral tests to ascertain the possible involvement of alarin, with fluoxetine as a positive control. With the positive antidepressant-like effects of alarin, we further examined its relationship to HPA axis activity and brain-derived neurotrophic factor (BDNF) levels in different brain areas in a chronic unpredictable mild stress (CUMS) paradigm. In the acute studies, alarin produced a dose-related reduction in the immobility duration in tail suspension test (TST) in mice. In the open-field test, intracerebroventricular (i.c.v.) injection of alarin (1.0 nmol) did not impair locomotion or motor coordination in the treated mice. In the CUMS paradigm, alarin administration (1.0 nmol, i.c.v.) significantly improved murine behaviors (FST and locomotor activity), which was associated with a decrease in corticotropin-releasing hormone (CRH) mRNA levels in the hypothalamus, as well as a decline in serum levels of CRH, adrenocorticotropic hormone (ACTH) and corticosterone (CORT), all of which are key hormones of the HPA axis. Furthermore, alarin upregulated BDNF mRNA levels in the prefrontal cortex and hippocampus. These findings suggest that alarin may potentiate the development of new antidepressants, which would be further secured with the identification of its receptor(s).  相似文献   

17.
The biological mechanisms that link the development of depression to metabolic disorders such as obesity and diabetes remain ambiguous. In the present study the potential of a selective cyclooxygenase inhibitor celecoxib (15 mg/kg p.o.) was investigated in depression associated with obesity in mice. Behavioral tests used to assess depressive-like behavior were sucrose preference test, forced swim test (FST), tail suspension test (TST) and elevated plus maze (EPM). The basal locomotor score in obese mice was not altered. Furthermore, estimation of biochemical parameters was performed for plasma glucose, total cholesterol, triglycerides and total proteins. Escitalopram (10 mg/kg p.o.) served as reference standard drug. In the results, chronic treatment with celecoxib for 28 days significantly attenuated the behavioral alterations as indicated by increased the sucrose consumption, reduced the immobility time in FST and TST, increased the percent open arm time and entries in EPM in obese mice. In the biochemical parameters celecoxib significantly reversed the increased plasma glucose, total cholesterol, triglycerides and total proteins in obese mice. In conclusion, celecoxib exhibited potential antidepressant-like effect in depression associated with obesity, which to some extent is mediated by reversing the altered plasma glucose in obese mice.  相似文献   

18.
We use the knockout mice strategy to investigate the contribution of the 5-HT1B receptor in mediating the effects of selective serotonin reuptake inhibitors (SSRI). Using microdialysis in awake 129/Sv mice, we show that the absence of the 5-HT1B receptor in mutant mice (KO 1B -/-) potentiated the effect of paroxetine on extracellular 5-HT levels in the ventral hippocampus, but not in the frontal cortex compared to wild-type mice (WT). Furthermore, using the forced swimming test, we demonstrate that SSRIs decreased immobility of WT mice, and this effect is absent in KO 1B -/- mice showing therefore that activation of 5-HT1B receptors mediate the antidepressant-like effects of SSRIs. Taken together these findings suggest that 5-HT1B autoreceptors limit the effects of SSRI particularly in the hippocampus while postsynaptic 5-HT1B receptors are required for the antidepressant activity of SSRIs.  相似文献   

19.
We used knockout mice and receptor antagonist strategies to investigate the contribution of the serotonin (5-hydroxytryptamine, 5-HT) 5-HT1B receptor subtype in mediating the effects of selective serotonin reuptake inhibitors (SSRIs). Using in vivo intracerebral microdialysis in awake mice, we show that a single systemic administration of paroxetine (1 or 5 mg/kg, i.p.) increased extracellular serotonin levels [5-HT]ext in the ventral hippocampus and frontal cortex of wild-type and mutant mice. However, in the ventral hippocampus, paroxetine at the two doses studied induced a larger increase in [5-HT]ext in knockout than in wild-type mice. In the frontal cortex, the effect of paroxetine was larger in mutants than in wild-type mice at the 1 mg/kg dose but not at 5 mg/kg. In addition, either the absence of the 5-HT1B receptor or its blockade with the mixed 5-HT1B/1D receptor antagonist, GR 127935, potentiates the effect of a single administration of paroxetine on [5-HT]ext more in the ventral hippocampus than in the frontal cortex. Furthermore, we demonstrate that SSRIs decrease immobility in the forced swimming test; this effect is absent in 5-HT1B knockout mice and blocked by GR 127935 in wild-type suggesting therefore that activation of 5-HT1B receptors mediate the antidepressant-like effects of SSRIs. Taken together these data demonstrate that 5-HT1B autoreceptors appear to limit the effects of SSRI on dialysate 5-HT levels particularly in the hippocampus while presynaptic 5-HT1B heteroreceptors are likely to be required for the antidepressant activity of SSRIs.  相似文献   

20.
In our recent studies on nicotine-induced changes in neurotransmitters in brain areas associated with cognitive function using a nicotine dose of 0.5 mg/kg administered subcutaneously to conscious freely moving rats, we found changes in dopamine, norepinephrine, and serotonin, and their metabolites, in the areas examined. For the present report we examined changes in these neurotransmitters following administration of lower nicotine doses, to test regional differences in nicotine response and possible threshold levels for some effects of nicotine. The doses used were 0.15 mg/kg and 0.03 mg/kg nicotine administered subcutaneously. Nicotine levels in the brain reached peak values in less than 10 min and decreased with a half-life of about 60 min (0.15 mg/kg) or 30 min (0.03 mg/kg) to values below detection limits (1 ng/g), by the later time points of the 0.03 mg/kg experiments. Nicotine-induced dopamine (DA) increase (and increase in DA metabolites) and decrease in 5-HT levels at 0.15 mg/kg were significant in the cortex, less so in the hippocampus. Norepinephrine (NE) increase at 0.15 mg/kg was much less significant than found previously at 0.5 mg/kg. At a low nicotine dose (0.03 mg/kg), the significant changes observed were a decrease in 5-HT in the hippocampus and small increases of DA and NE in the prefrontal cortex and of NE in the medial temporal cortex. In the nucleus accumbens DA, NE, and 5-HT and their metabolites in the ventral tegmental area, mostly DA and metabolites were increased. We conclude that in areas of cognitive function nicotine-induced DA changes are more concentration dependent than changes in NE or 5-HT, and that there are regional differences in neurotransmitter changes induced by nicotine, with NE changes detectable only in the cortex and 5-HT changes only in the hippocampus at a low nicotine dose, indicating significant regional variation in sensitivity to nicotine-induced neurotransmitter changes in brain areas associated with cognitive function. The decrease in 5-HT shows that nicotine also has indirect effects caused by neurotransmitters released by nicotine. The effects of low nicotine dose are more significant in areas of reward function, indicating differences in sensitivity between cognitive and reward functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号