首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Lipoprotein lipase (LPL) activity was studied in adipose, muscle and lung tissues of post-weanling rats 48 and 96 hours after experimentally induced diabetes by streptozotocin administration. Weight gain was reduced, and blood glucose level increased about 3-4 fold above the control level as an indication of the diabetic state. LPL activity in brown and white adipose tissues decreased in diabetic rats to 10-30% of the control level. In soleus muscle the LPL activity was slightly enhanced 96 hours after the streptozotocin injection. In cardiac muscle the LPL activity was markedly increased already 48 hours after the administration of streptozotocin and the increase remained significant until 96 hours. There was in the pulmonary tissue also an increase of LPL activity of diabetic rats, although this was significant only 96 hours after streptozotocin treatment. The results suggest marked tissue specific variation in the LPL activity. Moreover, tissue responses to experimentally induced diabetes vary. In adipose tissue the decrease in the LPL activity suggests that lipid transport to adipocytes is decreased while an increase in skeletal and cardiac muscles and in lung tissue proposes that their lipid utilization is enhanced.  相似文献   

2.
Lipoprotein lipase (LPL) and hepatic lipase (HL) enzyme activities were previously reported to be regulated during development, but the underlying molecular events are unknown. In addition, little is known about LPL evolution. We cloned and sequenced a complete mouse LPL cDNA. Comparison of sequences from mouse, human, bovine, and guinea pig cDNAs indicated that the rates of evolution of mouse, human, and bovine LPL are quite low, but guinea pig LPL has evolved several times faster than the others. 32P-Labeled mouse LPL and rat HL cDNAs were used to study lipase mRNA tissue distribution and developmental regulation in the rat. Northern gel analysis revealed the presence of a single 1.87 kb HL mRNA species in liver, but not in other tissues including adrenal and ovary. A single 4.0 kb LPL mRNA species was detected in epididymal fat, heart, psoas muscle, lactating mammary gland, adrenal, lung, and ovary, but not in adult kidney, liver, intestine, or brain. Quantitative slot-blot hybridization analysis demonstrated the following relative amounts of LPL mRNA in rat tissues: adipose, 100%; heart, 94%; adrenal, 6.6%; muscle, 3.8%; lung, 3.0%; kidney, 0%; adult liver, 0%. The same quantitative analysis was used to study lipase mRNA levels during development. There was little postnatal variation in LPL mRNA in adipose tissue; maximal levels were detected at the earliest time points studied for both inguinal and epididymal fat. In heart, however, LPL mRNA was detected at low levels 6 days before birth and increased 278-fold as the animals grew to adulthood.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
We studied the variations caused by stress in lipoprotein lipase (LPL) activity, LPL-mRNA, and local blood flow in LPL-rich tissues in the rat. Stress was produced by body immobilization (Immo): the rat's limbs were taped to metal mounts, and its head was placed in a plastic tube. Chronic stress (2 h daily of Immo) decreased total LPL activity in mesenteric and epididymal white adipose tissue (WAT) and was accompanied by a weight reduction of these tissues. In limb muscle, heart, and adrenals, total LPL activity and mRNA levels increased, and, in plasma, LPL activity and mass also increased. Acute stress (30-min Immo) caused a decrease in total LPL activity only in retroperitoneal WAT and an increase in preheparin plasma active LPL, but the overall weight of this tissue did not vary significantly. We propose an early release of the enzyme from this tissue into the bloodstream by some unknown extracellular pathways or other local mechanisms. These changes in this key energy-regulating enzyme are probably induced by catecholamines. They modify the flow of energy substrates between tissues, switching the WAT from importer to exporter of free fatty acids and favoring the uptake by muscle of circulating triacylglycerides for energy supply. Moreover, we found that acute stress almost doubled blood flow in all WAT studied, favoring the export of free fatty acids.  相似文献   

5.
Lipoprotein lipase (LPL) is regulated in a tissue-specific manner; exercise increases LPL activity in muscle at the same time it is reduced in adipose tissue. The purpose of this study was to determine the relationship between LPL activity and LPL mRNA in muscle and adipose tissue in rats exposed to one bout of exercise. Immediately after a 2-h swim, LPL activity [pmol free fatty acids (FFA).min-1.mg tissue-1] in the exercised animals was reduced 43% in adipose tissue (110 +/- 26 to 63 +/- 17) and increased almost twofold in the soleus muscle (203 +/- 26 to 383 +/- 59) compared with sedentary control animals. At the same time, LPL mRNA was reduced 42% in adipose tissue and increased 50 and 100% in the red vastus and white vastus muscles, respectively. Twenty-four hours after the swim, LPL activity had returned to control levels in adipose tissue and the soleus muscle. At hour 24 of recovery, LPL mRNA was still reduced 23% in the adipose tissue of exercised animals but was not significantly different between exercised and control animals in any of the muscle tissues analyzed. Changes in total RNA concentration could not account for the changes in relative LPL mRNA expression. The relationship between LPL enzyme activity and LPL mRNA in muscle and adipose tissue was +0.86 and +0.93 at 0 and 24 h postexercise, respectively. Thus the tissue-specific changes in enzyme activity induced by exercise could be mediated, in part, through pretranslational control.  相似文献   

6.
The plasma cholesteryl ester transfer protein (CETP) catalyzes the transfer of cholesteryl esters from high density lipoproteins (HDL) to triglyceride-rich lipoproteins and plays a major role in the catabolism of HDL. Lipoprotein lipase (LPL) is the rate-limiting enzyme for hydrolysis of circulating triglyceride and is involved in HDL formation. We show that tissues containing LPL are major sources of CETP mRNA in several mammalian species, including some with low cholesteryl ester transfer activity in plasma. In hamsters, adipose tissue and heart were found to be the richest sources of both CETP and LPL mRNA; in situ hybridization studies showed that the same cell types (i.e. adipocytes or myocytes) contained CETP and LPL mRNA in these tissues. Isolated adipocytes synthesized active CETP. Dietary studies revealed a complex pattern of response of CETP mRNA levels in different tissues, which showed partial similarity to the changes in LPL mRNA abundance. However, high cholesterol diets resulted in increased CETP mRNA abundance in adipose tissue, heart, and skeletal muscle, without equivalent changes in LPL mRNA. Plasma HDL cholesteryl ester levels showed strong inverse correlations with CETP mRNA abundance in adipose tissue. The results suggest a conserved function of CETP in adipose tissue and heart, such as a co-ordinate action with LPL to enhance HDL turnover. Although there is considerable overlap in the tissue- and cell-specific pattern of CETP and LPL gene expression, dietary studies revealed only limited parallelism in response at the mRNA level. The increase in CETP mRNA in peripheral tissues in response to increased dietary cholesterol suggests that local induction of CETP synthesis may help to recycle cholesterol deposited in these tissues during lipolysis of dietary lipoproteins.  相似文献   

7.
Hormone-sensitive lipase (HSL) is believed to play an important role in the mobilization of fatty acids from triglycerides (TG), diglycerides, and cholesteryl esters in various tissues. Because HSL-mediated lipolysis of TG in adipose tissue (AT) directly feeds non-esterified fatty acids (NEFA) into the vascular system, the enzyme is expected to affect many metabolic processes including the metabolism of plasma lipids and lipoproteins. In the present study we examined these metabolic changes in induced mutant mouse lines that lack HSL expression (HSL-ko mice). During fasting, when HSL is normally strongly induced in AT, HSL-ko animals exhibited markedly decreased plasma concentrations of NEFA (-40%) and TG (-63%), whereas total cholesterol and HDL cholesterol levels were increased (+34%). Except for the increased HDL cholesterol concentrations, these differences were not observed in fed animals, in which HSL activity is generally low. Decreased plasma TG levels in fasted HSL-ko mice were mainly caused by decreased hepatic very low density lipid lipoprotein (VLDL) synthesis as a result of decreased NEFA transport from the periphery to the liver. Reduced NEFA transport was also indicated by a depletion of hepatic TG stores (-90%) and strongly decreased ketone body concentrations in plasma (-80%). Decreased plasma NEFA and TG levels in fasted HSL-ko mice were associated with increased fractional catabolic rates of VLDL-TG and an induction of the tissue-specific lipoprotein lipase (LPL) activity in cardiac muscle, skeletal muscle, and white AT. In brown AT, LPL activity was decreased. Both increased VLDL fractional catabolic rates and increased LPL activity in muscle were unable to provide the heart with sufficient NEFA, which led to decreased tissue TG levels in cardiac muscle. Our results demonstrate that HSL deficiency markedly affects the metabolism of TG-rich lipoproteins by the coordinate down-regulation of VLDL synthesis and up-regulation of LPL in muscle and white adipose tissue. These changes result in an "anti-atherogenic" lipoprotein profile.  相似文献   

8.
The spontaneous secretion of lipoprotein lipase has been examined in adipose cells of mouse Ob17, Ob17SA and 3T3-F442A clonal lines as well as in rat adipose cells in primary culture. Striking differences are observed both in serum-free and serum-supplemented media, rat adipose cells and 3T3-F442A cells being the most active. Insulin from 10(-11) M to 10(-9) M was able to modulate the rate of LPL secretion from 2- to 4-fold. The stimulatory effect of insulin on this process occurred within 30 min in cells treated or not with cycloheximide. It is concluded that insulin is able to modulate the rate of LPL secretion independently of the synthesis of new enzyme molecules on a short-term basis and within a physiological range of concentrations.  相似文献   

9.
Radiation inactivation was used to determine the functional molecular weight of lipoprotein lipase (LPL) in rat heart and adipose tissues. This technique reveals the size of the smallest unit required to carry out the enzyme function. Supernatant fractions of the tissue homogenates were exposed to high energy electrons at -135 degrees C. LPL activity showed a simple exponential decay in all samples tested. Because changes in nutritional state shift the distribution of LPL between the capillary endothelial and parenchymal cells within heart and adipose tissues, fasted and refed rats were used for the radiation studies. The functional molecular weight was calculated to be 127,000 +/- 15,000 (mean +/- SD) daltons for heart and adipose. Thus, the smallest unit required for enzyme function was the same in both of these tissues and did not vary with nutritional state. The data suggest that, compared with LPL monomer sizes reported in the range 55,000 to 72,000, this active unit constitutes a dimer.  相似文献   

10.
We report here a study of the developmental and genetic control of tissue-specific expression of lipoprotein lipase, the enzyme responsible for hydrolysis of triglycerides in chylomicrons and very low density lipoproteins. Lipoprotein lipase (LPL) mRNA is present in a wide variety of adult rat and mouse tissues examined, albeit at very different levels. A remarkable increase in the levels of LPL mRNA occurs in heart over a period of several weeks following birth, closely paralleling developmental changes in lipase activity and myocardial beta-oxidation capacity. Large increases in LPL mRNA also occur during differentiation of 3T3L1 cells to adipocytes. As previously reported, at least two separate genetic loci control the tissue-specific expression of LPL activity in mice. One of the loci, controlling LPL activity in heart, is associated with an alteration in LPL mRNA size, while the other, controlling LPL activity in adipose tissue, appears to affect the translation or post-translational expression of LPL. To examine whether these genetic variations are due to mutations of the LPL structural locus, we mapped the LPL gene to a region of mouse chromosome 8 using restriction fragment-length polymorphisms and analysis of hamster-mouse somatic cell hybrids. This region is homologous to the region of human chromosome 8 which contains the human LPL gene as judged by the conservation of linked genetic markers. Genetic variations affecting LPL expression in heart cosegregated with the LPL gene, while variations affecting LPL expression in adipose tissue did not. Furthermore, Southern blotting analysis indicates that LPL is encoded by a single gene and, thus, the genetic differences are not a consequence of independent regulation of two separate genes in the two tissues. These results suggest the existence of cis-acting elements for LPL gene expression that operate in heart but not adipose tissue. Our results also indicate that two genetic mutations resulting in deficiencies of LPL in mice, the W mutation on chromosome 5 and the cld mutation on mouse chromosome 17, do not involve the LPL structural gene locus. Finally, we show that the gene for hepatic lipase, a member of a gene family with LPL, is unlinked to the gene for LPL. This indicates that combined deficiencies of LPL and hepatic lipase, observed in humans as well as in certain mutant strains of mice, do not result from focal disruptions of a cluster of lipase genes.  相似文献   

11.
12.
The effects of insulin and dexamethasone on the secretion of lipoprotein lipase (LPL) by mouse peritoneal macrophages were examined in vitro. Macrophages from either normal or thioglycollate-primed mice continuously secreted LPL into the culture medium. The time courses and the amounts of enzyme secretion and the responses to the hormones were essentially the same in resident or thioglycollate-primed macrophages. Insulin did not enhance the secretion of this enzyme by macrophages, even though a marked effect of this hormone on the enzyme in adipose tissue has been well established. Dexamethasone, which has been reported to stimulate the secretion of LPL in the heart, suppressed the secretion of LPL by macrophages. The present study is the first report to deal with the effect of hormones on the secretion of LPL by macrophages, and clearly demonstrates that insulin does not play an important role in the regulation of LPL activity in macrophages. Dexamethasone also showed a different effect on macrophage LPL compared to that on the enzyme in other tissues. This difference in the regulation of LPL may be relevant to the possibly different role of this enzyme in macrophages as compared to other tissues such as adipose tissue, muscle, or heart.  相似文献   

13.
Much of the knowledge about the cell biology of lipoprotein lipase (LPL) in vitro has been gained from adipose tissue model systems. However, the importance of skeletal muscle lipoprotein lipase (SMLPL) to both lipoprotein and muscle metabolism remains unclear. Although the production of LPL in cultured myocytes has been documented, the amount of enzyme activity produced is small. To develop a more suitable tissue culture model for SMLPL, mouse C(2)C(12) myoblasts were stably transduced with a retroviral vector encoding the full-length human LPL (hLPL) cDNA. Control cells were transduced with a vector encoding beta-galactosidase. LPL expression was assayed as a function of cell growth by measuring LPL activity on days 3, 7, 9, 11, and 14 after subculture. The hLPL-transduced myoblasts increasingly overexpressed both heparin-releasable (HR) and intracellular (IN) LPL activity compared to nontransduced myoblasts (P < 0.001 at Day 11) and myoblasts transduced with the control vector (P < 0.001 at Day 11). This increase occurred while LPL mRNA levels remained stable between days 3 and 14. As expected, IN LPL activity was also increased in the transduced cells. High levels of LPL activity were also obtained after differentiating the C(2)C(12) cells into myotubes by serum deprivation. Additionally, throughout the time course, C(2)/LPL cells had greater amounts of intracellular triglyceride than both the C(2)C(12) and the C(2)/beta-GEO cells (P = 0.005 and P < 0.001, respectively) with the largest differences seen on day 14 of the time course (P = 0.001, C(2)/LPL vs C(2)C(12) (r) or C(2)/beta-GEO cells). Thus, C(2)C(12) myoblasts stably transduced with hLPL markedly overexpressed both HR and IN LPL activity compared to control cells which, in turn, was associated with increases in intracellular triglyceride content. Because LPL regulation in tissues is mostly posttranslational, this new in vitro model will permit the in-depth study of the posttranslational regulation of SMLPL and provide new insights into the fate of lipoprotein-derived fatty acids in muscle.  相似文献   

14.
Activation of protein kinase A by catecholamines inhibits lipoprotein lipase (LPL) activity through the elaboration of an RNA binding complex, which inhibits LPL translation by binding to the 3'-untranslated region of the LPL mRNA. To better define this process, we reconstituted the inhibitory RNA binding complex in vitro and demonstrated that the K homology (KH) domain of A kinase anchor protein (AKAP) 121/149 plays a vital role in the inhibition of LPL translation. Inhibition of LPL translation occurred in vitro only when the Calpha subunit, R subunit, and AKAP 149 were present. Using different glutathione-S-transferase fusion proteins of AKAP 149, sequences containing the KH domain were required for inhibition of LPL translation, and the inhibition of AKAP 121 expression in 3T3-F442A adipocytes with short interfering RNA resulted in loss of epinephrine-mediated translation inhibition. After epinephrine injection into mice, LPL activity was inhibited in white adipose tissue but not in brown adipose tissue (BAT) or muscle. LPL activity and synthetic rate were inhibited in vitro by the addition of epinephrine to 3T3-F442A adipocytes, but there was no effect in L6 muscle cells and cultures of brown adipocytes. Corresponding with these differences in LPL translation, AKAP 121 protein and mRNA were abundantly expressed in mouse white adipose tissue, but was either very low or undetectable in BAT and muscle. Thus, AKAP 121/149 contains a KH region that is essential to the translation inhibition of LPL in response to epinephrine. BAT and muscle do not express significant AKAP 121/149, and this likely explains some of the tissue-specific differences in LPL regulation.  相似文献   

15.
Lipoprotein lipase (LPL) is a key enzyme in lipoprotein metabolism by virtue of its capacity to hydrolyze triglycerides circulating in the form of lipoprotein particles. Here we analyzed the fasting effects of LPL in gilthead sea bream (Sparus aurata) and also present the first study in fish of the role of insulin as a potential modulator of both LPL activity and expression. Fasting for 2 weeks provoked a clear decrease in adipose tissue LPL activity, concomitant with lower levels of plasma insulin, while no effects were observed in red muscle. To elucidate the specific role of insulin, increases of plasma insulin were experimentally induced by arginine and insulin injections. However, arginine predominantly stimulated glucagon over insulin secretion in this fish species while LPL activity did not change significantly in adipose tissue. Instead, insulin administration induced an increase in adipose tissue LPL activity 3 h after the injection, whereas LPL activity in red muscle was not affected. Changes in LPL activity were accompanied by an increase in LPL mRNA levels in the adipose tissue of insulin-injected gilthead sea bream, although changes in LPL expression were delayed in time with respect to variations in LPL activity. Finally, LPL mRNA levels in red muscle were similar between control and insulin-injected gilthead sea bream, suggesting that insulin does not play a direct role in the regulation of LPL in this tissue. The current study shows that LPL activity is regulated by nutritional condition and underscores the importance of insulin as a modulator of LPL activity and expression in the adipose tissue of gilthead sea bream.  相似文献   

16.
The aim of the present study was to assess whether the glucocorticoid corticosterone (Cort) modulates the effects of leptin on food intake and lipid deposition. Rats were subjected to a 6-day intracerebroventricular infusion of leptin and were either sham-adrenalectomized (Sham-ADX) or ADX and supplemented with 0 (C0), 40 (C40), or 80 mg (C80) of Cort. Investigation of potential peripheral sites of interaction of leptin and Cort included liver and plasma triglyceride (TG) content and lipoprotein lipase (LPL) activity in adipose and muscle tissues. The study confirmed the respective anorectic and orexigenic effects of leptin and Cort and revealed that the leptin-induced reduction in food intake was dampened by the high dose of Cort replacement. Such an interaction did not, however, extend to body and adipose tissue weights, which were lowered by leptin infusion independently of the Cort status. Leptin and ADX significantly reduced liver TG content and triglyceridemia, whereas Cort replacement significantly increased these variables. Central infusion of leptin also lowered plasma insulin levels, accompanied by a reduction in LPL activity of storage tissues (inguinal and epididymal white adipose tissue, 2- and 3-fold, respectively). In contrast, leptin infusion increased LPL activity in oxidative tissues (soleus and vastus lateralis muscles, 3- and 4-fold, respectively). Cort replacement prevented the ADX-induced fall in epididymal LPL activity but failed to do so in leptin-infused rats. The study demonstrates that, whereas the anorectic effect of leptin is dampened by high but physiological plasma levels of corticosterone, leptin can produce its effects on body weight, lipid transport and accumulation, and adipose and muscle LPL activity in the absence or presence of an intact hypothalamic-pituitary-adrenal axis.  相似文献   

17.
The effects of dexamethasone (dex) on newly differentiated adipocytes in primary culture derived from mesenteric, retroperitoneal, epididymal, and inguinal subcutaneous adipose tissues of male rats were studied. The degree of differentiation was similar in these adipose precursor cells derived from different regions as assessed by lipoprotein lipase (LPL) activity, an early marker of adipocyte differentiation. LPL activity was increased by addition of dex, and no differences in degree of activation were observed in cells from different adipose tissue regions. Development of both basal and isoproterenol-stimulated lipolysis was also similar in adipose precursor cells from different adipose tissue regions. Dex addition enhanced the isoproterenol-stimulated lipolysis with no regional differences. Studies of binding of [3H]-dex showed no regional differences in either binding affinity or maximal binding capacity. It is concluded that dex stimulates both LPL activity and lipolytic activity in newly differentiated rat adipocytes in primary culture. This seems, however, not to vary in magnitude in cells obtained from different adipose tissue regions. This might be due to the apparent similarity of number and affinity of glucocorticoid binding sites. Regional variations in glucocorticoid regulated LPL and lipolytic activity in adipose tissue might therefore not be due to inherent differences between adipocytes.  相似文献   

18.
  • 1.1. Lipoprotein lipase (LPL) was isolated from five rat tissues: white adipose, skeletal muscle, cardiac muscle, mammary gland and lung.
  • 2.2. Specific activity of the preparations varied from 75 U/mg for skeletal muscle and 720 U/mg for adipose.
  • 3.3. The preparations were further analysed using SDS-PAGE and a single component identified. The mol. wt of 61,000 Da of this component was consistent for all five of the tissue sources.
  • 4.4. Significant differences in the values of the isoelectric points of the enzyme species were revealed. The values varied from 7.23 (SEM 0.022) for cardiac and lung to 7.51 (SEM 0.037) for mammary.
  • 5.5. Two-dimensional electrophoresis, using isoelectric focusing in the first dimension and SDS-PAGE in the second revealed differences in the patterns of stained material derived from the five tissue sources.
  相似文献   

19.
Synthesis and regulation of lipoprotein lipase in the hippocampus   总被引:1,自引:0,他引:1  
Lipoprotein lipase (LPL) expression was determined in adult rat hippocampus and compared to enzyme expression in other brain regions. Hippocampus LPL mRNA levels were at least 2.5-fold higher than those detected in the cerebral cortex, cerebellum, and remaining brain regions. Enzyme mass and activity levels in the hippocampus were also increased to a similar degree. De novo synthesis of LPL in the hippocampus was confirmed by [35S]methionine-labeling of the tissue and identification of a 57 kDa protein obtained by immunoprecipitation. Addition of an excess amount of bovine LPL completely prevented the immunoprecipitation of this protein. The effect of nutritional modulations on brain LPL activity was determined after a 12-h fast. While no significant changes were observed in other regions of the brain, hippocampus LPL activity in fasted rats increased by 60% compared to the fed control group. Simultaneously, fasting reduced adipose LPL activity by 60%. Intraperitoneal injection of ACTH over a 5-day period had no effect on hippocampus LPL activity, while adipose LPL levels increased 2.3-fold and heart LPL levels decreased 1.4-fold. We conclude that LPL is synthesized, active and regulated in a tissue-specific manner in the adult rat hippocampus.  相似文献   

20.
The aim of the present study was to evaluate the effects of 24 hours of starvation on lipoprotein lipase (LPL) activity in various depots of white and brown adipose tissues in control rats and in rats with two different degrees of overweight, both induced by dietary treatment. In control rats, no changes in LPL immunoreactive mass were observed in either white or brown adipose tissues after fasting, whereas the effects of food deprivation on enzyme activity were opposite in white versus brown adipose tissues. The LPL activity response to fasting was impaired by obesity: White adipose depots of cafeteria obese rats showed a lower ability to downregulate LPL during fasting and the increased LPL activity induced by fasting in brown adipose depots was less intense in the obese rats compared with control animals. When the degree of overweight was reduced, the differences between obese and control rats were also attenuated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号