首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Trihydroxynaphthalene reductase (3HNR) is an essential enzyme in the biosynthesis of fungal melanin and it represents an emerging target for the development of new fungicides and antimicotics. To promote the discovery of new inhibitors, an improved chemical synthesis of the artificial substrate 2,3-dihydro-2,5-dihydroxy-4H-benzopyran-4-one (DDBO) was developed. A series of compounds were screened on 3HNR from Curvularia lunata, a known plant pathogen and an opportunistic human pathogen, and several structurally diverse hits were obtained. Homology modelling of 3HNR from C. lunata can explain their binding modes and will enable further structure-based design of new and improved inhibitors.  相似文献   

2.
Two homologous fungal short-chain dehydrogenase/reductase (SDR) proteins have been cloned from the fungus Curvularia lunata (teleomorph: Cochliobolus lunatus) and expressed in Escherichia coli: trihydroxynaphthalene reductase (3HNR), an enzyme of the melanin biosynthetic pathway that catalyzes the conversion of 1,3,8-trihydroxynaphthalene to vermelone, and 17beta-hydroxysteroid dehydrogenase (17beta-HSDcl), which acts on androgens and estrogens, although its physiological substrate remains to be defined. In the present study, we have compared the structures, specificities to substrates and inhibitors, temperature and pH optima of 3HNR and 17beta-HSDcl. Sequence analysis and homology-built models revealed that these enzymes are highly similar. Both of these enzymes are NADP(H)-preferring reductases and act on steroids at position 17; however, 17beta-HSDcl presented considerably higher initial rates than 3HNR. In vitro, 17beta-HSDcl preferably catalyzed the reduction of 4-estrene-3,17-dione, while the best steroid substrate for 3HNR was 5alpha-androstane-3,17-dione. On the other hand, 2,3-dihydro-2,5-dihydroxy-4H-benzopyran-4-one (DDBO), an artificial substrate of 3HNR, was oxidized rapidly by 3HNR, while it was not a substrate for 17beta-HSDcl. Additionally, our data show that tricyclazole, a specific inhibitor of 3HNR, is 100-fold less effective for 17beta-HSDcl inhibition, while flavonoids can inhibit both 3HNR and 17beta-HSDcl. We have also examined the effects of temperature and pH on the oxidation of DDBO by 3HNR and the oxidation of 4-estrene-17beta-ol-3-one by 17beta-HSDcl. The apparent optimal temperature for 3HNR activity was between 25 and 30 degrees C, while it was between 40 and 45 degrees C for 17beta-HSDcl activity. The pH optimum of 3HNR activity was between 8 and 9, and for 17beta-HSDcl, between 7 and 8. Our data show that in spite of high homology and similar backbone structure, differences between 3HNR and 17beta-HSDcl were not only in substrate specificities, but also in temperature and pH optima.  相似文献   

3.
4.
One-dimensional electrophoresis (1-DE) of proteins, two-dimensional electrophoresis (2-DE) of proteins and cloning of cDNA sequence were used to study the virulence differentiation of Curvularia lunata (Wakker) Boed. isolated from maize (Zea maydis L.) in China. From 1-DE gel profiles of proteins, 110 reproducible bands were separated from six isolates of C. lunata CX-3, SD-6, C-152, C107-1, DD-60 and W-18. Sixty-eight bands (61.82%) were polymorphic,suggesting huge biodiversities among the isolates. All isolates for the experiment were clustered into three groups consisting of different virulent types by coefficient value of 0.605. Group 1, consisting of CX-3, SD-6 and C-152 with high virulence displayed more protein bands than Groups 2 and 3, consisting of C107-1 and DD-60 with low virulence. Proteomics approaches based on 2-DE techniques were applied to identify specific proteins associated with the virulence differentiation in CX-3 and DD-60. A total of 423 protein spots were separated. Out of them 75 specific protein spots were displayed in 2-DE gels. Among them 28 protein spots were unique in CX-3 and eight in DD-60, and 39 protein spots were shown on both 2-DE gels but expressed differently in intensity. Twenty protein spots including three unique protein spots and 17 differentially expressed protein spots (more than two-fold DD-60) in CX-3 were further identified with MALDI-TOF MS/MS. Results indicated that most of the identified proteins were found to be associated with virulence differentiation, metabolisms, stress response and signal transduction.One of them was identified as Brn1 protein, which had been reported to be related to melanin biosynthesis and the virulence differentiation in fungi. Combined with our previous findings, we assumed that Brn1 protein and its regulating products might be involved in the virulence differentiation of C. lunata. Consequently, we cloned a Brn1 cDNA fragment and aligned it with the fragments in other fungi. Results indicated that the 633-bp sequence of Brn1 cloned in C. lunata was highly homological with the compared fungi. Further work for the exact gene roles of Brn1 in our case is underway.  相似文献   

5.
17β-Hydroxysteroid dehydrogenase and trihydroxynaphthalene reductase from the fungus Curvularia lunata (teleomorph: Cochliobolus lunatus; 17β-HSDcl and 3HNR, respectively) are two homologous short-chain dehydrogenase/reductase proteins that are 58% identical and have 86% similar amino acids. The minor differences in their substrate-binding regions are believed to be crucial for their substrate specificities. 3HNR shows high affinity for substrates with two rings, like trihydroxynaphthalene and 2,3-dihydro-2,5-dihydroxy-4H-benzopyran-4-one (DDBO), while 17β-HSDcl can accommodate ligands with four rings, like steroids. In the present study, we examined the role of Ala231 in 17β-HSDcl and Trp227 in 3HNR, as the potential key amino acids in the determination of substrate recognition based on size. We constructed Ala231Trp 17β-HSDcl and Trp227Ala 3HNR mutant proteins and used spectrophotometric analyses to compare their catalytic activities with those of the wild-type enzymes, for oxidation of 4-estrene-17β-ol-3-one and DDBO and for reduction of 4-estrene-3,17-dione and 9,10-phenanthrenequinone (PQ). The Ala231Trp side-chain substitution in 17β-HSDcl abolished and decreased (by 14.6-fold) the initial rates for steroid oxidation and reduction, respectively, while the initial rate for PQ reduction was increased 5.6-fold. The bulky Trp227Ala side-chain substitution in 3HNR enabled oxidation of 4-estrene-17β-ol-3-one, increased the initial rates for reduction of 4-estrene-3,17-dione and PQ by 4.5-fold and 1.5-fold, respectively, while the initial rate for DDBO oxidation was decreased 4.1-fold. Our TLC analysis and docking simulations also support these findings. Our study thus confirms the important roles of Ala231 in 17β-HSDcl and Trp227 in 3HNR, for the selection between larger and smaller substrates. Article from a special issue on steroids and microorganisms.  相似文献   

6.
The plant pathogenic fungus Cochliobolus heterostrophus produces melanin, a black pigment, via 1, 8-dihydroxynaphthalene. The deficiency of C. heterostrophus Brn1(-) mutant was complemented with the cosmid clone pCOS/ML6, screened by heterologous hybridization with the genes involved in the melanin biosynthesis of Alternaria alternata. We determined the DNA sequence of the Brn1 gene and its flanking regions. The Brn1 gene contains one open reading frame consisting of three exons separated by two introns. A comparison of the nucleotide and predicted amino acid sequence of the Brn1 gene with those of other fungal reductase genes involved in melanin biosynthesis indicates significant similarity as well as the pathway of melanin biosynthesis.  相似文献   

7.
3-羟基-3-甲基戊二酰辅酶A还原酶(3-hydroxy-3-methylglutaryl-CoA reductase,HMGR)是植物萜类代谢中甲羟戊酸途径的关键酶,本研究运用cDNA末端快速扩增(RACE)技术,首次从珍稀植物南京椴中克隆出HMGR的全长基因TmiHMGR,其长度为2 160 bp,包含一个1 758 bp的开放阅读框,其推导蛋白TmiHMGR编码585个氨基酸残基,相对分子量为62.9 kD,pI为6.11。将TmiHMGR与其他植物HMGR氨基酸序列构建进化树,结果显示TmiHMGR与苹果的HMGR聚为一枝。采用半定量RT-PCR分析TmiHMGR在根、茎和叶中的表达情况,结果表明该基因在茎中的表达量最高,根和叶中的表达量相对较弱。验证功能的颜色互补实验结果显示,TmiHMGR能够使代谢流明显朝类胡萝卜素合成的方向进行,说明TmiHMGR在萜类产物生物合成中是一个重要因子。  相似文献   

8.
一株产漆酶真菌新月弯孢霉JQH-100在染料脱色中的应用   总被引:2,自引:0,他引:2  
从感染叶斑病的玉米叶片中分离、纯化得到一株高产漆酶的新月弯孢霉Curvularia lunata JQH-100菌株。液体培养Curvularia lunata JQH-100可产漆酶且活性较高,产酶高峰出现在第3天;以ABTS为底物粗酶液的最适反应温度是30℃,最适反应pH是2.8;染料脱色的研究表明,共培养体系对茜素红的脱色率达到了92.6%,对中性红和刚果红的脱色率也都在80%以上;Curvularia lunata JQH-100所产漆酶经纯化后对染料茜素红和刚果红有较高的脱色率,分别为82.1%和81.2%。研究结果显示Curvularia lunata JQH-100在染料废水处理中有较大应用潜力。  相似文献   

9.
10.
11.
The enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR; EC1.1.1.34) catalyzes the first committed step of isoprenoids biosynthesis in MVA pathway. Here we report for the first time the cloning and characterization of a full-length cDNA encoding HMGR (designated as CgHMGR, GenBank accession number EF206343) from hazel (Corylus avellana L. Gasaway), a taxol-producing plant species. The full-length cDNA of CgHMGR was 2064 bp containing a 1704-bp ORF encoding 567 amino acids. Bioinformatic analyses revealed that the deduced CgHMGR had extensive homology with other plant HMGRs and contained two transmembrane domains and a catalytic domain. The predicted 3-D model of CgHMGR had a typical spatial structure of HMGRs. Southern blot analysis indicated that CgHMGR belonged to a small gene family. Expression analysis revealed that CgHMGR expressed high in roots, and low in leaves and stems, and the expression of CgHMGR could be up-regulated by methyl jasmonate (MeJA). The functional color assay in Escherichia coli showed that CgHMGR could accelerate the biosynthesis of beta-carotene, indicating that CgHMGR encoded a functional protein. The cloning, characterization and functional analysis of CgHMGR gene will enable us to further understand the role of CgHMGR involved in taxol biosynthetic pathway in C. avellana at molecular level.  相似文献   

12.
The melanization reaction induced by activated phenoloxidase in arthropods is important in the multiple host defense innate immune reactions, leading to the sequestration and killing of invading microorganisms. This reaction ought to be tightly controlled because excessive formation of quinones and systemic hypermelanization are deleterious to the hosts, suggesting that a negative regulator(s) of melanin synthesis may exist in hemolymph. Here, we report the purification and cloning of a cDNA of a novel 43-kDa protein, from the meal-worm Tenebrio molitor, which functions as a melanization-inhibiting protein (MIP). The deduced amino acid sequence of 352 residues has no homology to known sequences in protein data bases. When the concentration of the 43-kDa protein was examined by Western blot analysis in a melanin-induced hemolymph prepared by injection of Candida albicans into T. molitor larvae, the 43-kDa protein specifically decreased in the melanin-induced hemolymph compared with control hemolymph. Recombinant MIP expressed in a baculovirus system had an inhibitory effect on melanin synthesis in vitro. RNA interference using a synthetic 445-mer double-stranded RNA of MIP injected into Tenebrio larvae showed that melanin synthesis was markedly induced. These results suggest that this 43-kDa MIP inhibits the formation of melanin and thus is a modulator of the melanization reaction to prevent the insect from excessive melanin synthesis in places where it should be inappropriate.  相似文献   

13.
Wang Q  Pi Y  Hou R  Jiang K  Huang Z  Hsieh MS  Sun X  Tang K 《BMB reports》2008,41(2):112-118
Camptothecin is an anti-cancer monoterpene indole alkaloid. The gene encoding 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (designated as CaHDR), the last catalytic enzyme of the MEP pathway for terpenoid biosynthesis, was isolated from camptothecin-producing Camptotheca acuminata. The full-length cDNA of CaHDR was 1686 bp encoding 459 amino acids. Comparison of the cDNA and genomic DNA of CaHDR revealed that there was no intron in genomic CaHDR. Southern blot analysis indicated that CaHDR belonged to a low-copy gene family. RT-PCR analysis revealed that CaHDR expressed constitutively in all tested plant organs with the highest expression level in flowers, and the expression of CaHDR could be induced by 100 microM methyl-jasmonate (MeJA), but not by 100 mg/L salicylic acid (SA) in the callus of C. acuminata. The complementation of CaHDR in Escherichia coli ispH mutant MG1655 demonstrated its function.  相似文献   

14.
Isolate SS7 of Sclerotinia sclerotiorum was previously shown to produce and excrete into agar medium copious amounts of the melanin precursor 1,8-dihydroxynaphthalene. Much reduced quantities of this product were produced in the presence of tricyclazole, an inhibitor of pentaketide melanin biosynthesis. In this study, we demonstrate that young cultures of isolate SS7 produce 1,8-dihydroxynaphthalene monoglucoside, a new natural product not previously reported from fungi. When cultured in the presence of tricyclazole, such young cultures also accumulated two new monoglucosides of 1,3,8-trihydroxynaphthalene, which, as well as 1,8-dihydroxynaphthalene monoglucoside, were also obtained from cultures of two other isolates of S. sclerotiorum. It is proposed that rapid glucosylation of 1,3,8-trihydroxynaphthalene in young tricyclazole-inhibited S. sclerotiorum cultures accounts for the failure to observe 2-hydroxyjuglone or other metabolites usually associated with blockage of the pentaketide pathway to melanin in fungi.  相似文献   

15.
Δ8途径是合成多不饱和脂肪酸的替代途径,Δ8-脂肪酸脱氢酶是该途径的关键酶之一。根据已报道的Δ8-脂肪酸脱氢酶基因设计引物,分别从小眼虫藻基因组DNA和cDNA中扩增得到该基因片段,序列分析表明:结构基因长1 266 bp,编码421个氨基酸;该基因没有内含子,比已经报道的Δ8-脂肪酸脱氢酶基因长6 bp,并且N末端序列也有所不同。利用酿酒酵母的载体pYES2.0构建Δ8-脂肪酸脱氢酶表达载体pYEFD,并转化到营养缺陷型酿酒酵母菌株INVSc1中,在选择培养基中筛选得到酿酒酵母转化菌株YD8。YD8在合适的培养条件下,添加外源底物二十碳二烯酸和二十碳三烯酸并诱导基因表达。脂肪酸甲酯气相色谱分析表明小眼虫藻Δ8-脂肪酸脱氢酶基因在酿酒酵母中获得了高效表达,将二十碳二烯酸和二十碳三烯酸分别转化成二高-γ-亚麻酸和二十碳四烯酸,其底物转化率分别达到了31.2%和46.3%。  相似文献   

16.
The yeast Torula corallina is a strong erythritol producer that is used in the industrial production of erythritol. However, melanin accumulation during culture represents a serious problem for the purification of erythritol from the fermentation broth. Melanin biosynthesis inhibitors such as 3,4-dihydroxyphenylalanine and 1,8-dihydroxynaphthalene (DHN)-melanin inhibitors were added to the T. corallina cultures. Only the DHN-melanin inhibitors showed an effect on melanin production, which suggests that the melanin formed during the culturing of T. corallina is derived from DHN. This finding was confirmed by the detection of a shunt product of the pentaketide pathway, flaviolin, and elemental analysis. Among the DHN-melanin inhibitors, tricyclazole was the most effective. Supplementation with tricyclazole enhanced the production of erythritol while significantly inhibiting the production of DHN-melanin and DHN-melanin biosynthetic enzymes, such as trihydroxynaphthalene reductase. The erythrose reductase from T. corallina was purified to homogeneity by ion-exchange and affinity chromatography. Purified erythrose reductase was significantly inhibited in vitro in a noncompetitive manner by elevated levels of DHN-melanin. In contrast, the level of erythrose reductase activity was unaffected by increasing concentrations of tricyclazole. These results suggest that supplemental tricyclazole reduces the production of DHN-melanin, which may lead to a reduction in the inhibition of erythrose reductase and a higher yield of erythritol. This is the first report to demonstrate that melanin biosynthesis inhibitors increase the production of a sugar alcohol in T. corallina.  相似文献   

17.
《Experimental mycology》1989,13(1):77-84
Color mutants of Cochliobolus miyabeanus defective in melanin biosynthesis were isolated. Although the wild-type strain KU-13 formed dark green colonies, color mutants formed white, brown, and gray colonies or white colonies with red pigment secretion. From the white mutant which secreted red pigment, designated scy, a melanin precursor which restored melanization of albino mutants alm-1 was isolated and identified as scytalone. This indicated that scy mutant was defective in the conversion of scytalone to 1,3,8-trihydroxynaphthalene and that melanin of this fungus is of pentaketide origin formed from oxidation of 1,8-dihydroxynaphthalene. Albino mutants alm-1 were considered to be defective in pentaketide cyclization and brown mutants brm were considered to be defective in the conversion of 1,3,8-trihydroxynaphthalene to vermelone. Albino mutants alm-2 whose coloration was not restored by application of scytalone were also isolated. The alm-2 gene was believed to be a gene transactively regulating the pentaketide cyclization and conversion of scytalone. From crossing experiments among the color mutants, it was indicated that alm-1, alm-2, and brm were linked and that scy segregates independently of these three mutant loci. Crossing of a methionine requiring mutant with alm and scy indicated that the three loci segregate independently of each other.  相似文献   

18.
Cloning and expression of human aldose reductase   总被引:5,自引:0,他引:5  
The complete amino acid sequence of human retina and muscle aldose reductase was determined by nucleotide analysis of cDNA clones isolated using synthetic oligonucleotide probes based on partial amino acid sequences of purified human psoas muscle aldose reductase. The cDNA sequence differs substantially in the noncoding and coding regions of recently published sequences of this enzyme. The mRNA for aldose reductase was abundantly expressed in HeLa cells, but only scarcely in a neuroblastoma cell line. Recombinant baculovirus containing one of the muscle cDNA clones was constructed and used to infect Spodoptera frugiperda (SF9) cells. A prominent protein with an apparent molecular size of 36 kDa was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the culture medium as well as in the homogenate of SF9 cells after 2 days of infection. Culture medium or the supernatant fraction of cell homogenates containing this protein had high aldose reductase activity which showed characteristics of the reported human enzyme. These findings indicate that the amino acid sequence reported in this paper represents human retina and muscle aldose reductase and that functional human aldose reductase can be expressed in large amounts in a baculovirus expression system. The result should facilitate refined structural analysis and the development of new specific aldose reductase inhibitors for the treatment of diabetic complications.  相似文献   

19.
20.
The yeast Torula corallina is a strong erythritol producer that is used in the industrial production of erythritol. However, melanin accumulation during culture represents a serious problem for the purification of erythritol from the fermentation broth. Melanin biosynthesis inhibitors such as 3,4-dihydroxyphenylalanine and 1,8-dihydroxynaphthalene (DHN)-melanin inhibitors were added to the T. corallina cultures. Only the DHN-melanin inhibitors showed an effect on melanin production, which suggests that the melanin formed during the culturing of T. corallina is derived from DHN. This finding was confirmed by the detection of a shunt product of the pentaketide pathway, flaviolin, and elemental analysis. Among the DHN-melanin inhibitors, tricyclazole was the most effective. Supplementation with tricyclazole enhanced the production of erythritol while significantly inhibiting the production of DHN-melanin and DHN-melanin biosynthetic enzymes, such as trihydroxynaphthalene reductase. The erythrose reductase from T. corallina was purified to homogeneity by ion-exchange and affinity chromatography. Purified erythrose reductase was significantly inhibited in vitro in a noncompetitive manner by elevated levels of DHN-melanin. In contrast, the level of erythrose reductase activity was unaffected by increasing concentrations of tricyclazole. These results suggest that supplemental tricyclazole reduces the production of DHN-melanin, which may lead to a reduction in the inhibition of erythrose reductase and a higher yield of erythritol. This is the first report to demonstrate that melanin biosynthesis inhibitors increase the production of a sugar alcohol in T. corallina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号