首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
DNA错配修复与癌症的发生及治疗   总被引:3,自引:0,他引:3  
DNA错配修复是细胞复制后的一种修复机制,具有维持DNA复制保真度,控制基因变异的作用。DNA错配修复缺陷使整个基因组不稳定,最终会导致肿瘤和癌症的发生。DNA错配修复系统不仅通过矫正在DNA重组和复制过程中产生的碱基错配而保持基因组的稳定,而且通过诱导DNA损伤细胞的凋亡而消除由突变细胞生长形成的癌变。错配修复缺陷细胞的抗药性也引起了癌症化疗研究方面的关注。大多数情况下,错配修复健全型细胞对肿瘤化疗药物敏感,而错配修复缺陷细胞却有较高的抗性。DNA错配修复系统通过修复和诱导细胞凋亡维护基因组稳定的功能,显示了错配修复途径在癌症生物学和分子医学中的重要性。  相似文献   

2.
Human pluripotent stem cells (PSCs) are presumed to have robust DNA repair pathways to ensure genome stability. PSCs likely need to protect against mutations that would otherwise be propagated throughout all tissues of the developing embryo. How these cells respond to genotoxic stress has only recently begun to be investigated. Although PSCs appear to respond to certain forms of damage more efficiently than somatic cells, some DNA damage response pathways such as the replication stress response may be lacking. Not all DNA repair pathways, including the DNA mismatch repair (MMR) pathway, have been well characterized in PSCs to date. MMR maintains genomic stability by repairing DNA polymerase errors. MMR is also involved in the induction of cell cycle arrest and apoptosis in response to certain exogenous DNA-damaging agents. Here, we examined MMR function in PSCs. We have demonstrated that PSCs contain a robust MMR pathway and are highly sensitive to DNA alkylation damage in an MMR-dependent manner. Interestingly, the nature of this alkylation response differs from that previously reported in somatic cell types. In somatic cells, a permanent G2/M cell cycle arrest is induced in the second cell cycle after DNA damage. The PSCs, however, directly undergo apoptosis in the first cell cycle. This response reveals that PSCs rely on apoptotic cell death as an important defense to avoid mutation accumulation. Our results also suggest an alternative molecular mechanism by which the MMR pathway can induce a response to DNA damage that may have implications for tumorigenesis.  相似文献   

3.
4.
DNA interstrand crosslinks (ICLs) present formidable blocks to DNA metabolic processes and must be repaired for cell survival. ICLs are induced in DNA by intercalating compounds such as the widely used therapeutic agent psoralen. In bacteria, both nucleotide excision repair (NER) and homologous recombination are required for the repair of ICLs. The processing of ICLs in mammalian cells is not clearly understood. However, it is known that processing can occur by NER, which for psoralen ICLs can be an error-generating process conducive to mutagenesis. We show here that another repair pathway, mismatch repair (MMR), is also involved in eliminating psoralen ICLs in human cells. MMR deficiency renders cells hypersensitive to psoralen ICLs without diminishing their mutagenic potential, suggesting that MMR does not contribute to error-generating repair, and that MMR may represent a relatively error-free mechanism for processing these lesions in human cells. Thus, enhancement of MMR relative to NER may reduce the mutagenesis caused by DNA ICLs in humans.  相似文献   

5.
The contribution of defective DNA mismatch repair (MMR) to acquired resistance to cis-diamminedichloroplatinum(II) (cisplatin) has been investigated in two model systems: E coli dam mutants and the A2780 ovarian carcinoma cell line. Inactivation of MMR-as indicated by the acquisition of an elevated spontaneous mutator phenotype-was observed frequently among survivors of cisplatin-treated dam mutants. These survivors exhibited a stable resistance to further cisplatin treatment. In contrast, none of twelve independent clones of A2780 that had survived cisplatin exposure and acquired stable drug resistance were repair defective. None exhibited the hallmark methylation tolerant phenotype associated with a MMR defect, mRNAs encoding five MMR proteins were easily detectable in all twelve variants, and the levels of four key MMR proteins were similar to those in the repair proficient parental cells. Further analysis indicated two different mechanisms of acquired resistance in A2780. The first was a protective effect that reduced the level of DNA platination. The second was observed as a reduced sensitivity to cell cycle arrest after cisplatin treatment and a consequent reduced apoptosis. The data suggest that although loss of MMR is a significant mechanism of acquired drug resistance in dam bacteria, alterations related to DNA protection or cell cycle progression after drug damage appear to be more probable than abrogation of MMR as resistance modulators in human cells.  相似文献   

6.
DNA mismatch repair (MMR) is a critical genome-stabilization system. However, the molecular mechanism of MMR in human cells remains obscure because many of the components have not yet been identified. Using a functional in vitro reconstitution system, this study identified three HeLa cell fractions essential for in vitro MMR. These fractions divide human MMR into two distinct stages: mismatch-provoked excision and repair synthesis. In vitro dissection of the MMR reaction and crucial intermediates elucidated biochemical functions of individual fractions in human MMR and identified hitherto unknown functions of human replication protein A (hRPA) in MMR. Thus, one fraction carries out nick-directed and mismatch-dependent excision; the second carries out DNA repair synthesis and DNA ligation; and the third provides hRPA, which plays multiple roles in human MMR by protecting the template DNA strand from degradation, enhancing repair excision, and facilitating repair synthesis. It is anticipated that further analysis of these fractions will identify additional MMR components and enable the complete reconstitution of the human MMR pathway with purified proteins.  相似文献   

7.
The cellular DNA mismatch repair (MMR) pathway, involving the DNA mismatch repair genes MLH1 and MSH2, detects and repairs DNA replication errors. Defects in MSH2 and MLH1 account for most cases of hereditary non-polyposis colorectal cancer as well as for sporadic colorectal tumors. Additionally, increased expression of MSH2 RNA and/or protein has been reported in various malignancies. Loss of DNA MMR in mammalian cells has been linked to resistance to certain DNA damaging agents including clinically important cytotoxic chemotherapeutics. Due to other functions besides its role in DNA repair, that include regulation of cell proliferation and apoptosis, MSH2 has recently been shown to be of importance for pathogenesis and progression of cancer. This review summarizes our present understanding of the function of MSH2 for DNA repair, cell cycle control, and apoptosis and discusses its importance for pathogenesis, progression and therapy of cancer.  相似文献   

8.
9.
Deficient mismatch repair (MMR) is identified as a mutation of one of four major MMR genes and(or) microsatellite instability. These genomic changes are used as markers of MMR status of the heredity nonpolyposis colorectal cancer (HNPCC) spectrum tumors--familial and sporadic tumors of colon and extracolonic cancers fulfilling Amsterdam clinical criteria II. MMR-deficiency results in mutator phenotype and resistance to geno- and cytotoxicity of alkylating agents. The main cytotoxic damage to DNA in response to chemical methylation is O6-methylguanine (O6-mG). The secondary DNA strand breaks, which are formed during the MMR functioning, are proposed to be required for methylation induced cytotoxicity. We have assumed that the secondary double stand breaks (DSB) upon DNA methylation are able to represent functional efficiency of MMR in cells. The purpose of the paper was to test this assumption on human tumor cells differing in MMR-status and pulse-treated with methylnitrosourea (MNU). We used 3 cell lines: HeLa (MMR-competent endometrial tumor cells), HCT116 (MMR-deficient colorectal carcinoma cells), and Colo320 (sigmoid intestine tumor cells with uncharacterized MMR status). DSBs were evaluated with neutral comet assay. Cytotoxicity/viability was evaluated with MTT-asay and apoptotic index (frequency of morphologically determined apoptotic cells). We show that 1) cytotoxic effect of MNU (250 microM) on HeLa cells was exhibited 3 days after pulse-treatment of cells with MNU; 2) DSBs occurred 48 h after the drug treatment but prior to the onset of apoptosis of HeLa cells; 3) MMR-deficient HCT116 cells were resistant to the drug: no decreased viability, DSBs and apoptosis were observed during 3 days after cell treatment. Both cell lines exhibited high sensitivity to etoposide, classical inductor of unrepairable DSBs and p53. Etoposide has been found to induce DSBs in 6-12 h, which was followed by apoptosis (in 24 h). Colo320 cells exhibited intermediate position between HeLa and HCT116 cell lines in regard to sensitivity to MNU according to MTT-assay and the number of secondary DSBs formed in MNU-treated cells. Nevertheless, in contrast to HeLa cells, these breaks did not induce apoptosis in Colo320 cells. Our data confirm the assumption about case/effect relationship between secondary DNA double strand breaks, induced by monofunctional methylating agent MNU, and functioning of MMR in human tumor cells.  相似文献   

10.
Initial recognition of DNA damage is the crucial but poorly understood first step in DNA repair by the human nucleotide excision repair(NER) and mismatch repair (MMR) systems. Failure by NER or MMR to recognize DNA damage threatens the genetic integrity of the organism and may play a role in carcinogenesis. Both NER and MMR recognize and repair a wide variety of structurally dissimilar lesions against the background of normal DNA. Previous studies have suggested that detection of thermodynamic destabilization of DNA caused by covalent damage and base mismatches is a potential mechanism by which repair pathways with broad specificity such as NER and MMR recognize their substrates. However, both NER and MMR respectively, repair a wide variety of stabilizing and destabilizing covalent DNA lesions and base pair mismatches. A common feature of lesions that are both thermodynamically stabilizing and destabilizing is the alteration of the local DNA flexibility (dynamics). In this review we describe the experimental evidence for altered dynamics from NMR and thermodynamic studies on normal and damaged DNA molecules with respect to recognition by NER and MMR. Based on these data, we propose a model for initial detection of lesions by both NER and MMR that occurs through an indirect readout mechanism of alternative DNA conformations induced by covalent damage and base mismatches.  相似文献   

11.
By removing biosynthetic errors from newly synthesized DNA, mismatch repair (MMR) improves the fidelity of DNA replication by several orders of magnitude. Loss of MMR brings about a mutator phenotype, which causes a predisposition to cancer. But MMR status also affects meiotic and mitotic recombination, DNA-damage signalling, apoptosis and cell-type-specific processes such as class-switch recombination, somatic hypermutation and triplet-repeat expansion. This article reviews our current understanding of this multifaceted DNA-repair system in human cells.  相似文献   

12.
Mismatch repair (MMR) increases the fidelity of DNA replication by identifying and correcting replication errors. Processivity clamps are vital components of DNA replication and MMR, yet the mechanism and extent to which they participate in MMR remains unclear. We investigated the role of the Bacillus subtilis processivity clamp DnaN, and found that it serves as a platform for mismatch detection and coupling of repair to DNA replication. By visualizing functional MutS fluorescent fusions in vivo, we find that MutS forms foci independent of mismatch detection at sites of replication (i.e. the replisome). These MutS foci are directed to the replisome by DnaN clamp zones that aid mismatch detection by targeting the search to nascent DNA. Following mismatch detection, MutS disengages from the replisome, facilitating repair. We tested the functional importance of DnaN‐mediated mismatch detection for MMR, and found that it accounts for 90% of repair. This high dependence on DnaN can be bypassed by increasing MutS concentration within the cell, indicating a secondary mode of detection in vivo whereby MutS directly finds mismatches without associating with the replisome. Overall, our results provide new insight into the mechanism by which DnaN couples mismatch recognition to DNA replication in living cells.  相似文献   

13.
DNA mismatch repair (MMR) is integral to the maintenance of genomic stability and more recently has been demonstrated to affect apoptosis and cell cycle arrest in response to a variety of adducts induced by exogenous agents. Comparing Msh2-null and wildtype mouse embryonic fibroblasts (MEFs), both primary and transformed, we show that Msh2 deficiency results in increased survival post-UVB, and that UVB-induced apoptosis is significantly reduced in Msh2-deficient cells. Furthermore, p53 phosphorylation at serine 15 is delayed or diminished in Msh2-deficient cells, suggesting that Msh2 may act upstream of p53 in a post-UVB apoptosis or growth arrest response pathway. Taken together, these data suggest that MMR heterodimers containing Msh2 may function as a sensor of UVB-induced DNA damage and influence the initiation of UVB-induced apoptosis, thus implicating MMR in protecting against UV-induced tumorigenesis.  相似文献   

14.
15.
Several proteins in the BRCA‐Fanconi anemia (FA) pathway, such as FANCJ, BRCA1, and FANCD2, interact with mismatch repair (MMR) pathway factors, but the significance of this link remains unknown. Unlike the BRCA‐FA pathway, the MMR pathway is not essential for cells to survive toxic DNA interstrand crosslinks (ICLs), although MMR proteins bind ICLs and other DNA structures that form at stalled replication forks. We hypothesized that MMR proteins corrupt ICL repair in cells that lack crosstalk between BRCA‐FA and MMR pathways. Here, we show that ICL sensitivity of cells lacking the interaction between FANCJ and the MMR protein MLH1 is suppressed by depletion of the upstream mismatch recognition factor MSH2. MSH2 depletion suppresses an aberrant DNA damage response, restores cell cycle progression, and promotes ICL resistance through a Rad18‐dependent mechanism. MSH2 depletion also suppresses ICL sensitivity in cells deficient for BRCA1 or FANCD2, but not FANCA. Rescue by Msh2 loss was confirmed in Fancd2‐null primary mouse cells. Thus, we propose that regulation of MSH2‐dependent DNA damage response underlies the importance of interactions between BRCA‐FA and MMR pathways.  相似文献   

16.
Two systems are essential in humans for genome integrity, DNA repair and apoptosis. Cells that are defective in DNA repair tend to accumulate excess DNA damage. Cells defective in apoptosis tend to survive with excess DNA damage and thus allow DNA replication past DNA damages, causing mutations leading to carcinogenesis. It has recently become apparent that key proteins which contribute to cellular survival by acting in DNA repair become executioners in the face of excess DNA damage.Five major DNA repair pathways are homologous recombinational repair (HRR), non-homologous end joining (NHEJ), nucleotide excision repair (NER), base excision repair (BER) and mismatch repair (MMR). In each of these DNA repair pathways, key proteins occur with dual functions in DNA damage sensing/repair and apoptosis. Proteins with these dual roles occur in: (1) HRR (BRCA1, ATM, ATR, WRN, BLM, Tip60 and p53); (2) NHEJ (the catalytic subunit of DNA-PK); (3) NER (XPB, XPD, p53 and p33(ING1b)); (4) BER (Ref-1/Ape, poly(ADP-ribose) polymerase-1 (PARP-1) and p53); (5) MMR (MSH2, MSH6, MLH1 and PMS2). For a number of these dual-role proteins, germ line mutations causing them to be defective also predispose individuals to cancer. Such proteins include BRCA1, ATM, WRN, BLM, p53, XPB, XPD, MSH2, MSH6, MLH1 and PMS2.  相似文献   

17.
The p300-mediated acetylation of enzymes involved in DNA repair and replication has been previously shown to stimulate or inhibit their activities in reconstituted systems. To explore the role of acetylation on DNA repair in cells we constructed plasmid substrates carrying inactivating damages in the EGFP reporter gene, which should be repaired in cells through DNA mismatch repair (MMR) or base excision repair (BER) mechanisms. We analyzed efficiency of repair within these plasmid substrates in cells exposed to deacetylase and acetyltransferase inhibitors, and also in cells deficient in p300 acetyltransferase. Our results indicate that protein acetylation improves DNA mismatch repair in MMR-proficient HeLa cells and also in MMR-deficient HCT116 cells. Moreover, results suggest that stimulated repair of mismatches in MMR-deficient HCT116 cells is done though a strand-displacement synthesis mechanism described previously for Okazaki fragments maturation and also for the EXOI-independent pathway of MMR. Loss of p300 reduced repair of mismatches in MMR-deficient cells, but did not have evident effects on BER mechanisms, including the long patch BER pathway. Hypoacetylation of the cells in the presence of acetyltransferase inhibitor, garcinol generally reduced efficiency of BER of 8-oxoG damage, indicating that some steps in the pathway are stimulated by acetylation.  相似文献   

18.
DNA mismatch repair (MMR) deficiency in human cancers is associated with resistance to a spectrum of clinically active chemotherapy drugs, including 6-thioguanine (6-TG). We and others have shown that 6-TG-induced DNA mismatches result in a prolonged G2/M cell cycle arrest followed by apoptosis in MMR(+) human cancer cells, although the signaling pathways are not clearly understood. In this study, we found that prolonged (up to 4 days) treatment with 6-TG (3microM) resulted in a progressive phosphorylation of Chk1 and Chk2 in MMR(+) HeLa cells, correlating temporally with a drug-induced G2/M arrest. Transfection of HeLa cells with small interfering RNA (siRNA) against the ataxia telangiectasia-related (ATR) kinase or against the Chk1 kinase destroyed the G2/M checkpoint and enhanced the apoptosis following 6-TG treatment. On the other hand, the induction of a G2/M population by 6-TG was similar in ATM(-/-) and ATM(+) human fibroblasts, suggesting that the ATM-Chk2 pathway does not play a major role in this 6-TG response. Our results indicate that 6-TG DNA mismatches activate the ATR-Chk1 pathway in the MMR(+) cells, resulting in a G2/M checkpoint response  相似文献   

19.
20.
Maintenance of the mitochondrial genome (mtDNA) is essential for proper cellular function. The accumulation of damage and mutations in the mtDNA leads to diseases, cancer, and aging. Mammalian mitochondria have proficient base excision repair, but the existence of other DNA repair pathways is still unclear. Deficiencies in DNA mismatch repair (MMR), which corrects base mismatches and small loops, are associated with DNA microsatellite instability, accumulation of mutations, and cancer. MMR proteins have been identified in yeast and coral mitochondria; however, MMR proteins and function have not yet been detected in human mitochondria. Here we show that human mitochondria have a robust mismatch-repair activity, which is distinct from nuclear MMR. Key nuclear MMR factors were not detected in mitochondria, and similar mismatch-binding activity was observed in mitochondrial extracts from cells lacking MSH2, suggesting distinctive pathways for nuclear and mitochondrial MMR. We identified the repair factor YB-1 as a key candidate for a mitochondrial mismatch-binding protein. This protein localizes to mitochondria in human cells, and contributes significantly to the mismatch-binding and mismatch-repair activity detected in HeLa mitochondrial extracts, which are significantly decreased when the intracellular levels of YB-1 are diminished. Moreover, YB-1 depletion in cells increases mitochondrial DNA mutagenesis. Our results show that human mitochondria contain a functional MMR repair pathway in which YB-1 participates, likely in the mismatch-binding and recognition steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号