首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bradyrhizobium strains isolated in Europe from Genisteae and serradella legumes form a distinct lineage, designated clade II, on nodulation gene trees. Clade II bradyrhizobia appear to prevail also in the soils of Western Australia and South Africa following probably accidental introduction with seeds of their lupine and serradella hosts. Given this potential for dispersal, we investigated Bradyrhizobium isolates originating from a range of native New World lupines, based on phylogenetic analyses of nodulation (nodA, nodZ, noeI) and housekeeping (atpD, dnaK, glnII, recA) genes. The housekeeping gene trees revealed considerable diversity among lupine bradyrhizobia, with most isolates placed in the Bradyrhizobium japonicum lineage, while some European strains were closely related to Bradyrhizobium canariense. The nodA gene tree resolved seven strongly supported groups (clades I to VII) that correlated with strain geographical origins and to some extent with major Lupinus clades. All European strains were placed in clade II, whereas only a minority of New World strains was placed in this clade. This work, as well as our previous studies, suggests that clade II diversified predominately in the Old World, possibly in the Mediterranean. Most New World isolates formed subclade III.2, nested in a large "pantropical" clade III, which appears to be New World in origin, although it also includes strains originating from nonlupine legumes. Trees generated using nodZ and noeI gene sequences accorded well with the nodA tree, but evidence is presented that the noeI gene may not be required for nodulation of lupine and that loss of this gene is occurring.  相似文献   

2.
We applied a multilocus phylogenetic approach to elucidate the origin of serradella and lupin Bradyrhizobium strains that persist in soils of Western Australia and South Africa. The selected strains belonged to different randomly amplified polymorphic DNA (RAPD)-PCR clusters that were distinct from RAPD clusters of applied inoculant strains. Phylogenetic analyses were performed with nodulation genes (nodA, nodZ, nolL, noeI), housekeeping genes (dnaK, recA, glnII, atpD), and 16S-23S rRNA intergenic transcribed spacer sequences. Housekeeping gene phylogenies revealed that all serradella and Lupinus cosentinii isolates from Western Australia and three of five South African narrow-leaf lupin strains were intermingled with the strains of Bradyrhizobium canariense, forming a well supported branch on each of the trees. All nodA gene sequences of the lupin and serradella bradyrhizobia formed a single branch, referred to as clade II, together with the sequences of other lupin and serradella strains. Similar patterns were detected in nodZ and nolL trees. In contrast, nodA sequences of the strains isolated from native Australian legumes formed either a new branch called clade IV or belonged to clade I or III, whereas their nonsymbiotic genes grouped outside the B. canariense branch. These data suggest that the lupin and serradella strains, including the strains from uncultivated L.cosentinii plants, are descendants of strains that most likely were brought from Europe accidentally with lupin and serradella seeds. The observed dominance of B. canariense strains may be related to this species' adaptation to acid soils common in Western Australia and South Africa and, presumably, to their intrinsic ability to compete for nodulation of lupins and serradella.  相似文献   

3.
Forty three Bradyrhizobium strains isolated in Poland from root nodules of lupin species (Lupinus albus, L. angustifolius and L. luteus), and pink serradella (Ornithopus sativus) were examined based on phylogenetic analyses of three housekeeping (atpD, glnII and recA) and nodulation (nodA) gene sequences. Additionally, seven strains originating from root-nodules of yellow serradella (O. compressus) from Asinara Island (Italy) were included in this study. Phylogenetic trees revealed that 15 serradella strains, including all yellow serradella isolates, and six lupin strains grouped in Bradyrhizobium canariense (BC) clade, whereas eight strains from pink serradella and 15 lupin strains were assigned to Bradyrhizobium japonicum (BJ1). Apparently, these species are the two dominant groups in soils of central Europe, in the nodules of lupin and serradella plants. Only three strains belonged to other chromosomal lineages: one formed a cluster that was sister to B. canariense, one strain grouped outside the branch formed by B. japonicum super-group, and one strain occupied a distant position in the genus Bradyrhizobium, clustering with strains of the Rhodopseudomonas genus. All strains in nodulation nodA gene tree grouped in a cluster referred to as Clade II, which is in line with earlier data on this clade dominance among Bradyrhizobium strains in Europe. The nodA tree revealed four well-supported subgroups within Clade II (II.1-II.4). Interestingly, all B. canariense strains clustered in subgroup II.1 whereas B. japonicum strains dominated subgroups II.2-II.4.  相似文献   

4.
We applied a multilocus phylogenetic approach to elucidate the origin of serradella and lupin Bradyrhizobium strains that persist in soils of Western Australia and South Africa. The selected strains belonged to different randomly amplified polymorphic DNA (RAPD)-PCR clusters that were distinct from RAPD clusters of applied inoculant strains. Phylogenetic analyses were performed with nodulation genes (nodA, nodZ, nolL, noeI), housekeeping genes (dnaK, recA, glnII, atpD), and 16S-23S rRNA intergenic transcribed spacer sequences. Housekeeping gene phylogenies revealed that all serradella and Lupinus cosentinii isolates from Western Australia and three of five South African narrow-leaf lupin strains were intermingled with the strains of Bradyrhizobium canariense, forming a well supported branch on each of the trees. All nodA gene sequences of the lupin and serradella bradyrhizobia formed a single branch, referred to as clade II, together with the sequences of other lupin and serradella strains. Similar patterns were detected in nodZ and nolL trees. In contrast, nodA sequences of the strains isolated from native Australian legumes formed either a new branch called clade IV or belonged to clade I or III, whereas their nonsymbiotic genes grouped outside the B. canariense branch. These data suggest that the lupin and serradella strains, including the strains from uncultivated L. cosentinii plants, are descendants of strains that most likely were brought from Europe accidentally with lupin and serradella seeds. The observed dominance of B. canariense strains may be related to this species' adaptation to acid soils common in Western Australia and South Africa and, presumably, to their intrinsic ability to compete for nodulation of lupins and serradella.  相似文献   

5.
Two sequenced nodulation regions of lupin Bradyrhizobium sp. WM9 carried the majority of genes involved in the Nod factor production. The nod region I harbored: nolA, nodD, nodA, nodB, nodC, nodS, nodI, nodJ, nolO, nodZ, fixR, nifA, fixA, nodM, nolK and noeL. This gene arrangement resembled that found in the nodulation region of Bradyrhizobium japonicum USDA110, however strain WM9 harbored only one nodD gene copy, while the nodM, nolK and noeL genes had no counterparts in the 410 kb symbiotic region of strain USDA110. Region II harbored nolL and nodW, but lacked an nodV gene. Both regions carried ORFs that lacked similarity to the published USDA110 sequences, though they had homologues in symbiotic regions of Rhizobium etli, Sinorhizobium sp. NGR234 and Mesorhizobium loti. These differences in gene content, as well as a low average sequence identity (70%) of symbiotic genes with respect to B. japonicum USDA110 were in contrast with the phylogenetic relationship of USDA110 and WM9 revealed by the analysis of 16S rDNA and dnaK sequences. This most likely reflected an early divergence of symbiotic loci, and possible co-speciation with distinct legumes. During this process the loss of a noeI gene and the acquisition of a nolL gene could be regarded as an adaptation towards these legumes that responded to Nod factors carrying 4-O-acetylfucose rather than 2-O-methylfucose. This explained various responses of lupins and serradella plants to infection by mutants in nodZ and nolL genes, knowing that serradella is a stringent legume while lupins are more promiscuous legumes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Legume shrubs have great potential for rehabilitation of semi-arid degraded soils in Mediterranean ecosystems as they establish mutualistic symbiosis with N-fixing rhizobia. Eighty-eight symbiotic rhizobia were isolated from seven wild legume shrubs native of Sicily (Southern Italy) and grouped in operational taxonomic units (OTU) by analysis of the ribosomal internal transcribed spacer (ITS) polymorphism. Partial sequencing of 16S rRNA gene of representative isolates of each OTU revealed that most Genisteae symbionts are related to Bradyrhizobium canariense, B. japonicum and B. elkanii. Teline monspessulana was the only Genistea nodulated by Mesorhizobium strains, and Anagyris foetida (Thermopsideae) was promiscuosly nodulated by Rhizobium, Mesorhizobium, Agrobacterium and Bradyrhizobium strains. Analysis of the nodulation gene nodA assigned most Mediterranean Genisteae bradyrhizobia to clade II but also to clades IV, I and III, which included, so far, sequences of (sub)tropical and Australian isolates. The high diversity and low host specificity observed in most wild legumes isolates suggest that preferential associations may establish in the field depending on differences in the benefits conferred to the host and on competition ability. Once identified, these beneficial symbiosis can be exploited for rehabilitation of arid, low productive and human-impacted soils of the Mediterranean countries.  相似文献   

7.
We examined the genetic structure and symbiotic characteristics of Bradyrhizobium isolates recovered from four legume species (Lupinus albus [white lupine], Lupinus angustifolius [blue lupine], Ornithopus compressus [yellow serradella], and Macroptilium atropurpureum [sirato]) grown in an Oregon soil. We established that multilocus enzyme electrophoresis (MLEE) can provide insights into the genetic relatedness among Bradyrhizobium strains by showing a positive correlation (r2 = ≥0.90) between the relatedness of Bradyrhizobium japonicum strains determined by MLEE at 13 enzyme loci and that determined by other workers using either DNA-DNA hybridization or DNA sequence divergence estimates. MLEE identified 17 electrophoretic types (ETs) among 95 Bradyrhizobium isolates recovered from the four hosts. Although the overall genetic diversity among the ETs (H = 0.69) is one of the largest measured to date in a local population of any soilborne bacterial species, there was no evidence of multilocus structure (linkage disequilibrium) within the population. The majority of the isolates (73%) were represented by two closely related ETs (2 and 3) which dominated the root nodules of white lupine, serradella, and siratro. In contrast, ET1 dominated nodules of blue lupine. Although representative isolates from all of the 17 ETs nodulated siratro, white lupine, blue lupine, and big trefoil (Lotus pedunculatus), they were either completely ineffective or poorly effective at fixing nitrogen on these hosts. Despite the widespread use of serradella as a surrogate host for lupine-nodulating bradyrhizobia, 7 of the 17 ETs did not nodulate this host, and the remaining 10 ETs were ineffective at fixing nitrogen.  相似文献   

8.
Aiming at learning the microsymbionts of Arachis duranensis, a diploid ancestor of cultivated peanut, genetic and symbiotic characterization of 32 isolates from root nodules of this plant grown in its new habitat Guangzhou was performed. Based upon the phylogeny of 16S rRNA, atpD and recA genes, diverse bacteria belonging to Bradyrhizobium yuanmingense, Bradyrhizobium elkanii, Bradyrhizobium iriomotense and four new lineages of Bradyrhizobium (19 isolates), Rhizobium/Agrobacterium (9 isolates), Herbaspirillum (2 isolates) and Burkholderia (2 isolates) were defined. In the nodulation test on peanut, only the bradyrhizobial strains were able to induce effective nodules. Phylogeny of nodC divided the Bradyrhizobium isolates into four lineages corresponding to the grouping results in phylogenetic analysis of housekeeping genes, suggesting that this symbiosis gene was mainly maintained by vertical gene transfer. These results demonstrate that A. duranensis is a promiscuous host preferred the Bradyrhizobium species with different symbiotic gene background as microsymbionts, and that it might have selected some native rhizobia, especially the novel lineages Bradyrhizobium sp. I and sp. II, in its new habitat Guangzhou. These findings formed a basis for further study on adaptation and evolution of symbiosis between the introduced legumes and the indigenous rhizobia.  相似文献   

9.
A collection of 18 previously unstudied strains isolated from root nodules of Genista germanica (German greenweed) grown in southeast Poland was evaluated for the level of genetic diversity using the BOX-PCR technique and the phylogenetic relationship based on both core (16S rRNA, dnaK, ftsA, glnII, gyrB, recA, rpoB) and nodulation (nodC and nodZ) gene sequences. Each of the 18 G. germanica root nodule isolates displayed unique BOX-PCR patterns, indicating their high level of genomic heterogeneity. Based on the comparative 16S rDNA sequence analysis, 12 isolates were affiliated to the Bradyrhizobium genus and the other strains were most similar to Rhizobium species. Phylogenetic analysis of the core gene sequences indicated that the studied Bradyrhizobium bacteria were most closely related to Bradyrhizobium japonicum, whereas Rhizobium isolates were most closely related to Rhizobium lusitanum and R. leguminosarum. The phylogenies of nodC and nodZ for the Rhizobium strains were incongruent with each other and with the phylogenies inferred from the core gene sequences. All Rhizobium nodZ gene sequences acquired in this study were grouped with the sequences of Bradyrhizobium strains. Some of the studied Rhizobium isolates were placed in the nodC phylogenetic tree together with reference Rhizobium species, while the others were closely related to Bradyrhizobium bacteria. The results provided evidence for horizontal transfer of nodulation genes between Bradyrhizobium and Rhizobium. However, the horizontal transfer of nod genes was not sufficient for Rhizobium strains to form nodules on G. germanica roots, suggesting that symbiotic genes have to be adapted to the bacterial genome.  相似文献   

10.
The genomic diversity of a collection of 103 indigenous rhizobia isolates from Lupinus mariae-josephae (Lmj), a recently described Lupinus species endemic to alkaline-limed soils from a restricted habitat in Eastern Spain, was investigated by molecular methods. Isolates were obtained from soils of four geographic locations in the Valencia province that harbored the known Lmj plant populations. Using an M13 RAPD fingerprinting technique, 19 distinct RAPD profiles were identified. Phylogenetic analysis based on 16S rDNA and the housekeeping genes glnII, recA and atpD showed a high diversity of native Bradyrhizobium strains that were able to establish symbiosis with Lmj. All the strains grouped in a clade unrelated to strains of the B. canariense and B. japonicum lineages that establish symbioses with lupines in acid soils of the Mediterranean area. The phylogenetic tree based on concatenated glnII, recA and atpD gene sequences grouped the Lmj isolates in six different operational taxonomic units (OTUs) at the 93% similarity level. These OTUs were not associated to any specific geographical location, and their observed divergence predicted the existence of different Bradyrhizobium genomic species. In contrast, phylogenetic analysis of symbiotic genes based on nodC and nodA gene sequences, defined only two distinct clusters among the Lmj strains. These two Lmj nod gene types were largely distinct from nod genes of bradyrhizobia nodulating other Old World lupine species. The singularity and large diversity of these strains in such a small geographical area makes this an attractive system for studying the evolution and adaptation of the rhizobial symbiont to the plant host.  相似文献   

11.
The phylogeny of 16 isolates from root nodules of Genista germanica, Genista tinctoria, Cytisus ratisbonensis, and Cytisus scoparius growing in southeast Poland was estimated by comparative sequence analysis of core (16S rDNA, atpD, glnII, recA) and symbiosis-related (nodC, nodZ, nifH) genes. All the sequences analyzed placed the studied rhizobia in the genus Bradyrhizobium. Phylogenetic analysis of individual and concatenated housekeeping genes showed that the Genisteae microsymbionts form a homogeneous group with Bradyrhizobium japonicum strains. The phylogeny of nodulation and nitrogen fixation genes indicated a close relationship of the examined rhizobia with B. japonicum, Bradyrhizobium canariense, Bradyrhizobium cytisi, Bradyrhizobium rifense and Bradyrhizobium lupini strains infecting other plants of the tribe Genisteae. For the first time, the taxonomic position of G. germanica and C. ratisbonensis rhizobia, inferred from multigenic analysis, is described. The results of the phylogenetic analysis based on the protein-coding gene sequences presented in this study also indicate potential pitfalls concerning the choice of marker and reference strains, which may lead to conflicting conclusions in species delineation.  相似文献   

12.
Sixty-seven isolates were isolated from nodules collected on roots of Mediterranean shrubby legumes Retama raetam and Retama sphaerocarpa growing in seven ecological–climatic areas of northeastern Algeria. Genetic diversity of the Retama isolates was analyzed based on genotyping by restriction fragment length polymorphism of PCR-amplified fragments of the 16S rRNA gene, the intergenic spacer (IGS) region between the 16S and 23S rRNA genes (IGS), and the symbiotic genes nifH and nodC. Eleven haplotypes assigned to the Bradyrhizobium genus were identified. Significant biogeographical differentiation of the rhizobial populations was found, but one haplotype was predominant and conserved across the sites. All isolates were able to cross-nodulate the two Retama species. Accordingly, no significant genetic differentiation of the rhizobial populations was found in relation to the host species of origin. Sequence analysis of the 16S rRNA gene grouped the isolates with Bradyrhizobium elkanii, but sequence analyses of IGS, the housekeeping genes (dnaK, glnII, recA), nifH, and nodC yielded convergent results showing that the Retama nodule isolates from the northeast of Algeria formed a single evolutionary lineage, which was well differentiated from the currently named species or well-delineated unnamed genospecies of bradyrhizobia. Therefore, this study showed that the Retama species native to northeastern Algeria were associated with a specific clade of bradyrhizobia. The Retama isolates formed three sub-groups based on IGS and housekeeping gene phylogenies, which might form three sister species within a novel bradyrhizobial clade.  相似文献   

13.
Main nodulation signal molecules in the peanut–bradyrhizobia interaction were examined. Flavonoids exuded by Arachis hypogaea L. cultivar Tegua were genistein, daidzein and chrysin, the latest being released in lower quantities. Thin layer chromatography analysis from genistein-induced bacterial cultures of three peanut bradyrhizobia resulted in an identical Nod factor pattern, suggesting low variability in genes involved in the synthesis of these molecules. Structural study of Nod factor by mass spectrometry and NMR analysis revealed that it shares a variety of substituents with the broad-host-range Rhizobium sp. NGR234 and Bradyrhizobium spp. Nodulation assays in legumes nodulated by these rhizobia demonstrated differences between them and the three peanut bradyrhizobia. The three isolates were classified as Bradyrhizobium sp. Their fixation gene nifD and the common nodulation genes nodD and nodA were also analyzed. Accession numbers: AY427207, EF202193, EF158295 (16S rRNA gene of strains NLH25, NOD31 and NDEHE, respectively); DQ295199, DQ295200, DQ295201 (Partial nifD gene sequences of strains NLH25, NOD31 and NDEHE, respectively).  相似文献   

14.
15.
Aim This study analysed the diversity and identity of the rhizobial symbionts of co‐existing exotic and native legumes in a coastal dune ecosystem invaded by Acacia longifolia. Location An invaded coastal dune ecosystem in Portugal and reference bradyrhizobial strains from the Iberian Peninsula and other locations. Methods Symbiotic nitrogen‐fixing bacteria were isolated from root nodules of plants of the Australian invasive Acacia longifolia and the European natives Cytisus grandiflorus, Cytisus scoparius and Ulex europaeus. Total DNA of each isolate was amplified by polymerase chain reaction (PCR) with the primer BOX A1R. Subsequent PCR‐sequencing and phylogenetic analyses of the internal transcribed spacer region and the nifD and nodA genes were performed for all different strains. Results The four plant species analysed were nodulated by bacteria from three different Bradyrhizobium lineages, although most of the isolates belonged to the Bradyrhizobium japonicum lineage sensu lato. Ninety‐five per cent of the bradyrhizobia isolated from A. longifolia, C. grandiflorus and U. europaeus in the invaded ecosystem had nifD and nodA genes of Australian origin. Seven isolates obtained in this study define a new distinctive nifD group of Bradyrhizobium from western and Mediterranean Europe. Main conclusions These results reveal the introduction of exotic bacteria with the invasive plant species, their persistence in the new geographical area and the nodulation of native legumes by rhizobia containing exotic symbiotic genes. The disruption of native mutualisms and the mutual facilitation of the invasive spread of the introduced plant and bradyrhizobia could constitute the first report of an invasional meltdown documented for a plant–bacteria mutualism.  相似文献   

16.
Root nodule bacterial strains were isolated from the little-studied legumes Eriosema chinense and Flemingia vestita (both in tribe Phaseoleae, Papilionoideae) growing in acidic soil of the sub-Himalayan region of the Indian state of Meghalaya (ME), and were identified as novel strains of Bradyrhizobium on the basis of their 16S rRNA sequences. Seven isolates selected on the basis of phenotypic characters and assessment of ARDRA and RAPD patterns were subjected to multilocus sequence analysis (MLSA) using four protein-coding housekeeping genes (glnII, recA, dnaK and gyrB). On the basis of 16S rRNA phylogeny as well as a concatenated MLSA five strains clustered in a single separate clade and two strains formed novel lineages within the genus Bradyrhizobium. The phylogenies of the symbiotic genes (nodA and nifH) were in agreement with the core gene phylogenies. It appears that genetically diverse Bradyrhizobium strains are the principal microsymbionts of these two important native legumes. The novel genotypes of Bradyrhizobium strains isolated in the present study efficiently nodulate the Phaseoloid crop species Glycine max, Vigna radiata and Vigna umbellata. These strains are genetically different from strains of Bradyrhizobium isolated earlier from a different agro-climatic region of India suggesting that the acidic nature of the soil, high precipitation and other local environmental conditions are responsible for the evolution of these newly-described Bradyrhizobium strains. In global terms, the sub-Himalayan region of India is geographically and climatically distinct and the Bradyrhizobium strains nodulating its legumes appear to be novel and potentially unique to the region.  相似文献   

17.
18.
In this study, the genetic diversity and identification of Bradyrhizobium symbionts of Crotalaria zanzibarica, the most widely-distributed invasive legume in Taiwan, and other sympatric legume species growing along riverbanks of Taiwan were evaluated for the first time. In total, 59 and 54 Bradyrhizobium isolates were obtained from C. zanzibarica and its coexisting legume species, respectively. Based on the multilocus sequence analysis (MLSA) of concatenated four housekeeping genes (dnaK-glnII-recA-rpoB gene sequences, 1901 bp), the 113 isolates displayed 53 unique haplotypes and grouped into 21 clades. Of these clades, 11 were found to be congruent to already defined Bradyrhizobium species, while the other 10 clades were found to not be congruent to any defined species. In particular, the C. zanzibarica isolates belong to 14 MLSA clades, six of which overlapped with the isolates of coexisting legumes. According to the nodA gene sequences (555 bp) obtained from the 105 isolates, these isolates were classified into three known nodA clades, III.2, III.3 and VII and were further clustered into 10 groups. Furthermore, the C. zanzibarica isolates were clustered into 8 nodA groups, five of which overlapped with the isolates from coexisting legumes. Additionally, the nodA genes of the isolates from native species were dominated by Asian origin, while those from C. zanzibarica were dominated by American origin. In conclusion, C. zanzibarica is a promiscuous host capable of recruiting diverse Bradyrhizobium symbionts, some of which are phylogenetically similar to the symbionts of coexisting legumes in Taiwan.  相似文献   

19.
Soybean-nodulating bradyrhizobia are genetically diverse and are classified into different species. In this study, the genetic diversity of native soybean bradyrhizobia isolated from different topographical regions along the southern slopes of the Himalayan Mountains in Nepal was explored. Soil samples were collected from three different topographical regions with contrasting climates. A local soybean cultivar, Cobb, was used as a trap plant to isolate bradyrhizobia. A total of 24 isolates selected on the basis of their colony morphology were genetically characterized. For each isolate, the full nucleotide sequence of the 16S rRNA gene and ITS region, and partial sequences of the nifD and nodD1 genes were determined. Two lineages were evident in the conserved gene phylogeny; one representing Bradyrhizobium elkanii (71% of isolates), and the other representing Bradyrhizobium japonicum (21%) and Bradyrhizobium yuanmingense (8%). Phylogenetic analyses revealed three novel lineages in the Bradyrhizobium elkanii clade, indicating high levels of genetic diversity among Bradyrhizobium isolates in Nepal. B. japonicum and B. yuanmingense strains were distributed in areas from 2420 to 2660 m above sea level (asl), which were mountain regions with a temperate climate. The B. elkanii clade was distributed in two regions; hill regions ranging from 1512 to 1935 m asl, and mountain regions ranging from 2420 to 2660 m asl. Ten multi-locus genotypes were detected; seven among B. elkanii, two among B. japonicum, and one among B. yuanmingense-related isolates. The results indicated that there was higher species-level diversity of Bradyrhizobium in the temperate region than in the sub-tropical region along the southern slopes of the Himalayan Mountains in Nepal.  相似文献   

20.
Pairwise comparisons of Genista tinctoria (dyer’s weed) rhizobium nodA, nodC, and nodZ gene sequences to those available in databanks revealed their highest sequence identities to nodulation loci of Bradyrhizobium sp. (Lupinus) strains and rhizobia from other genistoid legumes. On phylogenetic trees, genistoid microsymbionts were grouped together in monophyletic clusters, which suggested that their nodulation genes evolved from a common ancestor. G. tinctoria nodulators formed symbioses not only with the native host, but also with other plants of Genisteae tribe such as: Lupinus luteus, Sarothamnus scoparius, and Chamaecytisus ratisbonensis, and they were classified as the genistoid cross-inoculation group. The dyer’s weed root nodules were designated as indeterminate with apical meristem consisting of infected and uninfected cells.The GenBank accession numbers for the sequences reported in this paper are as follows: nodC, DQ139776–DQ139781; nodA, DQ135897, Q135898; nodZ, DQ135899–DQ135903.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号